Understanding Dyson's Lemma

Paul Vojta
University of California, Berkeley and ICERM

(work in progress)
Abstract. In 1989, I proved a Dyson lemma for products of two smooth projective curves of arbitrary genus. In 1995, M. Nakamaye extended this to a result for a product of an arbitrary number of smooth projective curves of arbitrary genus, in a formulation involving an additional "perturbation divisor." In 1998, he also found an example in which a hoped-for Dyson lemma is false without such a perturbation divisor. This talk will present some recent work suggesting that it may be possible to eliminate the perturbation divisor by using a different definition of "volume" at the points under consideration.

Vague Definitions and History

Let $0 \neq P \in \mathbb{C}\left[x_{1}, x_{2}\right]$ be of degree d_{1} in x_{1} and d_{2} in x_{2} ($d_{1} \gg d_{2}$), and let Q_{1}, \ldots, Q_{s} be points in \mathbb{C}^{2} with distinct x_{1} coordinates and distinct x_{2} coordinates. Then Dyson's lemma says that

$$
\sum_{i=1}^{s} \operatorname{Vol}_{P, d_{1}, d_{2}}\left(Q_{i}\right) \leq 1+O\left(d_{2} / d_{1}\right)
$$

History:
Theorem (Roth). Let $\alpha \in \overline{\mathbb{Q}}$, let $\epsilon>0$, and let $C \in \mathbb{R}$. Then there are only finitely many $p / q \in \mathbb{Q}(p, q \in \mathbb{Z}, \operatorname{gcd}(p, q)=1)$ such that

$$
\left|\frac{p}{q}-\alpha\right| \leq \frac{C}{|q|^{2+\epsilon}} .
$$

1909	Thue	$\frac{d}{2}+1+\epsilon$
1921	Siegel	$\min \left\{\frac{d}{s+1}+s: 0 \leq s<d\right\}+\epsilon$
1947	Dyson	$\sqrt{2 d}+\epsilon$
1952	Gel'fond	$\sqrt{2 d}+\epsilon ?$
1955	Roth	$2+\epsilon$

Let C_{1}, \ldots, C_{n} be smooth projective curves over \mathbb{C}, let Y be an effective divisor on $C_{1} \times \cdots \times C_{n}$, and let $d_{i}=\left(Y . \widetilde{C}_{i}\right)$ for all i, where \widetilde{C}_{i} is a fiber of the map $C_{1} \times \cdots \times C_{n} \rightarrow \prod_{j \neq i} C_{j}$. Assume that $d_{i}>0$ for all i.
Definition. For $P \in C_{1} \times \cdots \times C_{n}$ define the index of Y at P relative to $\mathbf{d}=\left(d_{1}, \ldots, d_{n}\right)$ as
$t_{\mathbf{d}, Y}(P)=\min \left\{\frac{i_{1}}{d_{1}}+\cdots+\frac{i_{n}}{d_{n}}:\left(\frac{\partial}{\partial z_{1}}\right)^{i_{1}} \cdots\left(\frac{\partial}{\partial z_{n}}\right)^{i_{n}} f(P) \neq 0\right\}$,
where f is a local defining equation for Y at P and z_{i} are local coordinates on C_{i}.

We also define $\operatorname{Vol}(t)$ as

$$
\operatorname{Vol}(t)=\text { volume of }\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}: \sum x_{i} \leq t\right\}
$$

Question. Given $C_{1}, \ldots, C_{n}, Y, d_{1}, \ldots, d_{n}$ as above, and points $P_{1}, \ldots, P_{s} \in \prod C_{i}$ lying in distinct fibers over C_{i} for all i, can one show that

$$
\sum_{i=1}^{s} \operatorname{Vol}\left(t_{\mathbf{d}, Y}\left(P_{i}\right)\right) \leq \frac{1}{d_{1} \cdots d_{n}} \cdot \frac{\left(Y^{n}\right)}{n!}+O\left(\max \left\{\frac{d_{i}}{d_{j}}: i>j\right\}\right)
$$

with the constant in $O(\cdot)$ depending only on $g\left(C_{1}\right), \ldots, g\left(C_{n}\right)$, n, s ?
The intuition behind this is that generally

$$
h^{0}\left(\prod C_{i}, Y\right) \approx \frac{\left(Y^{n}\right)}{n!}
$$

(if Y is ample), and $d_{1} \cdots d_{n} \cdot \operatorname{Vol}\left(t_{\mathbf{d}, Y}\left(P_{i}\right)\right)$ is the approximate number of linear conditions one would use to (naively) achieve the given index at P_{i}. Thus, the inequality becomes best possible in the limit as $\max \left\{d_{i} / d_{j}\right\} \rightarrow 0$.

