MATH 142
Midterm 2
November 5, 2002

NAME (please print legibly): ________________________________
Your University ID Number: ________________________________
Circle your Instructor’s Name along with the Lecture Time:

Zokhrab Moustafaev (MWF 9:00 - 9:50) Carl Mueller (MW 2:25 - 4:40)

• No calculators are allowed on this exam.
• Please show all your work. You may use back pages if necessary. You may
 not receive full credit for a correct answer if there is no work shown.
• Please put your final answers in the spaces provided.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
1. (30 pts) Solve the following integrals.

(a) (10 pts)
\[\int 3 \sin(2x) \, dx \]

(b) (10)
\[\int \frac{2}{\sqrt{x}} \, dx \]

(c) (10)
\[\int_{-4}^{-2} \frac{2 + x}{5x} \, dx \]
2. (26 pts)

(a) (13 pts) Find
\[\frac{d}{dx} \int_0^{\sqrt{x}} (1 + t^4)dt \]

(b) (13 pts) Find
\[\frac{d}{dx} \int_0^{x^2} \sin^4(t) \, dt \]
3. (15 pts) Suppose that you keep track of the rainfall, in inches per hour, for Rochester. Time is measured in hours. It is now time 0. At time t, it is raining at $(t^2 + t)/10,000$ inches per hour. Find the amount of rainfall over a 3-day period, starting now.

Hint: How many hours are in 3 days?
4. (39 pts) Solve the following integrals.

(a) (13 pts)
\[
\int \frac{\sin(\ln(x))}{x} \, dx
\]

(b) (13 pts)
\[
\int_{0}^{\pi/4} \cos(2x)e^{\sin(2x)} \, dx
\]
(c) (13 pts)

\[\int_{0}^{1} \frac{e^x}{e^x + 1} \, dx \]
5. (15 pts) Find the area between the curves

\[
\begin{align*}
 y &= 3x + 3 \\
 y &= 3 - x^2
\end{align*}
\]

between \(x = 0\) and \(x = 1\).
6. (15 pts) Find the area between the curves

\[y = x^2 - 1 \]
\[y = x + 1 \]

Hint: Find the points at which the curves intersect.
7. (15 pts) Find the volume of the solid obtained by rotating the region bounded by the given curves, about the x-axis.

$$y = x^2$$
$$y = 2x$$
8. **(15 pts)** Use the method of cylindrical shells to find the volume generated by rotating the region bounded by the given curves about the y-axis.

WARNING Unless you use the shell method, you will not get full credit.

\[y = e^{x^2} \]
\[y = 0 \]
\[x = 0 \]
\[x = 4 \]
9. (15 pts) A spring at rest has length of 1 meter. Assuming that the spring constant k equals 10 Newtons per meter squared. Calculate the work required to stretch the spring so as to increase its length to 3 meters.
10. (15 pts) Find the average value of \(f(x) = x\sqrt{1 + x^2} \) over \([0, 4]\).