Multiplayer rock-paper-scissors

Charlotte Aten

University of Rochester

2021 January 19
Introduction

In the summer of 2017 I lived in a cave in Yosemite National Park.

While there I wanted to explain to my friends that I study universal algebra.

I realized that rock-paper-scissors was a particularly simple way to do that.
We will view the game of RPS as a magma $A := (A, f)$. We let $A := \{r, p, s\}$ and define a binary operation $f: A^2 \to A$ where $f(x, y)$ is the winning item among $\{x, y\}$.

\[
\begin{array}{ccc}
 r & p & s \\
 r & r & p & r \\
 p & p & p & s \\
 s & r & s & s \\
\end{array}
\]
I also realized that I wanted to be able to play with many of my friends at the same time.

Naturally, this led me to study the varieties generated by hypertournament algebras.
Talk outline

- Definition of RPS and PRPS magmas
- A numerical constraint relating arity and order
- Regular RPS magmas
- Hypertournaments
- A generation result
- Automorphisms and congruences of regular RPS magmas
- The search for a basis of the variety generated by tournament algebras
The game RPS is

1. conservative,

2. essentially polyadic,

3. strongly fair, and

4. nondegenerate.

These are the properties we want for a multiplayer game, as well.
What does a multiplayer game mean?

- Suppose we have an *n-ary magma* \(A := (A, f) \) where \(f: A^n \to A \).
- The *selection game* for \(A \) has \(n \) players, \(p_1, p_2, \ldots, p_n \).
- Each player \(p_i \) simultaneously chooses an item \(a_i \in A \).
- The winners of the game are all players who chose \(f(a_1, \ldots, a_n) \).
Properties of RPS: conservativity

- We say that an operation \(f : A^n \rightarrow A \) is **conservative** when for any \(a_1, \ldots, a_n \in A \) we have that \(f(a_1, \ldots, a_n) \in \{a_1, \ldots, a_n\} \).
- We say that \(A \) is conservative when each round has at least one winning player.
We say that an operation \(f: A^n \to A \) is *essentially polyadic* when there exists some \(g: Sb(A) \to A \) such that for any \(a_1, \ldots, a_n \in A \) we have \(f(a_1, \ldots, a_n) = g(\{a_1, \ldots, a_n\}) \).

We say that \(A \) is essentially polyadic when a round’s winning item is determined solely by which items were played, not taking into account which player played which item or how many players chose a particular item (as long as it was chosen at least once).
Properties of RPS: strong fairness

- Let A_k denote the members of A^n which have k distinct components for some $k \in \mathbb{N}$.
- We say that f is strongly fair when for all $a, b \in A$ and all $k \in \mathbb{N}$ we have $|f^{-1}(a) \cap A_k| = |f^{-1}(b) \cap A_k|$.
- We say that A is strongly fair when each item has the same chance of being the winning item when exactly k distinct items are chosen for any $k \in \mathbb{N}$.
Properties of RPS: nondegeneracy

- We say that f is nondegenerate when $|A| > n$.
- In the case that $|A| \leq n$ we have that all members of $A_{|A|}$ have the same set of components.
- If A is essentially polyadic with $|A| \leq n$ it is impossible for A to be strongly fair unless $|A| = 1$.
The French version of RPS adds one more item: the well. This game is not strongly fair but is conservative and essentially polyadic.

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>p</th>
<th>s</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>p</td>
<td>r</td>
<td>w</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>s</td>
<td>p</td>
</tr>
<tr>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
<td>w</td>
</tr>
<tr>
<td>w</td>
<td>w</td>
<td>p</td>
<td>w</td>
<td>w</td>
</tr>
</tbody>
</table>
The recent variant Rock-Paper-Scissors-Spock-Lizard is conservative, essentially polyadic, strongly fair, and nondegenerate.

\[
\begin{array}{c|ccccc}
& r & p & s & v & l \\
\hline
r & r & p & r & v & r \\
p & p & p & s & p & l \\
s & r & s & s & v & s \\
v & v & p & v & v & l \\
l & r & l & s & l & l \\
\end{array}
\]
Result for two-player games

The only “valid” RPS variants for two players use an odd number of items.

