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First Example

Consider the disc D(0,R) ⊂ C. If R > 1, there are infinitely
many algebraic integers whose conjugates all belong to
D(0,R). If R < 1 there are only finitely many.

It is not obvious, but these assertions remain true for D(a,R),
for any a ∈ R.

Analogous assertions hold for a filled ellipse x2

A2 + y2

B2 ≤ 1:
If (A + B)/2 > 1, there are infinitely many algebraic
integers whose conjugates all belong to the filled ellipse.
If (A + B)/2 < 1, there are only finitely many.
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The Classical Theorems of Fekete and Fekete-Szegö

There is a measure of size for sets E ⊂ C, called the
logarithmic capacity γ(E), which arises in potential theory and
has applications in arithmetic:

Theorem (Fekete, 1923; Fekete-Szegö, 1955)
Let E ⊂ C be a compact set which is stable under complex
conjugation, has a piecewise smooth boundary, and is the
closure of its interior. If the logarithmic capacity γ(E) > 1, there
are infinitely many algebraic integers whose conjugates all
belong to E. If γ(E) < 1, there are only finitely many.
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Definition of the Logarithmic Capacity

The basic harmonic potential in the plane is − log(|z − w |).
Given a probability measure ν with support contained E , its
energy integral is

I(ν) =

∫∫
E×E
− log(|z − w |) dν(z)dν(w) .

The Robin constant V∞(E) is the infimum of the energy
integrals, over all probability measures with support in E :

V∞(E) = inf
ν on E

∫∫
E×E
− log(|z − w |) dν(z)dν(w) .

The logarithmic capacity is defined by γ(E) = e−V∞(E) .
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Computing Capacities

If E is compact and γ(E) > 0, there is a unique probability
measure ν on E , called the equilibrium distribution, which
achieves the minimimal energy integral V∞(E).
The Green’s function G(z,∞; E) is defined by

G(z,∞; E) = −V∞(E) +

∫
E

log(|z − w |) dµ(z) .

When E has a piecewise smooth boundary, the Green’s
function has the following properties:

G(z,∞; E) = 0 on E ;
G(z,∞; E) is continuous on C, and harmonic and positive
in C\E ;
G(z,∞; E) = log(|z|)− V∞(E) + o(1) as z →∞.

Furthermore, it is uniquely characterized by these properties.
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Computing Capacities

The best way to compute capacities is to guess the Green’s
function, then read off the Robin constant by

V∞(E) = lim
z→∞

G(z,∞; E)− log(|z|) .

For example, when E = D(0,R),
then G(z,∞; E) = log+(|z|/R)
so V∞(E) = − log(R)
and γ(E) = e−(− log(R)) = R .

If E is connected, its Green’s function can be computed by
finding a conformal mapping from P1(C)\E to P1(C)\D(0,1)
which takes∞→∞.
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Sketch of the Proof of the Fekete-Szegö Theorem

Suppose γ(E) > 1.
Let U be the interior of E , then shrink E inside U.

By discretizing the equilibrium distribution, construct a monic
polynomial P(z) ∈ R[z] of degree n whose normalized
logarithm 1

n log(|P(z)|) approximates G(z,∞; E) + V∞(E)
outside E . Since γ(E) > 1, we have

{z ∈ C : |P(z)| ≤ 1} ⊂ U .

By a process called patching, we can use P(z) to construct a
monic polynomial Q(z) ∈ Z[z] with much higher degree such
that

{z ∈ C : |Q(z)| ≤ 1} ⊂ U .

The algebraic integers in the Fekete-Szegö theorem are the
roots of R(z)N − 1 = 0 for N = 1,2,3, ....

Robert Rumely The Fekete-Szegö Theorem with Local Rationality Conditions on Curves



Sketch of the Proof of the Fekete-Szegö Theorem

Suppose γ(E) > 1.
Let U be the interior of E , then shrink E inside U.

By discretizing the equilibrium distribution, construct a monic
polynomial P(z) ∈ R[z] of degree n whose normalized
logarithm 1

n log(|P(z)|) approximates G(z,∞; E) + V∞(E)
outside E . Since γ(E) > 1, we have

{z ∈ C : |P(z)| ≤ 1} ⊂ U .

