Universal algebra and lattice theory
Week 1
Examples of algebras

Charlotte Aten

2020 September 3
Today’s topics

- Quick review of the definition of an algebra
- Magmas
- Semigroups
- Monoids
- Groups
- Rings
- Modules
- Quasigroups
- Semilattices
- Lattices
- n-ary magmas
Definition of an algebra

Operations are rules for combining elements of a set together to obtain another element of the same set.

Definition (Operation, arity)

Given a set A and some $n \in \mathbb{W}$ we refer to a function $f: A^n \to A$ as an n-ary operation on A. When f is an n-ary operation on A we say that f has arity n.

Algebras are sets with an indexed sequence of operations.

Definition (Algebra)

An algebra (A, F) consists of a set A and a sequence $F = \{f_i\}_{i \in I}$ of operations on A, indexed by some set I.
An algebra $A := (A, f)$ with a single binary operation is called a magma.

This is the Bourbaki terminology. These algebras are also known as groupoids and binars, but the term «groupoid» has also become attached to a different concept in category theory.

When the set A is finite we can represent the basic operation $f: A^2 \rightarrow A$ as a finite table, called a Cayley table or operation table for f.
Magmas

The above table defines a binary operation $f: A^2 \rightarrow A$ where $A := \{r, p, s\}$. For example, $f(r, p) = p$. The magma $A := (A, f)$ is the *rock-paper-scissors magma*.

Figure: A Cayley table for a binary operation f
We usually use *infix notation* for binary operations. For example, instead of \(f(x, y) \) we write \(x \cdot y \). Any other symbol, such as \(+\), \(*\), or \(\circ\), will work as well, but some have special connotations, such as \(+\) usually referring to a commutative operation.
Magmas

<table>
<thead>
<tr>
<th></th>
<th>r</th>
<th>p</th>
<th>s</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>r</td>
<td>p</td>
<td>r</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
<td>p</td>
<td>s</td>
</tr>
<tr>
<td>s</td>
<td>r</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

Figure: A Cayley table for a binary operation

Going even further, we often use *concatenation notation* when there is only a single operation under consideration. We may write $A := (A, f)$ or $A := (A, \cdot)$ to define the rock-paper-scissors magma, then just write $rp = p$ rather than $f(r, p) = p$ or $r \cdot p = p$. (Naturally concatenation notation is my favorite, since it contains a version of my name.)
Magmas

- When the universe A of a magma $A := (A, f)$ is infinite (or even just very large) it is easier to specify f by way of some rule rather than writing out its Cayley table.

- For example, we can take $A := \text{Mat}_2(\mathbb{F}_{27})$ to be the set of 2×2 matrices over the field with 27 elements. We can then define an operation $f: A^2 \to A$ by $f(\alpha, \beta) := \alpha\beta - \beta\alpha$. This operation f has a finite Cayley table, but writing it out would take a lot of space. The algebra (A, f) is a magma.

- For an infinite example, take the magma $(\mathbb{N}, +)$ where $+$ is defined in the usual way for natural numbers.
Semigroups

- A *semigroup* is a magma \((S, \cdot)\) which satisfies the associative law

 \[x \cdot (y \cdot z) \equiv (x \cdot y) \cdot z. \]

- We write \(\mathbb{Z} := \{\ldots, -2, -1, 0, 1, 2, \ldots\}\) to indicate the set of integers.

- We have that \((\mathbb{N}, +)\), \((\mathbb{W}, +)\), and \((\mathbb{Z}, +)\) are all semigroups. Also, \((\mathbb{N}, +)\) is a subalgebra of \((\mathbb{W}, +)\) and \((\mathbb{W}, +)\) is a subalgebra of \((\mathbb{Z}, +)\).

- We have that \((\mathbb{N}, \cdot)\) is a semigroup, but it is not a subalgebra of \((\mathbb{W}, +)\).
Monoids

A monoid is an algebra $\mathbf{M} := (M, \cdot, e)$ such that (M, \cdot) is a semigroup and $e: M^0 \to M$ is a nullary operation such that \mathbf{M} satisfies the laws

$$x \cdot e \approx x \text{ and } e \cdot x \approx x.$$

We have that $(\mathbb{W}, +, 0)$ is a monoid, as is $(\mathbb{N}, \cdot, 1)$.