More History

Dyson 1947 (some differences)

 Viola 1985Esnault-Viehweg 1984; Roth proof
V. 1989; new proof of Mordell
V. 1990 (unpublished)

Nakamaye 1995 "perturbation divisor"
Nakamaye 1998

Proofs

When $n=1$ (simple but instructive):

$$
\sum \frac{\operatorname{deg}_{P_{i}}(Y)}{d_{1}} \leq \frac{\operatorname{deg} Y}{d_{1}} .
$$

No $O(\cdot)$ term
When $n=2$ (discussion):
At one of the P_{i}, you can draw a Newton polygon for a defining equation for Y [on board].

If you work harder, you can get [on board]:
Why is the region cut off?
(a). Can't have ∞ on the LHS
(b). You get the rest "for free," so they shouldn't count.

$$
\text { Proposal for Vol when } n=3
$$

Let $\operatorname{Vol}_{\mathscr{O}(Y), \mathrm{d}}$ be the volume of the set

$$
\begin{aligned}
\left\{(x, y, z) \in[0, \infty)^{3}:\right. & x \leq 1, y \leq 1, z \leq 1 \\
& x+y \leq t_{12}, x+z \leq t_{13}, y+z \leq t_{23} \\
& x+y+z \leq t\}
\end{aligned}
$$

where t_{12} satisfies

$$
\mathrm{Vol}_{\left.Y\right|_{F_{3}}\left(d_{1}, d_{2}\right)}\left(t_{12}\right)=\frac{\left(Y^{2} \cdot F_{3}\right)}{2 d_{1} d_{2}}
$$

and t_{13}, t_{23} are defined similarly; d_{1}, d_{2}, d_{3} are as defined earlier; and F_{i} is a fiber of $C_{1} \times C_{2} \times C_{3} \rightarrow C_{i}$.

For $n>3$: you can see a pattern.
Why hasn't this come up before???
(a). It has $(n=1)$.
(b). When $n=2$: no change
(c). When $n>2$ and $C_{i}=\mathbb{P}^{1}$ for all i (say $n=3$), $\mathscr{O}(Y) \cong \mathscr{O}\left(d_{1}, d_{2}, d_{3}\right), \quad\left(Y^{2} . F_{3}\right)=2 d_{1} d_{2}$, so $\operatorname{Vol}\left(t_{12}\right)=1$, giving $t_{12}=2$, etc.
Also, this definition addresses Nakamaye's counterexample.
It also fits in with the principle of not giving credit for things that are free, including when you apply Dyson's lemma to the faces of the cube.

$$
\text { Proved when } n=3, s=1 \text { (} n \leq 2 \text { already done). }
$$

Sketch of proof when $n=2, s=0$. First consider the special case when Y contains no components that are fibers of $C_{1} \times C_{2} \rightarrow C_{1}$ or $C_{1} \times C_{2} \rightarrow C_{2}$. If Z is an irreducible component of Y, then
$\left(Z^{2}+Z . K_{C_{1} \times C_{2}}\right)=2 p_{a}(Z)-2 \geq 2 p_{g}(Z)-2 \geq \operatorname{deg}\left(Z \rightarrow C_{2}\right)\left(2 g\left(C_{2}\right)-2\right)$,
and therefore

$$
\left(Z^{2}\right) \geq-\left(2 g\left(C_{1}\right)-2\right)\left(Z .\left(\{\mathrm{pt} .\} \times C_{2}\right)\right)
$$

Writing $Y=\sum e_{k} Z_{k}$, we then have

$$
\begin{aligned}
\left(Y^{2}\right) & \geq-\max \left\{e_{k}\right\} \max \left\{2 g\left(C_{1}\right)-2,0\right\}\left(Y \cdot\left(\{\mathrm{pt} .\} \times C_{2}\right)\right) \\
& \geq-d_{2}^{2} \max \left\{2 g\left(C_{1}\right)-2,0\right\}
\end{aligned}
$$

If Y contains fiber components, then the inequality is still true (and may be stronger).

Now divide by $2 d_{1} d_{2}$
Sketch of proof when $n=2, s=1$. Again start with the case when Y contains no fiber components.

