The Topology of Magmas

Charlotte Aten

University of Rochester

2017
Definition (Magma)

A magma (or binar or, classically, groupoid) is an algebraic structure \((S, f)\) consisting of an underlying set \(S\) and a single binary operation \(f : S^2 \rightarrow S\).
Operation Digraphs

Definition (Operation digraph)
Let \(f : S \to S \) be a unary operation. The operation digraph (or functional digraph) of \(f \), written \(G_f \), is given by \(G_f = G(S, E) \) where

\[
E = \{ (s, f(s)) \mid s \in S \}.
\]

Definition (Operation digraph for a binary operation)
Let \(f : S^2 \to S \) be a binary operation and let \(s \in S \). The left operation digraph of \(s \) under \(f \), written \(G_{f_s}^L \), is the operation digraph of \(f_s^L : S \to S \) where \(f_s^L(x) := f(s, x) \) for \(x \in S \). The right operation digraph of \(s \) under \(f \), written \(G_{f_s}^R \), is defined analogously.
Example: Operation Digraphs from $\mathbb{Z}/3\mathbb{Z}$
Previous Work in...

- Semigroup theory
- Dynamics and number theory
- Cayley graphs
- Graph theory
- Universal algebra (unary algebras)
Definition (Adjacency matrix)

Let $G(V, E)$ be a digraph, let $|V| = n$, and fix an order on the vertex set V. The adjacency matrix A for G under the given order on V is the $n \times n$ matrix whose ij-entry is 1 if there is an edge in G from v_i to v_j and 0 otherwise.

We write A^L_{fs} to indicate the adjacency matrix of G^L_{fs} and similarly write A^R_{fs} to indicate the adjacency matrix of G^R_{fs}.
Example: Operation Matrices from $\mathbb{Z}/3\mathbb{Z}$

\[
A_{+0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A_{+1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad A_{+2} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}
\]

\[
A_{\times0} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad A_{\times1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A_{\times2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
\]
Example: Operation Matrices from $\mathbb{Z}/3\mathbb{Z}$

Write s_i to indicate i viewed as an element of $\mathbb{Z}/3\mathbb{Z}$. Multiplying a vector by the adjacency matrix of an operation digraph corresponds to applying the corresponding function to the corresponding element.

\[
s_2A_{+1} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = [1 \ 0 \ 0] = s_0
\]

\[
s_1A_{+2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = [1 \ 0 \ 0] = s_0
\]
Graph Treks

Theorem

Let A be the adjacency matrix for G with a given vertex ordering. Then $(A^k)_{ij}$ for $k \in \mathbb{N}$ is the number walks of length k from v_i to v_j in G.

It is natural to consider the significance of the product of the adjacency matrices of two or more different graphs on the same set of vertices.
Graph Treks

Definition (Trek)

Let \((G_1, G_2, \ldots, G_k)\) be a tuple of graphs on a common set of vertices \(V\). A **trek** (or \((v_i, v_j)\)-trek) on \((G_1, G_2, \ldots, G_k)\) is an ordered list of vertices and edges \(v_i, e_1, \ldots, e_k, v_j\) where \(e_t \in E(G_t)\) is an edge joining the vertices before and after it in the list.

Theorem (A. 2015)

Let \((G_1, G_2, \ldots, G_k)\) be a tuple of graphs on a set of vertices \(V\) under a given vertex ordering and let \(A_1, A_2, \ldots, A_k\) be the corresponding adjacency matrices. Then \((A_1A_2\cdots A_k)_{ij}\) is the number of treks on \((G_1, G_2, \ldots, G_k)\) of length \(k\) from \(v_i\) to \(v_j\).
Multiplying operation matrices corresponds to function composition:

\[
A \times_2 A_{+1} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{bmatrix} \begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{bmatrix} = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

This also corresponds to looking at those treks which consist of a step on \(G \times_2 \) followed by a step on \(G_{+1} \).
Theorem (A. 2015)

