Orientable smooth manifolds are essentially quasigroups

Charlotte Aten (joint work with Semin Yoo)

University of Rochester

2022 January 25
Introduction

- In the mid-2010s Herman and Pakianathan introduced a functorial construction of closed surfaces from noncommutative finite groups.
- Semin Yoo and I decided to produce an n-dimensional generalization.
- The two main challenges in doing this were finding an appropriate analogue of noncommutative groups and in desingularizing the n-dimensional pseudomanifolds which arose at the first stage of our construction.
- Ultimately we found that every orientable triangulable manifold could be manufactured in the manner we described.
Talk outline

- Herman and Pakianathan’s construction
- Quasigroups
- The first functor: Open serenation
- The second functor: Serenation
- The Evans Conjecture and Latin cubes
Consider the quaternion group G of order 8 whose universe is $G := \{\pm 1, \pm i, \pm j, \pm k\}$.

We begin by picking out all the pairs of elements $(x, y) \in G^2$ so that $xy \neq yx$. We call this collection $\text{NCT}(G)$.

We define $\text{In}(G)$ to be all the elements of G which are entries in some pair $(x, y) \in \text{NCT}(G)$.

Similarly, $\text{Out}(G)$ is defined to be all the members of G of the form xy where $(x, y) \in \text{NCT}(G)$.
Herman and Pakianathan’s construction

In this case we have

\[
\mathrm{NCT}(G) = \left\{ (\pm u, \pm v) \mid \{u, v\} \in \binom{\{i, j, k\}}{2} \right\}
\]

so

\[
\ln(G) = \{\pm i, \pm j, \pm k\}
\]

and

\[
\out(G) = \{\pm i, \pm j, \pm k\}.
\]

From this data we form a simplicial complex (actually a 2-pseudomanifold) whose facets are of the form \(\{x, y, xy\}\) where \((x, y) \in \mathrm{NCT}(G)\).
Herman and Pakianathan’s construction

One «sheet» of this complex is pictured below.
Herman and Pakianathan’s construction

- The three 4-cycles

\((i, j, -i, -j), (i, k, -i, -k), \) and \((j, k, -j, -k)\).

each carry an octohedron.
Herman and Pakianathan’s construction

- This simplicial complex, which we call $\text{Sim}(G)$ and Herman and Pakianathan called $X(Q_8)$, consists of three 2-spheres, each pair of which is glued at two points.
- Deleting these points to disjointize the spheres and filling the resulting holes yields the manifold we call $\text{Ser}(G)$ and Herman and Pakianathan called $Y(Q_8)$.
- In this case $\text{Ser}(G)$ is the disjoint union of three 2-spheres.
Quasigroups

Definition (Quasigroup)

A (binary) quasigroup is a magma $A := (A, f: A^2 \to A)$ such that if any two of the variables x, y, and z are fixed the equation

$$f(x, y) = z$$

has a unique solution.

- That is, a quasigroup is a magma whose Cayley table is a Latin square, where each entry occurs once in each row and each column.
- All groups are quasigroups, but quasigroups need not have identities or be associative.
Quasigroups

- The midpoint operation
 \[f(x, y) := \frac{1}{2}(x + y) \]
 is a quasigroup operation on \(\mathbb{R}^n \).
- The magma \((\mathbb{Z}, -) \) is a quasigroup.
Quasigroups

Definition (Quasigroup)

A (binary) quasigroup is an algebra $\mathbf{A} := (A, f, g_1, g_2)$ where for all $x_1, x_2, y \in A$ we have

$$f(g_1(x_2, y), x_2) = y,$$

$$f(x_1, g_2(x_1, y)) = y,$$

$$g_1(x_2, f(x_1, x_2)) = x_1,$$

and

$$g_2(x_1, f(x_1, x_2)) = x_2.$$

We think of $g_1(x, y)$ as the division of y by x in the second coordinate.
The preceding definition shows that the class Quas_2 of all binary quasigroups can be defined by universally-quantified equations, or *identities*.

This means that Quas_2 is a variety of algebras in the sense of universal algebra, and hence forms a category Quas_2 which is closed under taking quotients, subalgebras, and products.

Note that Herman and Pakianathan’s construction works with noncommutative quasigroups just as well as with groups.

We would then like an n-ary version of a quasigroup for our n-dimensional generalization.
Definition (Quasigroup)

An n-quasigroup is an n-magma $A := (A, f : A^n \to A)$ such that if any $n - 1$ of the variables x_1, \ldots, x_n, y are fixed the equation

$$f(x_1, \ldots, x_n) = y$$

has a unique solution.