An important example is the full transformation monoid $(A^A, \circ, \text{id}_A)$ whose universe A^A consists of the set of all functions from a given set A to itself, whose binary operation \circ is function composition, and whose constant operation «is» the identity map $\text{id}_A: A \to A$ given by $\text{id}_A(a) := a$ for each $a \in A$.
Hold on a minute

What’s the deal with that «squiggly equals sign» ≈?
Is something being approximated?
Hold on a minute

What’s the deal with that «squiggly equals sign» \approx?
Is something being approximated?

An expression like $x(yz) \approx (xy)z$ stands for an identity, which is shorthand for the statement «For all possible values of x, y, and z we have that $x(yz) = (xy)z$.». This statement is true in some magmas (the semigroups), but is false in other ones, like the rock-paper-scissors magma. We won’t get too technical about it until much later, so don’t dwell on it for now.
An aside about signatures

- We gave a strict definition for the notation \((A, f_1, \ldots, f_k)\) last time. We said that this was shorthand for \((A, F)\) where \(F := \{f_i\}_{i \in I}\) where \(I = \{1, 2, \ldots, k\}\).

- The signature of such an algebra is the function \(\rho: I \to \mathbb{W}\) taking each \(i \in \{1, 2, \ldots, k\}\) to the arity of \(\rho(i)\).

- Since a function \(\rho: \{1, 2, \ldots, k\} \to \mathbb{W}\) is a \(k\)-tuple of whole numbers, we say that the signature of \((A, f_1, \ldots, f_k)\) is \((\rho(1), \rho(2), \ldots, \rho(k))\).

- We will introduce algebras by saying things like «Consider an algebra \(A := (A, f, g, \ast, +, u, 1)\) of signature \((25, 7, 2, 2, 1, 0)\).».
A group is an algebra $G := (G, \cdot, _{-1}, e)$ such that (G, \cdot, e) is a monoid and $_{-1} : G \to G$ is a unary operation such that G satisfies
\[
x \cdot x^{-1} \approx x^{-1} \cdot x \approx e.
\]
We have that $(\mathbb{Z}, +, -, 0)$ is a group. According to our definition here $(\mathbb{Z}, +)$ is actually neither a group nor a monoid because it doesn’t have the right signature, although it is a semigroup (and hence a special kind of magma).

An important example is the permutation group $\text{Perm}(A) := (\text{Perm}(A), \circ, _{-1}, \text{id}_A)$ whose universe $\text{Perm}(A)$ consists of the set of all bijections from a given set A to itself, whose binary operation \circ is function composition, whose unary operation $_{-1}$ is given by taking the inverse function, and whose nullary operation «is» the identity map id_A.

Groups
A ring is an algebra \(\mathbf{R} := (R, +, \cdot, -, 0) \) such that \((R, +, -, 0) \) is an abelian group, \((R, \cdot) \) is a semigroup, and the identities

\[
x \cdot (y + z) \approx (x \cdot y) + (x \cdot z)
\]

and

\[
(y + z) \cdot x \approx (y \cdot x) + (z \cdot x)
\]

hold.

The algebra \((\mathbb{Z}, +, \cdot, -, 0) \) with the usual definition of \(\cdot \) for \(\mathbb{Z} \) is a ring.

A point we haven’t stressed too much until now is that the order of the basic operations matters. The algebra \((\mathbb{Z}, \cdot, +, -, 0) \) is different from \((\mathbb{Z}, +, \cdot, -, 0) \) and is not a ring according to our definition, even though both of these algebras have the signature \((2, 2, 1, 0) \).
Given a ring R, a *(left)* R-*module* is an algebra

$$M := (M, +, −, 0, \{\lambda_r\}_{r \in R})$$

such that $(M, +, −, 0)$ is an abelian group, for each $r \in R$ we have that λ_r is unary, and for each $r, s \in R$ we have that the laws

$$\lambda_r(x + y) \approx \lambda_r(x) + \lambda_r(y),$$
$$\lambda_{r+s}(x) \approx \lambda_r(x) + \lambda_s(x),$$

and

$$\lambda_r(\lambda_s(x)) \approx \lambda_{rs}(x)$$

hold.
Modules

- We didn’t follow either of our existing rules for specifying the sequence of basic operations for an algebra in the preceding definition. It is a little tedious, but not difficult, to carefully formalize what we just did.