Let S be an ordered finite set of elements and let $\{f_p\}_{p \in P}$ where $f_p : S \to S$ be an indexed collection of functions. Let $G_p = G(S, E_p)$ be the operation digraph for f_p and let A_p be the adjacency matrix for G_p under the given ordering for S. If $Q = \{q_n\}_{n=1}^k$ is a finite sequence of k elements of P and $y = s_j$ is a fixed element of S we have that the number of $x \in S$ for which $f^Q(x) = y$ is exactly $\sum_{i=1}^{|S|} \left(\prod_{n=1}^k (A_{q_n}) \right)_{ij}$.

Theorem (Sylvester’s Rank Inequality)

Let U, V, and W be finite-dimensional vector spaces, let A be a linear transformation from U to V and let B be a linear transformation from V to W. Then

$$\text{rank } BA \geq \text{rank } A + \text{rank } B - \dim V.$$

By induction we see that for a finite collection of linear transformations $\{A_i : V \to V\}_{i \in I}$ we have

$$\text{rank } \prod_{i \in I} A_i \geq \left(\sum_{i \in I} \text{rank } A_i \right) - (|I| - 1) \dim V.$$
Example: An Equation over $\mathbb{Z}/4\mathbb{Z}$

$((3(x + 2))^3)((3(x+2))^3) = y$

Let $f_1(x) = x + 2$, $f_2(x) = 3x$, $f_3(x) = x^3$, and $f_4(x) = x^x$. Note that the equation under consideration can be rewritten as $f^Q(x) = y$, where Q is the sequence $(1, 2, 3, 4)$.

$A_1 = A_{+2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

$A_2 = A_{\times3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

$A_3 = A^{R}_{\wedge3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$A_4 = A^{R}_{\uparrow2} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Example: An Equation over $\mathbb{Z}/4\mathbb{Z}$

\[
((3(x + 2))^3)((3(x+2))^3) = y
\]

Since rank $A_{+2} = \text{rank } A_{x3} = 4$ and rank $A_{\wedge3} = \text{rank } A_{\uparrow2} = 3$, we have that

\[
\text{rank } \prod_{n=1}^{4} A_n \geq \left(\sum_{n=1}^{4} \text{rank } A_n \right) - (|I| - 1)|S|
\]

\[
= (4 + 4 + 3 + 3) - (4 - 1)4
\]

\[
= 2.
\]
Sylvester’s Inequality for Functions

Proposition (Sylvester’s inequality for functions)

Let X, Y, and Z be finite sets and let $f : X \to Y$ and $g : Y \to Z$ be functions. Then

$$|(g \circ f)(X)| \geq |f(X)| + |g(Y)| - |Y|.$$
Definition (Operation hypergraph)

Let \(f : S^2 \to S \) be a binary operation. The operation hypergraph of \(f \), written \(G_f \), is given by \(G_f = G(S, E) \) where

\[
E = \{(s_i, s_j, f(s_i, s_j)) \mid s_i, s_j \in S\}.
\]
Definition (Adjacency tensor)

Let $G(V, E)$ be a 3-uniform hypergraph, let $|V| = n$, and fix an order on the vertex set V. The \textit{adjacency tensor} A for G under the given order on V is the $n \times n \times n$ hypermatrix whose ijk-entry is 1 if (v_i, v_j, v_k) is an edge in G and 0 otherwise.