- That is, an n-quasigroup is an n-magma whose Cayley table is a Latin n-cube.
- All n-ary groups are quasigroups, but quasigroups need not be associative.
Quasigroups

Given any group G the n-ary multiplication

$$f(x_1, \ldots, x_n) := x_1 \cdots x_n$$

is a quasigroup operation on G.
Quasigroups

Definition (Quasigroup)

An \textit{n-quasigroup} is an algebra

\[A := (A, f, g_1, \ldots, g_n) \]

where for all \(x_1, \ldots, x_n, y \in A \) and each \(i \in \{1, 2, \ldots, n\} \) we have

\[f(x_1, \ldots, x_{i-1}, g_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n, y), x_{i+1}, \ldots, x_n) = y \]

and

\[g_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n, f(x_1, \ldots, x_n)) = x_i. \]

- We think of \(g_i(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n, y) \) as the division of \(y \) simultaneously by \(x_j \) in the \(j^{th} \) coordinate for each \(j \neq i \).
Quasigroups

- We say that an \(n\)-quasigroup \(A\) is *commutative* when for all \(x_1, \ldots, x_n \in A\) and all \(\sigma \in \text{Perm}_n\) we have
 \[f(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}). \]

- We say that an \(n\)-quasigroup \(A\) is *alternating* when for all \(x_1, \ldots, x_n \in A\) and all \(\sigma \in \text{Alt}_n\) we have
 \[f(x_1, \ldots, x_n) = f(x_{\sigma(1)}, \ldots, x_{\sigma(n)}). \]

- Our “correct” analogue of the variety of groups will be the variety \(AQ_n\) of alternating \(n\)-ary quasigroups.
Quasigroups

- There are nontrivial members of AQ$_n$ for each n, but the easiest examples are either commutative (take the n-ary multiplication for an abelian group) or infinite (the free alternating quasigroups, which we need later but are too much right now).
- We tediously found the following example by hand:
Quasigroups

Take \(S := (\mathbb{Z}/5\mathbb{Z})^3 \) and define \(h: \mathbb{Z}/5\mathbb{Z} \times \text{Alt}_3 \rightarrow \text{Perm}_S \) by

\[
(h(k, \sigma))(x_1, x_2, x_3) := (x_{\sigma(1)} + k, x_{\sigma(2)} + k, x_{\sigma(3)} + k).
\]

There are 7 members of \(\text{Orb}(h) \). One system of orbit representatives is:

\[
\{000, 011, 022, 012, 021, 013, 031\}.
\]
Quasigroups

Let \(A := \mathbb{Z}/5\mathbb{Z} \) and define a ternary operation \(f: A^3 \rightarrow A \) so that

\[
f((h(k, \sigma))(x_1, x_2, x_3)) = f(x_1, x_2, x_3) + k
\]

and \(f \) is defined on the above set of orbit representatives as follows.

<table>
<thead>
<tr>
<th>xyz</th>
<th>(f(x, y, z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>011</td>
<td>0</td>
</tr>
<tr>
<td>022</td>
<td>0</td>
</tr>
<tr>
<td>012</td>
<td>3</td>
</tr>
<tr>
<td>021</td>
<td>4</td>
</tr>
<tr>
<td>013</td>
<td>4</td>
</tr>
<tr>
<td>031</td>
<td>2</td>
</tr>
</tbody>
</table>
Quasigroups

- By taking products of $\mathbf{A} := (A, f)$ this gives us infinitely many finite, noncommutative, alternating ternary quasigroups, but we only have one basic example.

- We reached out to Jonathan Smith to see if anyone had studied the varieties of alternating n-quasigroups before, but it seemed that no one had.

- He did, however, give us an example which we generalized into an *alternating product* construction which takes an n-ary commutative quasigroup and an $(n + 1)$-ary commutative quasigroup and yields an n-ary alternating quasigroup which is typically not commutative.
Quasigroups

Definition (Alternating map)

Given sets A and B we say that a function $\alpha: A^n \rightarrow B$ is an \textit{n-ary alternating map} from A to B when for each $\sigma \in \text{Alt}_n$ and each $a \in A^n$ we have that

$$\alpha(a) = \alpha(a_{\sigma(1)}, \ldots, a_{\sigma(n)}).$$

- Note that the determinant is an alternating n-ary map from \mathbb{F}^n to \mathbb{F} for any field \mathbb{F}.
Quasigroups

Definition (Alternating product)

Given an n-ary commutative quasigroup $U := (U, g)$, an $(n + 1)$-ary commutative quasigroup $V := (V, h)$, and an n-ary alternating map $\alpha: A^n \to B$ the *alternating product* of U and V with alternating map α is the alternating n-quasigroup

$$U \boxtimes_{\alpha} V := (U \times V, g \boxtimes_{\alpha} h: (U \times V)^n \to U \times V)$$

where for $(u_1, v_1), \ldots, (u_n, v_n) \in U \times V$ we define

$$(g \boxtimes_{\alpha} h)((u_1, v_1), \ldots, (u_n, v_n)) := (g(u), h(\alpha(u), v_1, \ldots, v_n))$$

where $u := (u_1, \ldots, u_n)$.
Quasigroups

- The variety of n-quasigroups (not necessarily alternating) is congruence permutable, and hence congruence modular.

