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Abstract. In 1989, I proved a Dyson lemma for products
of two smooth projective curves of arbitrary genus. In 1995,
M. Nakamaye extended this to a result for a product of an
arbitrary number of smooth projective curves of arbitrary genus,
in a formulation involving an additional “perturbation divisor.”
In 1998, he also found an example in which a hoped-for Dyson
lemma is false without such a perturbation divisor. This talk will
present some recent work suggesting that it may be possible to
eliminate the perturbation divisor by using a different definition
of “volume” at the points under consideration.



Vague Definitions and History

Let 0 ̸= P ∈ C[x1, x2] be of degree d1 in x1 and d2 in x2

( d1 ≫ d2 ), and let Q1, . . . , Qs be points in C2 with distinct x1

coordinates and distinct x2 coordinates. Then Dyson’s lemma
says that

s∑
i=1

VolP,d1,d2(Qi) ≤ 1 +O(d2/d1) .

History:

Theorem (Roth). Let α ∈ Q , let ϵ > 0 , and let C ∈ R . Then
there are only finitely many p/q ∈ Q ( p, q ∈ Z , gcd(p, q) = 1 )
such that ∣∣∣∣pq − α

∣∣∣∣ ≤ C

|q|2+ϵ
.

1909 Thue d
2 + 1 + ϵ

1921 Siegel min
{

d
s+1 + s : 0 ≤ s < d

}
+ ϵ

1947 Dyson
√
2d+ ϵ

1952 Gel’fond
√
2d+ ϵ?

1955 Roth 2 + ϵ



Detailed Description of Dyson’s Lemma

Let C1, . . . , Cn be smooth projective curves over C , let Y

be an effective divisor on C1 × · · · × Cn , and let di = (Y . C̃i) for
all i , where C̃i is a fiber of the map C1 × · · · × Cn →

∏
j ̸=i Cj .

Assume that di > 0 for all i .

Definition. For P ∈ C1 × · · · × Cn define the index of Y at P
relative to d = (d1, . . . , dn) as

td,Y (P ) = min

{
i1
d1

+ · · ·+ in
dn

:

(
∂

∂z1

)i1

· · ·
(

∂

∂zn

)in

f(P ) ̸= 0

}
,

where f is a local defining equation for Y at P and zi are
local coordinates on Ci .

We also define Vol(t) as

Vol(t) = volume of
{
(x1, . . . , xn) ∈ [0, 1]n :

∑
xi ≤ t

}
.

Question. Given C1, . . . , Cn, Y, d1, . . . , dn as above, and points
P1, . . . , Ps ∈

∏
Ci lying in distinct fibers over Ci for all i , can

one show that

s∑
i=1

Vol(td,Y (Pi)) ≤
1

d1 · · · dn
· (Y

n)

n!
+O

(
max

{
di
dj

: i > j

})

with the constant in O(·) depending only on g(C1), . . . , g(Cn) ,
n , s?

The intuition behind this is that generally

h0
(∏

Ci, Y
)
≈ (Y n)

n!

(if Y is ample), and d1 · · · dn · Vol(td,Y (Pi)) is the approximate
number of linear conditions one would use to (naively) achieve
the given index at Pi . Thus, the inequality becomes best pos-
sible in the limit as max{di/dj} → 0 .

More History

n Ci s
2 P1 any Dyson 1947 (some differences)
2 P1 any Viola 1985

any P1 any Esnault-Viehweg 1984; Roth proof
2 any any V. 1989; new proof of Mordell

any any 0 V. 1990 (unpublished)
any any any Nakamaye 1995 “perturbation divisor”

counterexample Nakamaye 1998



Proofs

When n = 1 (simple but instructive):

∑ degPi
(Y )

d1
≤ deg Y

d1
.

No O(·) term

When n = 2 (discussion):
At one of the Pi , you can draw a Newton polygon for a

defining equation for Y [on board].

If you work harder, you can get [on board]:

Why is the region cut off?

(a). Can’t have ∞ on the LHS
(b). You get the rest “for free,” so they shouldn’t count.

Proposal for Vol when n = 3

Let VolO(Y ),d be the volume of the set

{(x, y, z) ∈ [0,∞)3 :x ≤ 1, y ≤ 1, z ≤ 1,

x+ y ≤ t12, x+ z ≤ t13, y + z ≤ t23,

x+ y + z ≤ t}

where t12 satisfies

Vol
Y
∣∣
F3

,(d1,d2)
(t12) =

(Y 2 . F3)

2d1d2

and t13 , t23 are defined similarly; d1, d2, d3 are as defined earlier;
and Fi is a fiber of C1 × C2 × C3 → Ci .