Proposition

Let A be a selection game with $n = 2$ which is essentially polyadic, strongly fair, and nondegenerate and let $m := |A|$. We have that $m \neq 1$ is odd. Conversely, for each odd $m \neq 1$ there exists such a selection game.

Proof.

We need $m \mid \binom{m}{2}$.
PRPS magmas

Definition (PRPS magma)

Let $A := (A, f)$ be an n-ary magma. When A is essentially polyadic, strongly fair, and nondegenerate we say that A is a PRPS magma (read “pseudo-RPS magma”). When A is an n-magma of order $m \in \mathbb{N}$ with these properties we say that A is a PRPS(m, n) magma. We also use PRPS and PRPS(m, n) to indicate the classes of such magmas.
Result for multiplayer games

Theorem

Let $A \in \text{PRPS}(m, n)$ and let $\varpi(m)$ denote the least prime dividing m. We have that $n < \varpi(m)$. Conversely, for each pair (m, n) with $m \neq 1$ such that $n < \varpi(m)$ there exists such a magma.

Proof.

We need $m \mid \gcd \left(\{ \binom{m}{2}, \ldots, \binom{m}{n} \} \right)$. \qed
RPS magmas

Definition (RPS magma)

Let $A := (A, f)$ be an n-ary magma. When A is conservative, essentially polyadic, strongly fair, and nondegenerate we say that A is an RPS *magma*. When A is an n-magma of order m with these properties we say that A is an RPS(m, n) *magma*. We also use RPS and RPS(m, n) to indicate the classes of such magmas.

Both the original game of rock-paper-scissors and the game rock-paper-scissors-Spock-lizard are RPS magmas. The French variant of rock-paper-scissors is not even a PRPS magma.
A game for three players

- We now show how to construct a game for three players.
- This will be a ternary RPS magma \((A, f: A^3 \rightarrow A)\).
- Since \(n = 3\) in this case and we require that \(n < \omega(m)\) we must have that \(|A| \geq 5\).
- Our construction will use the left-addition action of \(\mathbb{Z}_5\) on itself.
- We will produce an operation \(f: \mathbb{Z}_5^3 \rightarrow \mathbb{Z}_5\) which is essentially polyadic with \(w + f(x, y, z) = f(w + x, w + y, w + z)\) for any \(w \in \mathbb{Z}_5\).
- Thus, we need only define \(f\) on a representative of each orbit of \((\mathbb{Z}_5)_1\), \((\mathbb{Z}_5)_2\), and \((\mathbb{Z}_5)_3\) under this action of \(\mathbb{Z}_5\).
A game for three players

First we list the orbits of \((\mathbb{Z}_5)_1\), \((\mathbb{Z}_5)_2\), and \((\mathbb{Z}_5)_3\) under this action of \(\mathbb{Z}_5\).

<table>
<thead>
<tr>
<th></th>
<th>01</th>
<th>02</th>
<th>012</th>
<th>013</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>02</td>
<td>01</td>
<td>013</td>
<td>012</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>13</td>
<td>123</td>
<td>124</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>24</td>
<td>234</td>
<td>230</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>30</td>
<td>340</td>
<td>341</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>41</td>
<td>401</td>
<td>402</td>
</tr>
</tbody>
</table>
A game for three players

Next, we choose a representative for each orbit, say the first one in each row of this table.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>02</td>
<td>012</td>
<td>013</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>13</td>
<td>123</td>
<td>124</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>24</td>
<td>234</td>
<td>230</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>30</td>
<td>340</td>
<td>341</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>41</td>
<td>401</td>
<td>402</td>
</tr>
</tbody>
</table>
A game for three players

Choose from each representative a particular element. For example, if our representative is 013 we may choose 0 as our special element. We also could have chosen 1 or 3, but not 2 or 4.