- Note the similarity between the alternating product $U \boxtimes_\alpha V$ and the decomposition decomposition of an algebra A in a congruence modular variety as $Q \otimes^T B$ where Q is Abelian and $B := A/\zeta_A$.

- Note also the similarity between this construction and the factor set construction of group extensions with an abelian kernel.
Quasigroups

Definition (Commuting tuple)

Given \(A := (A, f) \in AQ_n \) we say that \(a \in A^n \) *commutes* (or is a *commuting tuple*) in \(A \) when we have for each \(\sigma \in \text{Perm}_n \) that

\[
f(a) = f(a_{\sigma(1)}, \ldots, a_{\sigma(n)}).
\]

Definition (Set of noncommuting tuples)

Given \(A := (A, f) \in AQ_n \) we define the *noncommuting tuples* \(\text{NCT}(A) \) of \(A \) by

\[
\text{NCT}(A) := \{ a \in A^n \mid a \text{ does not commute in } A \}.
\]
Quasigroups

Definition (NC homomorphism)

We say that a homomorphism \(h: A_1 \to A_2 \) of alternating quasigroups is an \textit{NC homomorphism} (or a \textit{noncommuting homomorphism}) when for each \(a \in \text{NCT}(A_1) \) we have that

\[
h(a) = (h(a_1), \ldots, h(a_n)) \in \text{NCT}(A_2).
\]

It’s tempting to say that the NC congruences of \(A \) should be those contained in the center of \(A \) but we aren’t sure whether that is always the case yet.
The first functor: Open serenation

- Our first construction gives a functor

\[\text{OSer}_n : \text{NCAQ}_n \to \text{SMfld}_n. \]

- We define

\[\text{Sim}_n : \text{NCAQ}_n \to \text{PMfld}_n \]

similarly to our previous example for \(n = 2 \).

- We define \(\text{In}(\mathbf{A}) \) to consist of all entries in noncommuting tuples of \(\mathbf{A} \) and \(\text{Out}(\mathbf{A}) \) to consist of all \(f(a_1, \ldots, a_n) \) where \((a_1, \ldots, a_n) \in \text{NCT}(\mathbf{A}) \).
The first functor: Open serenade

- We set

\[\text{Sim}(A) := \{ a \mid a \in \text{In}(A) \} \cup \{ \overline{a} \mid a \in \text{Out}(A) \} \]

and

\[\text{SimFace}(A) := \bigcup_{a \in \text{NCT}(A)} \text{Sb} \left(\{ a_1, \ldots, a_n, f(a) \} \right) \]

- We define

\[\text{Sim}_n(A) := (\text{Sim}(A), \text{SimFace}(A)). \]
The first functor: Open serenade

We create \(\text{OSer}_n(A) \) by taking the open geometric realization of \(\text{Sim}_n(A) \) (basically all but the \((n - 2)\)-skeleton of the open geometric realization) and then equipping it with a smooth atlas.

The standard open bipyramid (or just bipyramid) in \(\mathbb{R}^n \) is

\[
\text{Bipy}_n := \text{OCvx} \left(\left\{ (0, \ldots, 0), \left(\frac{2}{n}, \ldots, \frac{2}{n} \right) \right\} \cup \{ e_1, \ldots, e_n \} \right)
\]

where \(e_i \) is the \(i^{th}\) standard basis vector of \(\mathbb{R}^n \).
The first functor: Open serenade

- Given an alternating n-quasigroup A and $a = (a_1, \ldots, a_n) \in NCT(A)$ the serene chart of input type for a is

$$\phi_a : \text{Bipy}_n \rightarrow \text{OSer}_n(A).$$

- We set

$$\phi_a(u_1, \ldots, u_n) := \sum_{i=1}^{n} u_i a_i + \left(1 - \sum_{i=1}^{n} u_i\right) \overline{f(a)}$$

when $\sum_{i=1}^{n} u_i \leq 1$.

- Otherwise,

$$\phi_a(u_1, \ldots, u_n) := \frac{2}{n} \sum_{i=1}^{n} \left(1 + \frac{n-2}{2} u_i - \sum_{j \neq i} u_j\right) a_i +$$

$$\left(-1 + \sum_{i=1}^{n} u_i\right) \overline{f(a')}.$$
The first functor: Open serenation

There are also serene charts of output type, where are defined similarly.