By a process called patching, we can use P(z) to construct a
monic polynomial Q(z) ∈ Z[z] with much higher degree such
that

{z ∈ C : |Q(z)| ≤ 1} ⊂ U .

The algebraic integers in the Fekete-Szegö theorem are the
roots of R(z)N − 1 = 0 for N = 1,2,3, ....

Robert Rumely The Fekete-Szegö Theorem with Local Rationality Conditions on Curves



Sketch of the Proof of the Fekete-Szegö Theorem

Suppose γ(E) > 1.
Let U be the interior of E , then shrink E inside U.

By discretizing the equilibrium distribution, construct a monic
polynomial P(z) ∈ R[z] of degree n whose normalized
logarithm 1

n log(|P(z)|) approximates G(z,∞; E) + V∞(E)
outside E . Since γ(E) > 1, we have

{z ∈ C : |P(z)| ≤ 1} ⊂ U .

By a process called patching, we can use P(z) to construct a
monic polynomial Q(z) ∈ Z[z] with much higher degree such
that

{z ∈ C : |Q(z)| ≤ 1} ⊂ U .

The algebraic integers in the Fekete-Szegö theorem are the
roots of R(z)N − 1 = 0 for N = 1,2,3, ....

Robert Rumely The Fekete-Szegö Theorem with Local Rationality Conditions on Curves



Sketch of the Proof of the Fekete-Szegö Theorem

Suppose γ(E) > 1.
Let U be the interior of E , then shrink E inside U.

By discretizing the equilibrium distribution, construct a monic
polynomial P(z) ∈ R[z] of degree n whose normalized
logarithm 1

n log(|P(z)|) approximates G(z,∞; E) + V∞(E)
outside E . Since γ(E) > 1, we have

{z ∈ C : |P(z)| ≤ 1} ⊂ U .

By a process called patching, we can use P(z) to construct a
monic polynomial Q(z) ∈ Z[z] with much higher degree such
that

{z ∈ C : |Q(z)| ≤ 1} ⊂ U .

The algebraic integers in the Fekete-Szegö theorem are the
roots of R(z)N − 1 = 0 for N = 1,2,3, ....

Robert Rumely The Fekete-Szegö Theorem with Local Rationality Conditions on Curves



Sketch of the Proof of the Fekete-Szegö Theorem

Suppose γ(E) > 1.
Let U be the interior of E , then shrink E inside U.

By discretizing the equilibrium distribution, construct a monic
polynomial P(z) ∈ R[z] of degree n whose normalized
logarithm 1

n log(|P(z)|) approximates G(z,∞; E) + V∞(E)
outside E . Since γ(E) > 1, we have

{z ∈ C : |P(z)| ≤ 1} ⊂ U .

By a process called patching, we can use P(z) to construct a
monic polynomial Q(z) ∈ Z[z] with much higher degree such
that

{z ∈ C : |Q(z)| ≤ 1} ⊂ U .

The algebraic integers in the Fekete-Szegö theorem are the
roots of R(z)N − 1 = 0 for N = 1,2,3, ....

Robert Rumely The Fekete-Szegö Theorem with Local Rationality Conditions on Curves



Second Example

The capacity of a segment E = [a,b] is γ(E) = (b − a)/4.

Theorem (Robinson, 1964)

Let [a,b] ⊂ R be an interval. If (b − a)/4 > 1 there are infinitely
many totally real algebraic integers whose conjugates belong to
[a,b]; if (b − a)/4 < 1 there are only finitely many.

Here the conjugates belong to the real interior of E .

The theorem is proved by constructing Chebyshev-like
polynomials in Z[z] which are monic and have large oscillations
on [a,b]. Their roots are the totally real algebraic integers in the
theorem.
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Third Example

Theorem (R, 2000)

Let [a,b] ⊂ R be an interval, and let S = {p1, . . . ,pr} be a finite
set of primes. If

b − a
4
·
∏
p∈S

p−1/(p−1) > 1,

there are infinitely many totally real algebraic integers α such
that each p ∈ S splits completely in Q(α). If the reverse
inequality holds, there are only finitely many.

There are capacities of p-adic sets too. The condition that p
splits completely is equivalent to requiring the conjugates in Cp
(the completion of the algebraic closure of Qp) to belong to Qp.
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Integrality means avoiding∞

What about the conjugates in Cp for p /∈ S?
They all belong to Dp(0,1) = {z ∈ Cp : |z|p ≤ 1}.