<table>
<thead>
<tr>
<th>0 ↔ 0</th>
<th>01 ↔ 1</th>
<th>02 ↔ 0</th>
<th>012 ↔ 0</th>
<th>013 ↔ 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>13</td>
<td>123</td>
<td>124</td>
</tr>
<tr>
<td>2</td>
<td>23</td>
<td>24</td>
<td>234</td>
<td>230</td>
</tr>
<tr>
<td>3</td>
<td>34</td>
<td>30</td>
<td>340</td>
<td>341</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>41</td>
<td>401</td>
<td>402</td>
</tr>
</tbody>
</table>
A game for three players

Use the left-addition action of \mathbb{Z}_5 to extend these choices to all members of $\binom{\mathbb{Z}_5}{1}$, $\binom{\mathbb{Z}_5}{2}$, and $\binom{\mathbb{Z}_5}{3}$.

<table>
<thead>
<tr>
<th>0 \leftrightarrow 0</th>
<th>01 \leftrightarrow 1</th>
<th>02 \leftrightarrow 0</th>
<th>012 \leftrightarrow 0</th>
<th>013 \leftrightarrow 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 \leftrightarrow 1</td>
<td>12 \leftrightarrow 2</td>
<td>13 \leftrightarrow 1</td>
<td>123 \leftrightarrow 1</td>
<td>124 \leftrightarrow 1</td>
</tr>
<tr>
<td>2 \leftrightarrow 2</td>
<td>23 \leftrightarrow 3</td>
<td>24 \leftrightarrow 2</td>
<td>234 \leftrightarrow 2</td>
<td>230 \leftrightarrow 2</td>
</tr>
<tr>
<td>3 \leftrightarrow 3</td>
<td>34 \leftrightarrow 4</td>
<td>30 \leftrightarrow 3</td>
<td>340 \leftrightarrow 3</td>
<td>341 \leftrightarrow 3</td>
</tr>
<tr>
<td>4 \leftrightarrow 4</td>
<td>40 \leftrightarrow 0</td>
<td>41 \leftrightarrow 4</td>
<td>401 \leftrightarrow 4</td>
<td>402 \leftrightarrow 4</td>
</tr>
</tbody>
</table>
A game for three players

We can read off a definition for the operation \(f: \mathbb{Z}_5^3 \to \mathbb{Z}_5 \) from this table. For example, we take \(24 \mapsto 2 \) to indicate that

\[
f(2, 4, 4) = f(4, 2, 4) = f(4, 4, 2) = f(4, 2, 2) = f(2, 4, 2) = f(2, 2, 4) = 2.
\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
A game for three players

The Cayley table for the 3-magma \(\mathbf{A} := (\mathbb{Z}_5, f) \) obtained from this choice of \(f \) is given below.

\[
\begin{array}{cccc|cccc|cccc}
0 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 0 & 3 & 0 & 0 & 1 & 1 & 0 & 0 & 4 & 0 & 0 & 0 & 2 & 4 \\
1 & 1 & 1 & 0 & 0 & 4 & 1 & 1 & 1 & 2 & 1 & 4 & 1 & 0 & 2 & 2 & 1 & 1 \\
2 & 0 & 0 & 2 & 4 & 2 & 0 & 2 & 2 & 1 & 1 & 2 & 0 & 2 & 2 & 3 & 2 \\
3 & 3 & 0 & 2 & 3 & 3 & 3 & 0 & 1 & 1 & 1 & 3 & 3 & 2 & 1 & 3 & 3 & 2 \\
4 & 0 & 4 & 4 & 3 & 0 & 4 & 4 & 4 & 1 & 3 & 4 & 4 & 1 & 2 & 2 & 2 \\
\end{array}
\]

\[
\begin{array}{cccc|cccc|cccc}
3 & 0 & 1 & 2 & 3 & 4 & 4 & 0 & 1 & 2 & 3 & 4 \\
0 & 3 & 0 & 2 & 3 & 3 & 0 & 0 & 4 & 4 & 3 & 0 \\
1 & 0 & 1 & 1 & 1 & 3 & 1 & 4 & 4 & 1 & 3 & 4 \\
2 & 2 & 1 & 3 & 3 & 2 & 2 & 4 & 1 & 2 & 2 & 2 \\
3 & 3 & 1 & 3 & 3 & 4 & 3 & 3 & 3 & 2 & 4 & 4 \\
4 & 3 & 3 & 2 & 4 & 4 & 4 & 0 & 4 & 2 & 4 & 4 \\
\end{array}
\]
Definition (α-action magma)