Take covers $C_{1}^{\prime}, C_{2}^{\prime}$ of C_{1} and C_{2}, ramified only above the coordinates of $P=P_{1}$, and unramified elsewhere (unless $C_{i}=\mathbb{P}^{1}$, in which case you allow ramification above a second point). Moreover, we require that the ramification indices at all points over the coordinate of P all be the same, and occur in such a ratio such that the index of Y at P is some multiple of the straight multiplicity of the pull-back Y^{\prime} at each point above P. Let X be the blowing-up of $C_{1}^{\prime} \times C_{2}^{\prime}$ at all points over P. Apply the above argument to the divisor $Y^{\prime \prime}$ obtained by subtracting suitable multiples of the exceptional divisors from Y^{\prime}, so that $Y^{\prime \prime}$ is not supported along any exceptional divisor. This gives

$$
\left(Y^{2}\right)-t(P)^{2} \geq-d_{2}^{2} \max \left\{2 g\left(C_{1}\right)-2+1,0\right\}
$$

Adding back in the fibers not passing through P again only makes things better, but things are more complicated when Y contains fibers that pass through P. Write

$$
Y=Y_{0}+a F_{1}+b F_{2}
$$

where F_{i} is the fiber of $C_{1} \times C_{2} \rightarrow C_{i}$ passing through P. Then

$$
\begin{aligned}
\left(Y^{2}\right) & =\left(Y_{0}\right)^{2}+2 a\left(Y_{0} \cdot F_{1}\right)+2 b\left(Y_{0} \cdot F_{2}\right)+2 a b \\
& =\left(Y_{0}\right)^{2}+2 a\left(d_{2}-b\right)+2 b\left(d_{1}-a\right)+2 a b
\end{aligned}
$$

and dividing by 2 then gives the area of the region [draw].
Note that the region contains the region indicated by $\operatorname{Vol}(t)$.
[Caution: You only get the area of a smaller region when $s>2$.
[The proof when $s>1$ is too messy to give here.]

$$
\text { Sketch of Proofs when } n=3, s \leq 1
$$

Sketch of proof when $n=3, s=0$. If Z_{k} is an irreducible component of Y, then looking at $\left(Z_{k}\right)^{2}$ is not good enough, nor is positivity of the relative dualizing sheaf useful in this case. So, instead, you prove that

$$
Y+\left(d_{2}+d_{3}\right) \pi_{1}^{*} K_{1}+d_{3} \pi_{2}^{*} K_{2}
$$

is nef, where K_{i} is the pull-back of the canonical divisor on C_{i} (or the trivial sheaf if $C_{i} \cong \mathbb{P}^{1}$) and then you get

$$
\left(\left(Y+\left(d_{2}+d_{3}\right) \pi_{1}^{*} K_{1}+d_{3} \pi_{2}^{*} K_{2}\right)^{3}\right) \geq 0
$$

Actually, you can do a little better:

$$
\left(Y .\left(Y+\left(d_{2}+d_{3}\right) \pi_{1}^{*} K_{1}+d_{3} \pi_{2}^{*} K_{2}\right)^{2}\right) \geq 0
$$

Sketch of proof when $n=3, s=1$. The same changes carry over: you do a covering construction to turn the index downstairs into the straight multiplicity upstairs, fibers F_{i} of
$C_{1} \times C_{2} \times C_{3} \rightarrow C_{i}$ not passing through P can be added back in without problem, and you write

$$
Y=Y_{0}+a F_{1}+b F_{2}+c F_{3}
$$

as before, to get

$$
\begin{aligned}
Y^{3}=Y_{0}^{3} & +3 a Y_{0}^{2} F_{1}+3 b Y_{0}^{2} F_{2}+3 c Y_{0}^{2} F_{3} \\
& +6 a b\left(d_{3}-c\right)+6 a c\left(d_{2}-b\right)+6 b c\left(d_{1}-a\right)+6 a b c
\end{aligned}
$$

and apply

$$
\begin{aligned}
\left(Y_{0}^{3}\right) & \geq\left(t-a / d_{1}-b / d_{2}-c / d_{3}\right)^{3} \\
3 a Y_{0}^{2} F_{1} & \geq 6 a \operatorname{Vol}_{d_{2}, d_{3}}\left(t_{23}\right),
\end{aligned}
$$

Again, need to compare the volume of the implicit solid with $\operatorname{Vol}(t)$ proposed earlier.

