NAME (please print legibly): __
Your University ID Number: __
Circle your Instructor’s Name along with the Lecture Time:

Zokhrab Moustafaev (MWF 9:00 - 9:50) Carl Mueller (MW 3:25 - 4:40)

- No calculators are allowed on this exam.
- You must do both parts of the final. The first part can make up for a bad midterm grade, but the midterms cannot make up for the first part of the final.
- Please show all your work. You may use back pages if necessary. You may not receive full credit for a correct answer if there is no work shown.
- Please put your final answers in the spaces provided.

<table>
<thead>
<tr>
<th>Part A</th>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part B</th>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part A

1. (16 pts) Let

\[f(x) = \frac{1}{3}x^3 - 2x^2 + 3x \]

(a) (5 points) Find the intervals on which \(f(x) \) is increasing and decreasing.

(b) (5 points) Find the local extrema of \(f(x) \).
(c) (6 points) Find the intervals on which f is concave up and concave down.

2. (14 pts)

Let

$$y = \frac{x^2 - 2x + 2}{2x^2 - 5x + 3}.$$

(a) (7 points) Find the vertical asymptotes.
(b) (7 points) Find the horizontal asymptotes.

3. (20 pts)

A box with a square base and open top must have a volume $32m^3$. Find the dimensions of the box that minimizes the amount of material used.
4. (16 pts)

Differentiate the following functions.

(a) (8 points)

\[\int_0^x e^{-2t^2} \, dt \]

(b) (8 points)

\[\int_0^{x^3} \sin(t^2) \, dt \]
5. (24 pts)

Evaluate the following integrals.

(a) (8 points)
\[\int (x^2 - e^{2x} + \cos(3x)) \, dx \]

(b) (8 points)
\[\int \frac{dx}{x \ln(2x)} \]

(c) (8 points)
\[\int_0^{\ln(\pi/4)} e^x \cos(e^x) \, dx \]
6. (20 pts)

Find the area between the curves

\[y = x^2, \quad y = x, \quad x = 0, \quad x = 2 \]
7. (20 pts)

Find the volume of the solid obtained by rotating about the line \(y = 2 \), the region enclosed by the curves

\[y = \sqrt{x} \]

and

\[y = x. \]
8. (20 pts)

A spring has a natural length of 0.1\(m\). If a 20\(N\) force is required to keep it stretched to a length 0.3\(m\), how much work is required to stretch it from 0.1\(m\) to 0.2\(m\)?
Part B

9. (16 pts) Solve the following integrals.

(a) (8 points)
\[\int x^2 e^{-2x} \, dx \]

(b) (8 points)
\[\int \frac{\ln x}{x^3} \, dx \]
10. (28 pts)

(a) (9 points) Find
\[\int \sin^2(x) \cos^3(x) \, dx \]

(b) (10 points) Find
\[\int \sin^2(x) \cos^2(x) \, dx \]

(c) (9 points) Find
\[\int \tan(x) \sec^3(x) \, dx \]
11. (18 pts) Solve the following integrals.

(a) (9 points)

\[\int \frac{x^3}{\sqrt{25 - x^2}} \, dx \]

(b) (9 points)

\[\int \frac{dx}{x^2 \sqrt{x^2 + 4}} \]
12. (36 pts) Solve the following integrals.

(a) (9 points)
\[\int \frac{2}{x^2 - x - 6} \, dx \]

(b) (9 points)
\[\int \frac{x^2 - x + 2}{x + 1} \, dx \]
(c) (9 points)

\[\int \frac{x + 4}{x^3 + 2x^2} \, dx \]

(d) (9 points)

\[\int \frac{1}{x^3 + 3x^2 + 2x} \, dx \]
13. (8 pts) Approximate

$$\int_0^4 \sqrt{x^3 + 1} \, dx$$

using 4 intervals of equal length, using the trapezoidal rule. You do not have to evaluate the square roots.
14. (16 pts) Solve the following integrals.

(a) (8 points)
\[\int_{-1}^{4} \frac{1}{(x - 1)^4} \, dx \]

(b) (8 points)
\[\int_{-3}^{-1} \frac{1}{(x + 2)^{1/3}} \, dx \]
15. (8 pts) For the following problem, SET UP THE INTEGRAL, BUT DO NOT SOLVE IT. What is the length of the curve $y = x^3 + x$ between $x = -1$ and $x = 3$?
16. (10 pts) Suppose that a cubical tank with 2 meters on each side is full of water. Find the force on one of the vertical sides, in Newtons.
17. (10 pts) Find the center of mass of a right triangle with vertices at (0, 0), (0, 1), and (1, 0).