Fix a group G, a set A, and some $n < |A|$. Given a regular group action $\alpha: G \to \text{Perm}(A)$ such that each of the k-extensions of α is free for $1 \leq k \leq n$ let $\Psi_k := \left\{ \text{Orb}(U) \mid U \in \binom{A}{k} \right\}$ where $\text{Orb}(U)$ is the orbit of U under α_k. Let $\beta := \{\beta_k\}_{1 \leq k \leq n}$ be a sequence of choice functions $\beta_k: \Psi_k \to \binom{A}{k}$ such that $\beta_k(\psi) \in \psi$ for each $\psi \in \Psi_k$. Let $\gamma := \{\gamma_k\}_{1 \leq k \leq n}$ be a sequence of functions $\gamma_k: \Psi_k \to A$ such that $\gamma_k(\psi) \in \beta_k(\psi)$ for each $\psi \in \Psi_k$. Let $g: \text{Sb}_{\leq n}(A) \to A$ be given by $g(U) := (\alpha(s))(\gamma_k(\psi))$ when $U = (\alpha_k(s))(\beta_k(\psi))$. Define $f: A^n \to A$ by $f(a_1, \ldots, a_n) := g(\{a_1, \ldots, a_n\})$. The α-action magma induced by (β, γ) is $A := (A, f)$.

α-action magmas
\(\alpha \)-action magmas are RPS magmas

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (A) be an (\alpha)-action magma induced by ((\beta, \gamma)). We have that (A \in \text{RPS}).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition (Regular RPS magma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (G) be a nontrivial finite group and fix (n < \omega(</td>
</tr>
</tbody>
</table>
Hypergraphs

Definition (Pointed hypergraph)

A *pointed hypergraph* $\mathbf{S} := (S, \sigma, g)$ consists of a hypergraph (S, σ) and a map $g: \sigma \rightarrow S$ such that for each edge $e \in \sigma$ we have that $g(e) \in e$. The map g is called a *pointing* of (S, σ).

Definition (n-complete hypergraph)

Given a set S we denote by S_n the *n-complete hypergraph* whose vertex set is S and whose edge set is $\bigcup_{k=1}^{n} \binom{S}{k}$.
Definition (Hypertournament)

An *n-hypertournament* is a pointed hypergraph $\mathbf{T} := (\mathbb{T}, \tau, g)$ where $(\mathbb{T}, \tau) = S_n$ for some set S.

<table>
<thead>
<tr>
<th>U</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>01</th>
<th>12</th>
<th>23</th>
<th>34</th>
<th>40</th>
<th>02</th>
<th>13</th>
<th>24</th>
<th>30</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(U)$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>U</td>
<td>012</td>
<td>123</td>
<td>234</td>
<td>340</td>
<td>401</td>
<td>013</td>
<td>124</td>
<td>230</td>
<td>341</td>
<td>402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$g(U)$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RPS(5, 3) example
Hypertournament magmas

Definition (Hypertournament magma)

Given an \(n \)-hypertournament \(T := (T, \tau, g) \) the hypertournament magma obtained from \(T \) is the \(n \)-magma \(A := (T, f) \) where for \(u_1, \ldots, u_n \in T \) we define

\[
f(u_1, \ldots, u_n) := g(\{u_1, \ldots, u_n\}).
\]

Definition (Hypertournament magma)

A hypertournament magma is an \(n \)-magma which is conservative and essentially polyadic.
Tournaments are the $n = 2$ case of a hypertournament.

Hedrlín and Chvátal introduced the $n = 2$ case of a hypertournament magma in 1965.