For n > 3 : you can see a pattern.

Why hasn’t this come up before???

(a). It has (n = 1 ).
(b). When n = 2 : no change
(c). When n > 2 and Ci = P1 for all i (say n = 3 ),

O(Y ) ∼= O(d1, d2, d3) , (Y 2 . F3) = 2d1d2 , so Vol(t12) = 1 ,
giving t12 = 2 , etc.

Also, this definition addresses Nakamaye’s counterexample.

It also fits in with the principle of not giving credit for things
that are free, including when you apply Dyson’s lemma to the
faces of the cube.



Current Status

Proved when n = 3 , s = 1 (n ≤ 2 already done).

Sketch of proof when n = 2 , s = 0 . First consider the spe-
cial case when Y contains no components that are fibers of
C1 ×C2 → C1 or C1 ×C2 → C2 . If Z is an irreducible component
of Y , then

(Z2+Z .KC1×C2) = 2pa(Z)−2 ≥ 2pg(Z)−2 ≥ deg(Z → C2)(2g(C2)−2) ,

and therefore

(Z2) ≥ −(2g(C1)− 2)(Z . ({pt.} × C2)) .

Writing Y =
∑

ekZk , we then have

(Y 2) ≥ −max{ek}max{2g(C1)− 2, 0}(Y . ({pt.} × C2))

≥ −d22 max{2g(C1)− 2, 0} .

If Y contains fiber components, then the inequality is still true
(and may be stronger).

Now divide by 2d1d2 . □
Sketch of proof when n = 2 , s = 1 . Again start with the case
when Y contains no fiber components.

Take covers C ′
1 , C ′

2 of C1 and C2 , ramified only above
the coordinates of P = P1 , and unramified elsewhere (unless
Ci = P1 , in which case you allow ramification above a second
point). Moreover, we require that the ramification indices at all
points over the coordinate of P all be the same, and occur in
such a ratio such that the index of Y at P is some multiple
of the straight multiplicity of the pull-back Y ′ at each point
above P . Let X be the blowing-up of C ′

1 × C ′
2 at all points

over P . Apply the above argument to the divisor Y ′′ obtained
by subtracting suitable multiples of the exceptional divisors from
Y ′ , so that Y ′′ is not supported along any exceptional divisor.
This gives

(Y 2)− t(P )2 ≥ −d22 max{2g(C1)− 2 + 1, 0} .

Adding back in the fibers not passing through P again only
makes things better, but things are more complicated when Y
contains fibers that pass through P . Write

Y = Y0 + aF1 + bF2 ,

where Fi is the fiber of C1 ×C2 → Ci passing through P . Then

(Y 2) = (Y0)
2 + 2a(Y0 . F1) + 2b(Y0 . F2) + 2ab

= (Y0)
2 + 2a(d2 − b) + 2b(d1 − a) + 2ab

and dividing by 2 then gives the area of the region [draw].
Note that the region contains the region indicated by Vol(t) .

□
[Caution: You only get the area of a smaller region when

s > 2 .]

[The proof when s > 1 is too messy to give here.]

Sketch of Proofs when n = 3 , s ≤ 1

Sketch of proof when n = 3 , s = 0 . If Zk is an irreducible
component of Y , then looking at (Zk)

2 is not good enough,
nor is positivity of the relative dualizing sheaf useful in this
case. So, instead, you prove that

Y + (d2 + d3)π
∗
1K1 + d3π

∗
2K2

is nef, where Ki is the pull-back of the canonical divisor on Ci

(or the trivial sheaf if Ci
∼= P1 ) and then you get

((Y + (d2 + d3)π
∗
1K1 + d3π

∗
2K2)

3) ≥ 0 .

Actually, you can do a little better:

(Y . (Y + (d2 + d3)π
∗
1K1 + d3π

∗
2K2)

2) ≥ 0 . □
Sketch of proof when n = 3 , s = 1 . The same changes carry
over: you do a covering construction to turn the index down-
stairs into the straight multiplicity upstairs, fibers Fi of
C1 × C2 × C3 → Ci not passing through P can be added back in
without problem, and you write

Y = Y0 + aF1 + bF2 + cF3

as before, to get

Y 3 = Y 3
0 + 3aY 2

0 F1 + 3bY 2
0 F2 + 3cY 2

0 F3

+ 6ab(d3 − c) + 6ac(d2 − b) + 6bc(d1 − a) + 6abc

and apply

(Y 3
0 ) ≥ (t− a/d1 − b/d2 − c/d3)

3

3aY 2
0 F1 ≥ 6aVold2,d3(t23) ,

etc.
Again, need to compare the volume of the implicit solid with

Vol(t) proposed earlier. □


