
1 Horizontal and Vertical Lines
Take the set X to be the unit square [0, 1]

2, and a hypothesis class H all of
the horizontal and vertical lines that intersect this square. This has finite VC
dimension of 2, as you can’t shatter 3 points. We attempt to construct a fractal
witness set: a fractal subset of the square, with Minkowski dimension not much
bigger than 1, that has non-trivial intersection with every line in H. Of course,
we could choose the diagonal which would give us an exactly line.

We do so recursively. We divide the unit square into an n×n grid of pixels,
find a witness set of pixels, then divide those pixels up to find another witness
set, and so on. We eventually take the intersection.

At the kth step (starting at stage 0), we have a square of side length
(
1
n

)k.
We divide this square into a grid of n2 pixels, each side-length

(
1
n

)k+1. The
pixels in our grid is a new set A. For every horizontal line that intersects
the square, it intersects exactly n pixels of A, an entire row; a column for a
vertical line. These rows and columns of n points each form our new hypothesis
class/range space R.

Our witness set definition states that for ϵ > 0, then N ⊆ A is an ϵ-net if for
any r ∈ R (a row or column) such that |r ∩ A| > ϵ|A|. Since each |r ∩ A| = 1

n ,
so if ϵ < 1

n , then any epsilon net will contain at least one pixel in every row and
column.

Our witness set theorem states that there exists a witness set of size, for
some constants,

C0

ϵ
log

C1

ϵ

Precisely, the probability that a Witness set of this size exists is non-zero, so
one exists.

So we know that, for our set A, there is a witness set of the rows and columns
of size

c0n log(c1n)

So we have c0n log(c1n) pixels that are sure to intersect all of the horizontal
and vertical lines that go through this particular square. We then take all of
the chosen pixels to be the start of our next level: divide each of them up into

1



their own grid, and complete the same process. Since no row or column will
ever be lost– we are always choosing some small pixel in every row and column,
then these sets will intersect non-trivially with every horizontal and vertical line.
This gives us a fractal witness set.

Starting at the unit square X = E0, we divide into n2 side-length 1
n pixels,

and take c0n log(c1n) to be E1. In each of those, we divide into n2 side-length
1
n2 pixels, and take c0n log(c1n), giving us

(c0n log(c1n))
2

pixels of side-length 1
n2 that intersect every horizontal and vertical line, these

form E2. Continuing down, at step k we have Ek made up of

(c0n log(c1n))
k

pixels of side-length 1
nk that form a witness set. We take the intersection of all

of these; equivalent to taking E∞, we get a witness set E =
⋂∞

k=0 Ek.
Now to find the Minkowski of E, we find an upper and lower bound on the

covering number Nδ(E). Since for every k, E ⊂ Ek, so we know Nδ(E) ≤
Nδ(Ek). When 2

nk < δ , then one δ ball can cover a pixel of length 1
nk (but

δ ≤ 2
nk−1 ensures that it wouldn’t cover not a pixel at one level up/larger

length). Using one ball for each pixel, we can exhibit a covering by covering
each square. Then an upper bound on the covering number is the number of
squares, (c0n log(c1n))

k.
Since k − 1 ≤ logn(

2
δ ) and xlogn(y) = ylogn(x)

Nδ(E) ≤ (c0n log(c1n))
k

≤ (c0n log(c1n)) (c0n log(c1n))
logn(

2
δ )

≤ (c0n log(c1n))

(
2

δ

)logn(c0n log(c1n))

= (c0n log(c1n))

(
2

δ

) log(c0)+log(n)+log(log(c1n))

log(n)

= (c2n log(c1n))

(
1

δ

)1+
log(c0)+log(log(c1n))

log(n)

This is what we want: n is chosen before δ, but we can make it as large as we
want such that the exponent of 1

δ is less than 1 + α for any α.
Similarly for the lower bound: every pixel of Ek will contain some part of

the witness set, so to cover E, we will have to cover something in every pixel
of Ek. When 1

nk+1 ≤ δ < 1
nk , then one δ-ball can cover at most 4 pixels of

Ek (and not at the next level). So the covering number has to contain at least
1
4 (c0n log(c1n))

k balls. This gives the same exponent as above.
So the dimension of this witness set, for a fixed n, is

1 +
log (c0) + log (log(c1n))

log(n)
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Which means we can get a fractal witness set with dimension as close as we
want to 1 by taking n large enough because limn→∞

log(c0)+log(log(c1n))
log(n) = 0.

2 Diagonal Lines
The goal now is to complete the same process for diagonal lines in the unit
square. Thus, take the set X to be the unit square [0, 1]

2, and a hypothesis
class H all of lines that intersect this square. We are hoping to construct a
witness set for all of the lines that intersect the square with “sizable” length- at
least some length. For now, we’ll say that lines have to intersect at least half of
the width or height of the square.

Re-run the same process as before. Divide the square into an n × n grid
of pixels. The range in our discretized grid corresponding to any line are the
pixels, each squares of side-length 1

n , that the line goes through at least half of
their width or height. By the nature of how our lines and squares line up, we
know that

Lemma. For a square divided into a k×k grid of pixels, any line that intersects
over half of the square’s width or height will intersect over half of a pixel’s width
or height for at least k

2 pixels of the grid.

Proof. TODO. Dividing into cases of slope |m| ≤ 1 or |m| ≥ 1, and thinking
about columns or rows respectively.

Thus, the lines we are considering will each have a corresponding range of
at least n

2 , or a 1
2n proportion of the n2 pixels in the grid. And, as the lines

intersect these over half of these smaller square’s width or height, we can repeat
the same process on them. We do, however, need to know that this range space
has finite VC dimension:

Lemma. The above range space made up of the grid and pixels with sizable
intersection has VC dimension that is bounded as the grid gets finer, n → ∞.

Proof. TODO. Probably true for the similar reasons line’s have finite VC di-
mension.

When ϵ < 1
2n , then |r ∩A| > n

2 > ϵ|A| for all of the ranges corresponding to
our lines, so we know there is a witness set of size

c0n log(c1n)

that intersects all of these (the 2 gets absorbed in the constant). That would
be the set E1, which we iterate this process on.

We then can complete the same process as above to show that we can get
this witness set to have dimension as close to 1 as we would like.
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