An algebraic number is an algebraic integer if and only if its
p-adic conjugates belong to Dp(0,1) for all p.

Another way of viewing the integrality condition is to say that
the conjugates avoid∞ in P1(Cp) for all finite primes. Note that
Dp(0,1) = P1(Cp)\B(∞,1)−.

By allowing more general sets at nonarchimedean places, one
can construct algebraic numbers which satisfy prescribed
conditions at finitely many places, and are integral at the
remaining places.
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Fourth Example: Allowing more general sets

Theorem
Let 0 < R,L ∈ R, and take E∞ = D(0,R) ∪ [R,R + L], a ‘disc

with a tail’. Fix a prime p, and let

Ep = pZ×p ∪ Z×p ∪ p−1Z×p = Qp ∩ (Dp(0,p)\Dp(0,1/p)−) ,

a p-adic annulus. For each prime q 6= p, put Eq = Dq(0,1).
Then if

( 3
4 R+ 1

4
R2+RL+L2

R+L ) · p
1− 1

p−1 + 1
(p−1)2(1+p2+p4) > 1 ,

there are infinitely many algebraic numbers whose whose
conjugates in Cv belong to Ev , for each place v.

If the reverse inequality holds, there are only finitely many.
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Allowing more general sets

The sets in the theorem are finite unions of ‘basic sets’:

The set E∞ is a union of a set in C which is the closure of its
complex interior, and a set in R which is the closure of its real
interior. Note that these sets need not be disjoint.

The set Ep is a union of affine translates of Zp:

Ep =
1⋃

i=−1

p−1⋃
a=1

(
a · pi + pi+1Zp

)
.

The sets Eq = Dq(0,1) for q 6= p are ‘trivial’ with respect to∞.
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Fifth Example

Theorem (Robinson, 1968)

Let 0 < a < b ∈ R. Then the interval [a,b] contains infinitely
many totally real algebraic units if and only if

1 log(b−a
4 ) > 0 and

2 log(b−a
4 ) · log(b−a

4ab )− log(
√

b+
√

a√
b−
√

a
)2 > 0

If either condition fails, there are only finitely many.
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Discussion

An algebraic number is a unit if and only if its conjugates
belong to

Dp(0,1)\Dp(0,1)− = P1(Cp)\(B(∞,1)− ∪ B(0,1)−)

for each p, that is, if it avoids∞ and 0 at each finite place.
The conditions in the Theorem are equivalent to the negative
definiteness of

Γ =

 − log(b−a
4 ) log(

√
b+
√

a√
b−
√

a
)

log(
√

b+
√

a√
b−
√

a
) − log(b−a

4ab ) .


There are Green’s functions and Robin constants with respect
any point not in E . Here

Γ = Γ(E , {∞,0}) =

(
V∞(E) G(0,∞; E)

G(∞,0; E) V0(E)

)
is the ‘Green’s matrix of E ’ with respect to∞ and 0.
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The General Framework

Let K be a global field, a number field or a finite extension of
Fp(t) for some p. Fix an algebraic closure K̃ of K .

Let C/K be a smooth, projective, geometrically integral curve.

Let X = {x1, . . . , xm} ⊂ C(K̃ ) be a finite, galois-stable set of
points: the points to avoid.

For each place v of K , let Ev ⊂ C(Cv ) be a nonempty set
disjoint from X. We will require that Ev be galois-stable, and
that it be a finite union of ‘v -basic sets’ as defined below.

For all but finitely many places, we require that
Ev = C(Cv )\(

⋃m
i=1 B(xi ,1)−) be ‘X-trivial’.
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Basic Sets

If v is archimedean and Kv ∼= C, a set Fv ⊂ C(C) is v -basic if it
is simply connected, has a piecewise smooth boundary, and is
the closure of its interior.

If v is archimedean and Kv ∼= R, a set Fv ⊂ C(C) is v -basic if
either

it is simply connected, has a piecewise smooth boundary,
and is the closure of its C-interior; or
it is contained in C(R) and is homeomorphic to a segment
[a,b].