There has been a lot of work on varieties generated by tournament magmas. See for example the survey by Crvenković et al. (1999).
Proposition

Let $n > 1$. We have that $\text{RPS}_n \subsetneq \text{PRPS}_n$, $\text{RPS}_n \subsetneq \text{Tour}_n$, and neither of PRPS_n and Tour_n contains the other. Moreover, $\text{RPS}_n = \text{PRPS}_n \cap \text{Tour}_n$.
A generation result

- We denote by \mathcal{T}_n the variety of algebras generated by Tour_n.
- This is equivalent to having

$$\mathcal{T}_n = \text{HSP}(\text{Tour}_n) = \text{Mod}($$Id(Tour_n)).$$

- Similarly, we define \mathcal{R}_n to be the variety of algebras generated by RPS_n.
A generation result

Theorem

Let $n > 1$. We have that $T_n = R_n$. Moreover T_n is generated by the class of finite regular RPS_n magmas.

Proof.

Every finite hypertournament can be embedded in a finite regular balanced hypertournament.
A generation result

- Trivially we have that $\mathcal{R}_n \leq \mathcal{T}_n$.
- Since n-hypertournament magmas are conservative we have that $\text{Tour}_n \models \epsilon$ if and only if each n-hypertournament magma of order m models epsilon, where m is the number of variables appearing in ϵ.
- It then suffices to show that each finite n-hypertournament magma belongs to \mathcal{R}_n.
- It would be very convenient if each finite n-hypertournament embedded into the hypertournament associated to a finite regular RPS magma.
- This turns out to be the case.
A generation result

- Note that in a regular binary RPS magma $G_2(\beta, \gamma)$ we have that
 \[f(e, x) = xf(x^{-1}, e) \]
 so exactly one of $f(e, x) = e$ or $f(x^{-1}, e) = e$ holds.

- Note also that the orbit of $\{x, y\}$ contains $\{e, x^{-1}y\}$ and $y^{-1}x$, e, where $x^{-1}y$ and $y^{-1}x$ are inverses.

- We need then only define a map λ specifying for each pair of inverses $\{x, x^{-1}\}$ whether $f(e, x) = e$ or $f(e, x^{-1}) = e$ in order to specify $G_2(\beta, \gamma)$.

- We can think of $\lambda(\{x, x^{-1}\})$ as choosing the «positive direction» with respect to x and x^{-1}.
A generation result

In order to do this in general we need an \(n \)-ary analogue of inverses.

Definition (Obverse \(k \)-set)

Given \(n > 1 \), a nontrivial finite group \(G \) with \(n < \omega(|G|) \), \(1 \leq k \leq n-1 \), and \(U, V \in \binom{G \setminus \{e\}}{k} \) we say that \(V \) is an *obverse* of \(U \) when \(U = \{a_1, \ldots, a_k\} \) and there exists some \(a_i \in U \) such that \(V = \{a_i^{-1}\} \cup \{a_i^{-1}a_j \mid i \neq j \} \). We denote by \(\text{Obv}(U) \) the set consisting of all obverses \(V \) of \(U \), as well as \(U \) itself.

The obverses of a set \(U \) are the nonidentity elements in the members of \(\text{Orb}(U \cup \{e\}) \setminus (U \cup \{e\}) \) which contain \(e \).
A generation result

In order to specify $G_n(\beta, \gamma)$ it suffices to choose the member
$\{a_1, \ldots, a_k\}$ of each collection of obverses for which
$f(e, \ldots, e, a_1, \ldots, a_k) = e.$

Definition (n-sign function)

Given $n > 1$ and a nontrivial group G with $n < \omega(|G|)$ let $Sgn_n(G)$ denote the set of all choice functions on

$$\left\{ \text{Obv}(U) \mid (\exists k \in \{1, \ldots, n - 1\}) \left(U \in \binom{G \setminus \{e\}}{k}\right) \right\}.$$

We refer to a member $\lambda \in Sgn_n(G)$ as an *n-sign function* on G.

We then write $G_n(\lambda)$ instead of $G_n(\beta, \gamma)$.
Now we can give the embedding which finishes our proof that $T_n = R_n$.

Consider a finite hypertournament $T := (T, \tau, g)$.

Take $G := \bigoplus_{u \in T} \mathbb{Z}_{\alpha_u}$ where $n < \omega(\alpha_u)$ and $\mathbb{Z}_{\alpha_u} = \langle u \rangle$.

We define an n-sign function $\lambda \in \text{Sgn}_n(G)$.