Recall that given such a tensor we can obtain a bilinear map $A_f: \mathbb{C}^S \times \mathbb{C}^S \to \mathbb{C}^S$ where given $x_1 = (a_s s)_{s \in S}$ and $x_2 = (b_s s)_{s \in S}$ from \mathbb{R}^S we define

$$A_f(x_1, x_2) := \sum_{s_i, s_j, s_k \in S} a_{s_i} b_{s_j} (A_f)_{ijk} s_k = \sum_{s_i, s_j \in S} a_{s_i} b_{s_j} f(s_i, s_j).$$
There are many ways to compose binary operations. Let $f, g : S^2 \rightarrow S$.

$$(x, y, z) \mapsto g(f(x, y), z)$$

$$(x, y, z) \mapsto f(f(x, x), g(x, f(x, f(y, z)))).$$
We return to our $2x + 1 = y$ example.
Definition (μ, Σ-odyssey)

Let X and Y be sets of variables and take Σ to be a collection of pairs of the form (e, E) where $E = E_i$ for some $i \in I$ and $e \in (X \cup Y)^{\rho(i)}$. If there exist evaluation maps $\mu: X \rightarrow S$ (the endpoint evaluation map) and $\nu: Y \rightarrow S$ (the intermediate point evaluation map) such that for each $(e, E) \in \Sigma$ we have that $(\mu \circ \nu)(e) \in E$ then we say that the collection of edges $\mathcal{O} = (\mu \circ \nu)(e)$ is a Σ-odyssey on the G_i. We say that X is the set of end variables, Y is the set of intermediate variables, $\mu(X)$ is the set of endpoints, $\nu(Y)$ is the set of intermediate points, Σ is the odyssey type, and $|\Sigma|$ is the length of the odyssey. We call a Σ-odyssey \mathcal{O} a μ, Σ-odyssey if $\mu: X \rightarrow S$ is the endpoint evaluation map of \mathcal{O} for some fixed μ.
Hypergraph Odysseys

$y = ax + b$
$t = ax$

End variables: $X = \{x, y, a, b\}$
Intermediate variable: $Y = \{t\}$
Odyssey type: $\Sigma = \{((a, x, t), G_x), ((t, b, y), G_+)\}$
Let φ denote the logical formula

$$\varphi(a, b, x, y) := (\exists t \in \mathbb{Z}/3\mathbb{Z})((a, x, t) \in G \times (a, x, t) \in G \times G_+).$$

Let A and B be arbitrary rank 3 tensors over \mathbb{C}. Define

$$(\varphi AB)_{ijkl} := \sum_{t \in \{0, 1, 2\}} A_{ikt} B_{tjl},$$

which is the generalized matrix product of A and B corresponding to the logical formula φ. By simple definition-chasing one finds that $\varphi G \times G_+$ is the adjacency tensor for the composite operation

$$(a, b, x) \mapsto ax + b.$$
Definition (Operation graph)

Let \(f : S \to S \) be a unary operation. The operation graph of \(f \), written \(\bar{G}_f \), is the simple graph \(G(V, E) \) which is constructed as follows. For each edge \(e = (s, f(s)) \) in \(G_f \) define

\[
\sigma(e) := \begin{cases}
\{(s, u_e), (u_e, v_e), (v_e, s)\} & \text{when } f(s) = s \\
\{(s, u_e), (u_e, f(s))\} & \text{when } f^2(s) = s \text{ and } f(s) \neq s \\
\{e\} & \text{otherwise}
\end{cases}
\]

where \(u_e \) and \(v_e \) are new vertices unique to the edge \(e \). Take \(E = \bigcup_{e \in E(G_f)} \sigma(e) \) and let \(V \) be the union of \(S \) and all the \(u_e \) and \(v_e \) generated by applying \(\sigma \) to edges \(e \in E(G_f) \).
Embedding Dimension

\[s = f(s) \]

\[\sigma \]

\[s = f(f(s)) \]

\[s = f(s) \]

\[\sigma \]

\[s = f(f(s)) \]
Embedding Dimension

Theorem

Every operation graph is planar.