- The similarity type of an \(R \)-module depends on the ring \(R \), in contrast with the previous examples. If \(R \) is an infinite set then an \(R \)-module has infinitely many basic operations.
Quasigroups

A *quasigroup* is an algebra $\mathbb{Q} := (Q, \cdot, /, \setminus)$ of signature $(2, 2, 2)$ which satisfies the laws

\[
x \setminus (x \cdot y) \approx y,
\]

\[
(x \cdot y) / y \approx x,
\]

\[
x \cdot (x \setminus y) \approx y,
\]

and

\[
(x / y) \cdot y \approx x.
\]
Given a group \(\mathbf{G} := (G, \cdot, _{-1}, e) \) the algebra \((G, \cdot, /, \backslash) \) where \(x/y := x \cdot y^{-1} \) and \(x\backslash y := x^{-1} \cdot y \) is a quasigroup.

Just as we often think of groups as being magmas with a particular type of binary operation (from which we can obtain the unary and nullary operations of the group), so too can we think of quasigroups as magmas with a particular type of binary operation (from which we can obtain the other two).

A *Latin square* \(\mathbf{Q} := (Q, \cdot) \) is a magma such that for all \(a, b \in Q \) the equations

\[
a \cdot x = b \text{ and } y \cdot a = b
\]

have unique solutions.

Quasigroups and Latin squares are in bijective correspondence, as we can take \(x = a\backslash b \) and \(y = b/a \) in the preceding equations.
Quasigroups

- Not all quasigroups come from the previous construction using groups.
- The algebra \((\mathbb{Z}, -)\) is a Latin square whose corresponding quasigroup does not arise from a group operation in this way.
- We denote by \(\mathbb{R}\) the set of real numbers. Fixing some \(n \in \mathbb{N}\) we define \(x \cdot y\) to be the midpoint of the segment joining \(x\) and \(y\) for any \(x, y \in \mathbb{R}^n\). The algebra \((\mathbb{R}^n, \cdot)\) is a Latin square.
- Quasigroup operations are typically not associative. Quasigroups are «nonassociative groups».
- Quasigroups with an identity element are called loops.
A semilattice is a commutative semigroup $S := (S, \cdot)$ which satisfies the identity

$$x \cdot x \approx x.$$

Given $a, b \in \mathbb{Z}$ let $\min(a, b)$ and $\max(a, b)$ be the minimum and maximum of $\{a, b\}$, respectively. Both (\mathbb{Z}, \min) and (\mathbb{Z}, \max) are semilattices.

Given $a, b \in \mathbb{N}$ let $\gcd(a, b)$ and $\lcm(a, b)$ be the greatest common divisor and least common multiple of $\{a, b\}$, respectively. Both (\mathbb{N}, \gcd) and (\mathbb{N}, \lcm) are semilattices.

Both $(S_b(A), \cap)$ and $(S_b(A), \cup)$ are semilattices for any given set A.

A lattice is an algebra $L := (L, \land, \lor)$ such that (L, \land) and (L, \lor) are semilattices and the identities

$$x \land (x \lor y) \approx x \text{ and } x \lor (x \land y) \approx x$$

hold.

We have that $(\mathbb{Z}, \text{min}, \text{max})$, $(\mathbb{N}, \gcd, \text{lcm})$, and $(\text{Sb}(A), \cap, \cup)$ are lattices.

In some of the earliest work which laid the foundations for lattice theory, Dedekind considered the lattice of subgroups of an abelian group A under the operations of intersection and internal direct sum.
Weren’t we going to see algebras with all sorts of crazy \(n\)-ary operations for \(n > 2\)? Where are those?

Historically people seem to more frequently produce and study binary operations.

An algebra \(A := (A, f)\) of signature \((n)\) is called an \(n\)-ary magma.
\textbf{n-ary magmas}

- An algebra $\mathbf{A} := (A, f)$ of signature (n) is called an \textit{n-ary magma}.

- Fix an $n \in \mathbb{N}$. Given vectors $x_1, \ldots, x_{n-1} \in \mathbb{R}^n$ define $f(x_1, \ldots, x_{n-1})$ to be the determinant of

\[
\begin{bmatrix}
 x_{1,1} & \cdots & x_{1,n} \\
 \vdots & \ddots & \vdots \\
 x_{n-1,1} & \cdots & x_{n-1,n} \\
 e_1 & \cdots & e_n
\end{bmatrix}
\]

where the e_i are standard basis vectors. The operation f is the \textit{n-dimensional cross product} and (\mathbb{R}^n, f) is an $(n - 1)$-ary magma.
An algebra $A := (A, f)$ of signature (n) is called an n-ary magma.

There are also n-ary analogues of groups and quasigroups which have received quite a bit of study.