When $g(\{u_1, \ldots, u_k\}) = u_1$ we define

$$\lambda(\text{Obv}(\{ u_i - u_1 \mid i \neq 1 \})) := \{ u_i - u_1 \mid i \neq 1 \}.$$

Any values may be chosen for other orbits.

The n-hypertournament corresponding to $G_n(\lambda)$ contains a copy of T.

A generation result
A generation result

- We have now seen that the finite regular RPS n-magmas generate $\mathcal{T}_n = \mathbf{V}(\text{Tour}_n)$.

- In particular we need only use magmas of the form $G_n(\lambda)$ where:
 1. $G = \mathbb{Z}_{\kappa(n)}^m$ where $\kappa(n)$ is the least prime strictly greater than n or
 2. $G = \mathbb{Z}_{\alpha(m)}^m$ where $\alpha(m) := \prod_{k=\ell}^{m+\ell-1} p_k$ where p_k is the k^{th} prime and $\kappa(n) = p_\ell$.

- In particular, we have that \mathcal{T}_2 is generated by regular RPS magmas of the form $(\mathbb{Z}_3^m)_2(\lambda)$.
Automorphisms

Proposition

Let $A := G_n(\lambda)$ be a regular RPS magma. There is a canonical embedding of G into $\text{Aut}(A)$.

Proof.

By construction.
Exceptional automorphisms

Proposition

For each arity $n \in \mathbb{N}$ with $n \neq 1$ and each group G of composite order $m \in \mathbb{N}$ with $n < \varpi(m)$ there exists a regular RPS(m, n) magma $A := G_n(\lambda)$ such that $|\text{Aut}(A)| > |G|$.

Proof.

Count the members of RPS(G, n) (there are $\prod_{k=1}^{n} k_{m}^{(m)}$) and arrive at a contradiction were there no exceptional automorphisms.
Exceptional automorphisms

Proposition

For each arity $n \in \mathbb{N}$ and each odd prime p such that $1 \neq n \leq p - 2$ there exists a regular RPS(p, n) magma $A := (\mathbb{Z}_p)_n(\lambda)$ such that $|\text{Aut}(A)| > |G|$.

Proof.

Multiplication by a primitive root modulo p yields an automorphism for an appropriate choice of λ. \qed
 Proposition

For each odd prime p and any $\lambda \in \text{Sgn}_{p-1}(\mathbb{Z}_p)$ we have that \(\text{Aut}((\mathbb{Z}_p)_{p-1}(\lambda)) \cong \mathbb{Z}_p. \)

 Corollary

Given an odd prime p the number of isomorphism classes of magmas of the form \((\mathbb{Z}_p)_{p-1}(\lambda)\) is

\[
\prod_{k=1}^{p-1} k^{p \frac{1}{p} \binom{k}{p} - 1}.
\]

For $p = 3$ we have 1, for $p = 5$ we have 6, and for $p = 7$ we have 2073600.
Congruences

Theorem

Let $\theta \in \text{Con}(A)$ for a regular RPS(m, n) magma $A := G_n(\lambda)$. Given any $a \in A$ we have that $a/\theta = aH$ for some subgroup $H \leq G$.

One can show by using 2-divisibility that the principal congruence $\theta := \text{Cg}((e, a))$ has only one nontrivial class, which is e/θ. This class contains $\text{Sg}^G(\{a\})$.
Theorem

Let \(\theta \in \text{Con}(A) \) for a regular RPS\((m, n)\) magma \(A := G_n(\lambda) \). Given any \(a \in A \) we have that \(a/\theta = aH \) for some subgroup \(H \leq G \).