If v is nonarchimedean, a set Fv ⊂ C(Cv ) is v -basic if
it is an open ball B(a, r)− or a closed ball B(a, r); or
it is a closed affinoid in the sense of rigid analysis; or
for some separable algebraic extension Lw/Kv (finite or
infinite), it is the intersection of C(Lw ) with an open or
closed ball or an affinoid.
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The Fekete-Szegö Theorem with Local Rationality
Conditions

Theorem (R, 2012)

Let K be a global field. Let C/K be a smooth, projective,
geometrically integral curve. Let X = {x1, . . . , xm} ⊂ C(K̃ ) be a
finite set of points stable under Aut(L̃/K ). For each place v of
K , let Ev ⊂ C(Cv )\X be a nonempty set which is a finite union
of v-basic sets and is stable under the group of continuous
automorphisms Autc(Cv/Kv ) ∼= Aut(K̃ sep)/Kv . Assume that Ev
is X-trivial for all but finitely many v.

Put E =
∏

v Ev . There is a measure of size γ(E,X) called the
Cantor capacity such that if γ(E,X) > 1, there are infinitely
many points of C(K̃ ) whose conjugates in C(Cv ) all belong to
Ev , for each place v of K . If γ(E,X) < 1, there are only finitely
many such points.
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The Cantor Capacity

For each place v , define the local Green’s matrix to be the
m ×m symmetric matrix

Γ(Ev ,X) =


Vx1(Ev ) G(x2, x1; Ev ) · · · G(xm, x1; Ev )

G(x1, x2; Ev ) Vx2(Ev ) · · · G(xm, x2; Ev )
...

...
. . .

...
G(x1, xm; Ev ) G(x2, xm; Ev ) · · · Vxm (Ev )


If X ⊂ C(K ), put E =

∏
v Ev . Define the global Green’s matrix

Γ(E,X) =
∑

v

Γ(Ev ,X) log(Nv) ,

where Nv is the order of the residue field at v , and log(Nv) = 1
if Kv ∼= R and log(Nv) = 2 if Kv ∼= C.

If X 6⊂ C(K ), put L = K (X) and let Γ(E,X) = 1
[L:K ] Γ(EL,X).
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The Cantor Capacity

Let
Pm = {(s1, . . . , sm) ∈ Rm : s1, . . . , sm ≥ 0, s1 + · · ·+ sm = 1}
denote the set of m-element probability vectors.

There is a simple criterion for a symmetric m ×m matrix to
be negative definite: The value of Γ as a matrix game is

val(Γ) = max
~s∈Pm

min
~r∈Pm

t~sΓ~r ,

and Γ is negative definite if and only if val(Γ) < 0.

In general, for E =
∏

v Ev and X = {x1, . . . , xm}, the Cantor
capacity of E with respect to X is defined to be

γ(E,X) = e− val(Γ(E,X)) .
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An Elliptic Curve example

Let E/Q be the elliptic curve y2 = x3 − 256x .
The real locus E(R) has two components, with a bounded loop
lying over the interval [−16,0].

Theorem

There are infinitely many points α ∈ E(Q̃) whose archimedean
conjugates all belong to the bounded real loop of E(R), whose
2-adic conjugates all belong to E(Z2), and whose p-adic
conjugates all belong to E(Ôp) where Ôp is the ring of integers
of Cp

Here X = {o} (the origin of E), and γ(E,X) =
∏

v γo(Ev ) where

γo(E∞) = 2, γo(E2) = 2−106/107, and γo(Ep) = 1 for all odd p.
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A Fermat Curve example

Take K = Q and consider the Fermat Curve F with affine
equation xp + yp = 1.

It has p points at∞; let X be that set of points.

Take 0 < R ∈ R and put E∞ = {(x , y) ∈ F(C) : |x | ≤ R}.
At the prime p, let Lw/Qp be the extension Lw = Qp(ζp).
Put Ep = F(OLw ).
For all other primes q, let Eq be the X-trivial set.

McCallum has determined a regular model for F over OLw ; it
has np components of a certain type, corresponding to the
number of nontrivial linear Fp-rational factors of the equation
((x − y)p − (xp − yp))/p ≡ 0 (mod p).
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A Fermat Curve example

Theorem

There are infinitely many points of F(Q̃) which have all their
conjugates in Ev for each v if

R · p
− p(2p−1)

(p−1)2((2np+2)p−np) > 1,

and only finitely many if the opposite inequality holds.
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