Theorem

Let H be a subdivision of a simple graph H' with n vertices, each of degree at least $k + 1$ for $k \geq 2$. The graph H cannot appear as a subgraph of any operation graph if $k > \frac{n-1}{2}$.
Definition (Operation complex)

Let \(f : S^2 \to S \) be a binary operation. The operation complex of \(f \), written \(\tilde{G}_f \), is the simplicial complex whose 2-faces are the edges of the hypergraph \(G(V, E) \), which is constructed as follows. Write \((a, b, c, d)_2\) to indicate the set of all 2-faces of the simplex with vertices \(a, b, c, \) and \(d \). For each edge \(e = (s_i, s_j, f(s_i, s_j)) \) in \(G_f \) define

\[
\sigma(e) := \begin{cases}
(s_i, u_e, v_e, w_e)_2 & \text{when } |\{s_i, s_j, f(s_i, s_j)\}| = 1 \\
(s_i, s_j, u_e, v_e)_2 & \text{when } |\{s_i, s_j, f(s_i, s_j)\}| = 2 \\
(s_i, s_j, s_k, u_e)_2 & \text{when } |\{s_i, s_j, f(s_i, s_j)\}| = 3 \text{ and } \tau e \in f \text{ for some nonidentity permutation } \tau \\
\{e\} & \text{otherwise}
\end{cases}
\]

where \(u_e, v_e, \) and \(w_e \) are new vertices unique to the edge \(e \). Take \(E = \bigcup_{e \in E(G_f)} \sigma(e) \) and let \(V \) be the union of \(S \) and all the \(u_e, v_e, \) and \(w_e \) generated by applying \(\sigma \) to edges \(e \in E(G_f) \).
Given any magma \((S, f)\) we then know that \(\tilde{G}_f\) embeds into \(\mathbb{R}^k\) but not \(\mathbb{R}^{k-1}\) for some \(k \in \{3, 4, 5\}\).

Definition (Embedding dimension)

Let \((S, f)\) be a magma with operation complex \(\tilde{G}_f\). We refer to the minimal \(k\) such that the complex \(\tilde{G}_f\) embeds into \(\mathbb{R}^k\) as the *embedding dimension* of the magma \((S, f)\).

The situation here is more complex than for unary operations.
Embedding Dimension

Let \((S, f)\) be a magma such that for every \(x, y \in S, x \neq y\), we have that either \(f(x, y) = x\) or \(f(x, y) = y\). Every edge \(e \in G_f\) then contains at most 2 vertices which belong to \(S\). We can embed \(\bar{G}_f\) into \(\mathbb{R}^3\) without self-intersections. There are also magmas of embedding dimension 3 without this property. Consider \((\mathbb{Z}_3, +)\).
Consider the triangulation K_{h12} of the Klein bottle.
We orient faces to obtain a partial operation table.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>.</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
<td>g</td>
<td>h</td>
<td>i</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>c</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>i</td>
<td>b</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>d</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>i</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>e</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>c</td>
<td>b</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>f</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>i</td>
<td>.</td>
<td>c</td>
</tr>
<tr>
<td>g</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>h</td>
<td>.</td>
<td>.</td>
<td>b</td>
<td>.</td>
</tr>
<tr>
<td>h</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>e</td>
<td>.</td>
</tr>
<tr>
<td>i</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>

This “forbidden substructure” cannot appear in any magma with embedding dimension 3.
If a magma has embedding dimension n then clearly every submagma has embedding dimension at most n. How does embedding dimension behave under taking products or homomorphic images of magmas?

If the class “magmas of embedding dimension at most n” is closed under taking homomorphic images, submagmas, and products we would have an equational class (Birkhoff’s Variety Theorem).
Theorem

Let $f : S \to S$ be a function on a set S of size n. Let $m(j)$ denote the number of j-cycles under f and let Z_j denote the multiset which consists of $m(j)$ copies of each j^{th} root of unity. The nonzero part of the spectrum of A_f is the multiset union $\bigcup_j Z_j$.
Acknowledgements

- Jonathan Pakianathan and Mark Herman of the University of Rochester Department of Mathematics
- Clifford Bergman of the Iowa State University Department of Mathematics
- William DeMeo of the University of Hawaii Department of Mathematics
- National Science Foundation
Thank you.