- Any congruence \(\theta \in \text{Con}(A) \) has for \(e/\theta \) a union of cyclic subgroups of \(G \). Suppose that \(a, b \in e/\theta \) and \(ab \notin e/\theta \).
- Note that \(\theta \geq \text{Cg}(\{(e, a), (e, b^{-1})\}) \). Observe that

\[
\text{Cg}(\{(e, a), (e, b^{-1})\}) = b^{-1} \text{Cg}(\{(b, ba), (b, e)\}) \\
\geq b^{-1} \text{Cg}(\{(e, ba)\}) \\
\geq b^{-1} \text{Cg}(\{(e, baba)\}) \\
\geq \text{Cg}(\{(b^{-1}, aba)\})
\]

so we have that \(e/\theta \) contains \(aba \).
Theorem

Let $\theta \in \text{Con}(A)$ for a regular RPS(m, n) magma $A := G_n(\lambda)$. Given any $a \in A$ we have that $a/\theta = aH$ for some subgroup $H \leq G$.

- We have $\langle a \rangle, \langle b \rangle \subset e/\theta$ and $ab \not\in e/\theta$ yet $aba \in e/\theta$.
- Since θ is a congruence either ab dominates everything in e/θ ($f(ab, x) = ab$ for all $x \in e/\theta$, which we write as $ab \rightarrow x$) or everything in e/θ dominates ab.
- In the former case, we have $ab \rightarrow aba$ so $e \rightarrow a$.
- We also have $ab \rightarrow e$ so $e \rightarrow b^{-1}a^{-1}$.
- This implies that $b^{-1} \rightarrow b^{-1}a^{-1}$ and hence $e \rightarrow a^{-1}$, which is impossible since $e \rightarrow a$.
- The argument in the latter case is identical.
- Thus, e/θ is a subgroup of G.

Definition (λ-convex subgroup)

Given a group G, an n-sign function $\lambda \in Sgn_n(G)$, and a subgroup $H \leq G$ we say that H is λ-convex when there exists some $a \in G$ such that $a/\theta = aH$ for some $\theta \in \text{Con}(G_n(\lambda))$.
Proposition

Let G be a finite group of order m and let $n < \varpi(m)$. Take $\lambda \in \text{Sgn}_n(G)$ and $H \leq G$. The following are equivalent:

1. The subgroup H is λ-convex.
2. There exists a congruence $\psi \in \text{Con}(G_n(\lambda))$ such that $e/\psi = H$.
3. Given $1 \leq k \leq n - 1$ and $b_1, \ldots, b_k \notin H$ either $e \to \{b_1 h_1, \ldots, b_k h_k\}$ for every choice of $h_1, \ldots, h_k \in H$ or $\{b_1 h_1, \ldots, b_k h_k\} \to e$ for every choice of $h_1, \ldots, h_k \in H$.
\textbf{Theorem}

Suppose that $H, K \leq G$ are both λ-convex. We have that $H \leq K$ or $K \leq H$.
Definition (λ-coset poset)

Given $\lambda \in \text{Sgn}_n(G)$ set

$$P_\lambda := \{ aH \mid a \in G \text{ and } H \text{ is } \lambda\text{-convex} \}$$

and define the λ-coset poset to be $P_\lambda := (P_\lambda, \subseteq)$.
Dilworth showed that the maximal antichains of a finite poset form a distributive lattice.

Freese (1974) gives a succinct treatment of this.

Given a finite poset $\mathbf{P} := (P, \leq)$ let $L(P)$ be the lattice whose elements are maximal antichains in \mathbf{P} where if $U, V \in L(P)$ then we say that $U \leq V$ in $L(P)$ when for every $u \in U$ there exists some $v \in V$ such that $u \leq v$ in \mathbf{P}.

Theorem

We have that $\text{Con}(G_n(\lambda)) \cong L(P_{\lambda})$.
The search for a basis

By the year 2000 Ježek, Marković, Maróti, and McKenzie had shown that \mathcal{T}_2 was not finitely based.

To this author’s knowledge no equational base for \mathcal{T}_2 has ever been described (aside from trivialities like taking $\text{Id}(\text{Tour}_2)$).

Recall that an identity ϵ in m variables holds in \mathcal{T}_2 if and only if it holds in each tournament magma of order m.

We can use our generation result to see that $\mathcal{T}_2 \models \epsilon$ if and only if ϵ holds in each regular RPS_2 magma of the form $(\mathbb{Z}_3^m)_2(\lambda)$.

These magmas are much larger than tournaments of order m, but we may have a better chance of understanding their structure and hence their equational theories.
Thank you.