We set

$$(\text{OSer}_n(A), \tau) := (\text{OGeo}_n \circ \text{Sim}_n)(A).$$

We then define

$$\text{OSer}_n(A) := (\text{OSer}_n(A), \tau, \text{SerAt}_n(A))$$

where

$$\text{SerAt}_n(A) := \bigcup_{a \in \text{NCT}(A)} \{\phi_a, \bar{\phi}_a\}.$$
The first functor: Open serenade

- The incidence graph of the facets of $\text{Sim}(A)$ for the ternary quasigroup A from the previous example is pictured.
The first functor: Open serenade

The 1-skeleton of Sim(A) for the ternary quasigroup A from the previous example is pictured.
The first functor: Open serenade

- One may verify that $\text{OSer}(A)$ is a 3-sphere minus the graph pictured previously, which is homotopy equivalent to the wedge sum of 21 circles.
The second functor: Serenation

- For any alternating quasigroup A we may equip $\text{OSer}(A)$ with a Riemannian metric in a functorial manner which makes $\text{OSer}(A)$ flat.
- We then define a \textit{Euclidean metric completion functor} $\text{EuCmplt}: \text{Riem}_n \rightarrow \text{Mfld}_n$

 which assigns to a Riemannian manifold (M, g) the topological manifold consisting of all points in the metric completion of M which are locally Euclidean.
The second functor: Serenation

The serenation functor

$$\text{Ser}_n: \text{NCAQ}_n \to \text{Mfld}_n$$

is given by

$$\text{Ser}(A) := \text{EuCmplt}(\text{OSer}(A), g)$$

where g is the standard metric on $\text{OSer}(A)$.

In the previous example of the ternary quasigroup A we find that $\text{Ser}_3(A)$ is the 3-sphere.
The second functor: Serenation

Definition (Serene manifold)

We say that a connected orientable n-manifold \mathbf{M} is *serene* when there exists some alternating n-quasigroup \mathbf{A} such that \mathbf{M} is a component of $\text{Ser}(\mathbf{A})$.
The second functor: Serenation

Theorem (A., Yoo (2021))

Every connected orientable triangulable n-manifold is serene.
The second functor: Serenation

Theorem (A., Yoo (2021))

Every connected orientable triangulable n-manifold is serene.

- Consider a triangulation of the given manifold \mathbf{M}.
- Subdivide each facet in a manner I will draw off to the side.
- We have that \mathbf{M} is homeomorphic to a corresponding component of the serenation of a quotient of the free alternating n-quasigroup whose generators are the vertices of the subdivided triangulation.
The Evans Conjecture and Latin cubes

Definition (Quasifinite manifold)

We say that a connected compact orientable smooth n-manifold M is *quasifinite* when there exists a finite alternating n-quasigroup A such that M is homeomorphic to a component of $\text{Ser}(A)$.

- Is every connected compact orientable smooth manifold quasifinite?
The Evans Conjecture and Latin cubes

Definition (Partial Latin cube)

Given a set A and some $n \in \mathbb{N}$ we say that $\theta \subset A^{n+1}$ is a partial Latin n-cube when for each $i \in [n]$ and each

$$a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n+1} \in A^n$$

there exists at most one $a_i \in A$ so that

$$(a_1, \ldots, a_{n+1}) \in \theta.$$
The Evans Conjecture and Latin cubes

Evans conjectured that each partial Latin square (i.e. a partial Latin cube $\theta \subset A^{2+1}$) with $|A| = k$ and $|\theta| \leq n - 1$ could be filled in so as to obtain a complete Latin square $\psi \subset A^3$ with $\theta \subset \psi$ and $|\psi| = k^2$.

This was proven to be true by Smetaniuk in 1981.

Similar results are known for special classes of higher-dimensional Latin cubes.
The Evans Conjecture and Latin cubes

- In general a *complete Latin n-cube* is the graph of an n-quasigroup operation.

- We say that a partial Latin n-cube is *alternating* when we have for each $\alpha \in \text{Alt}_n$ that if

$$ (a_1, \ldots, a_n, b_1) \in \theta $$

and

$$ (a_{\alpha(1)}, \ldots, a_{\alpha(n)}, b_2) \in \theta $$

then $b_1 = b_2$.

- Given a finite partial alternating Latin cube $\theta \subset A^{n+1}$ does there always exist a finite complete alternating Latin cube $\psi \subset B^{n+1}$ such that $\theta \subset \psi$?
The Evans Conjecture and Latin cubes

- We don’t ask for any particular relationship between $|\theta|$ and $|B|$, so this is in one sense a weaker question than the Evans Conjecture. That is, we may add many new elements to A in order to complete our Latin cube, as long as we only add finitely many.

- We have a corollary of the Evans Conjecture for the $n = 2$ case.

Corollary

Every connected compact orientable surface is a component of the serenation of some finite binary quasigroup.
Mark Herman and Jonathan Pakianathan. “On a canonical construction of tessellated surfaces from finite groups”. In: Topology Appl. 228 (2017), pp. 158–207. ISSN: 0166-8641