Linear forms in logarithms and integral points on varieties

Aaron Levin

Michigan State University

Second Annual Upstate Number Theory Conference

Faltings' and Siegel's Theorem

Diophantine Equations

- Basic object of interest: The set of solutions to a system of polynomial equations over a number field k,

$$
\begin{gathered}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0
\end{gathered}
$$

where the solutions are taken in one of the following rings:

- $x_{1}, \ldots, x_{n} \in k$ (rational solutions)
- $x_{1}, \ldots, x_{n} \in \mathcal{O}_{k}$, the ring of integers of k (integral solutions)
- More generally, $x_{1}, \ldots, x_{n} \in \mathcal{O}_{k, s}$, the ring of S-integers (S-integral solutions).
- Geometric viewpoint: The system of polynomial equations defines a geometric object in affine space or projective space (if the polynomials are homogeneous).

Affine and Projective Varieties

- Philosophy: Geometry determines arithmetic.
- Let $X \subset \mathbb{A}^{n}$ be an affine variety over a number field k. Then we're interested in the set of (S-)integral points

$$
X\left(\mathcal{O}_{k, s}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X \mid x_{1}, \ldots, x_{n} \in \mathcal{O}_{k, s}\right\} .
$$

- Note: This set depends not just on X, but on the embedding of X in \mathbb{A}^{n}.
- Similarly, we can study the set of rational points $X(k)$.

Faltings' Theorem

- If $X=C$ is a nonsingular projective curve, there is a fundamental geometric invariant: the genus. This is the number of "holes" in the corresponding Riemann surface.
- For curves, this single invariant, the genus, controls the qualitative behavior of rational points.

Theorem (Faltings, formerly the Mordell Conjecture)

Let C be a curve defined over a number field k. If the (geometric) genus g of C satisfies $g \geq 2$ then $C(k)$ is finite.

- Conversely, curves of genus 0 and genus 1 may have infinitely many rational points (rational and elliptic curves).

Siegel's Theorem

- For affine curves, there is an additional geometric invariant: the number of points of the curve "at infinity"
- The fundamental finiteness result for integral points on affine curves is the 1929 theorem of Siegel.

Theorem (Siegel)

Let $C \subset \mathbb{A}^{n}$ be an affine curve defined over k. Let \widetilde{C} be a projective closure of C. If either

- \widetilde{C} has positive genus
or
- C is rational with more than two points at infinity ($\# \widetilde{C} \backslash C \geq 3$)
then the set of integral points $C\left(\mathcal{O}_{k, S}\right)$ is finite (for any S).
- The hypothesis that $\# \widetilde{C} \backslash C \geq 3$ when C is rational is necessary.

An example

- Consider the rational affine curve C defined by

$$
x^{2}-3 y^{2}=1 .
$$

- We have $C \subset \tilde{C}$, where \tilde{C} is the projective plane curve $\widetilde{C}: x^{2}-3 y^{2}=z^{2}$.
- The points at infinity $\tilde{C} \backslash C$ correspond to the points on \widetilde{C} with $z=0$. There are two such points $[x: y: z]=[\pm \sqrt{3}: 1: 0]$.
- So Siegel's theorem does not apply.
- C does in fact have infinitely many \mathbb{Z}-integral points. C is defined by a so-called Pell equation. If $n \in \mathbb{N}$,

$$
x+\sqrt{3} y=(2+\sqrt{3})^{n}
$$

then (x, y) will be an integral point on C.

Effectivity

- Faltings' theorem and Siegel's theorem both have one major defect: all of the known proofs of these theorems are ineffective.
- No known algorithm which, in general, can provably find the finitely many points in either theorem
- This would typically be done by bounding the height of the points.
- For curves with certain special properties there do exist effective techniques for finding the finitely many rational/integral points.

Linear Forms in Logarithms

Baker's theorem

- By far, the most powerful and widely used effective technique for integral points comes from Baker's theory of linear forms in logarithms.

Theorem (Baker)

Let $\alpha_{1}, \ldots, \alpha_{m}$ be nonzero algebraic numbers, b_{1}, \ldots, b_{m} integers, and $\epsilon>0$. Suppose that

$$
0<\left|b_{1} \log \alpha_{1}+\cdots+b_{m} \log \alpha_{m}\right|<e^{-\epsilon B}
$$

where $B=\max \left\{\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right\}$. Then $B \leq B_{0}$, where B_{0} is an effectively computable constant depending on $\alpha_{1}, \ldots, \alpha_{m}, \epsilon$.

- In fact, one can replace $e^{-\epsilon B}$ on the right-hand side by B^{-C} for some effective constant C.

Alternative formulations

- An alternative formulation avoiding logarithms and with arbitrary absolute values (van der Poorten, Yu) is the following:

Theorem

Let $\alpha_{1}, \ldots, \alpha_{m}$ be algebraic numbers, b_{1}, \ldots, b_{m} integers, and $\epsilon>0$. Let v be a place of k. Suppose that

$$
0<\left|\alpha_{1}^{b_{1}} \cdots \alpha_{m}^{b_{m}}-1\right|_{v}<e^{-\epsilon B}
$$

where $B=\max \left\{\left|b_{1}\right|, \ldots,\left|b_{m}\right|\right\}$. Then $B \leq B_{0}$, where B_{0} is an effectively computable constant depending on $\alpha_{1}, \ldots, \alpha_{m}, \boldsymbol{v}, \epsilon$.

Heights

- Denote the absolute logarithmic height by $h(x)$.
- Recall that for a rational number $\frac{a}{b} \in \mathbb{Q},(a, b)=1$, the height is given by

$$
h\left(\frac{a}{b}\right)=\log \max \{|a|,|b|\}
$$

- We can also define local heights. For k a number field, $\alpha \in k$, and v a place of k, define the local height (or local Weil function) with respect to α by

$$
h_{\alpha, v}(x)=\frac{\left[k_{v}: \mathbb{Q}_{v}\right]}{[k: \mathbb{Q}]} \log \frac{\max \left\{|x|_{v}, 1\right\}}{|x-\alpha|_{v}}, \quad \forall x \in k, x \neq \alpha
$$

- This measures how v-adically close x is to α (being large when x is close to α).

Height formulation

- In terms of heights, we can reformulate Baker's theorem as

Theorem

Let k be a number field, S a finite set of places of k containing the archimedean places, $v \in S, \alpha \in k^{*}$, and $\epsilon>0$. Then there exists an effective constant C such that

$$
h_{\alpha, v}(x) \leq \epsilon h(x)+C
$$

for all $x \in \mathcal{O}_{k, S}^{*}, x \neq \alpha$.

Applications to curves

- Baker's method allows one to effectively solve, for instance, the following:
- The S-unit equation: for fixed $a, b, c \in k^{*}$,

$$
a u+b v=c, \quad u, v \in \mathcal{O}_{k, s}^{*}
$$

- The Thue-Mahler equation:

$$
F(x, y) \in \mathcal{O}_{k, s}^{*}, \quad x, y \in \mathcal{O}_{k, s},
$$

where $F(x, y) \in k[x, y]$ is a binary form such that $F(x, 1)$ has at least 3 distinct roots in \bar{k}.

- The hyperelliptic equation:

$$
y^{2}=f(x), \quad x, y \in \mathcal{O}_{k, s}
$$

where $f(x) \in k[x]$ has no repeated roots and degree ≥ 3.

- All of these equations correspond to integral points on certain curves (e.g., the unit equation corresponds to integral points on \mathbb{P}^{1} minus three points).

Effective Results in Higher Dimensions

The general unit equation

- The (two-variable) unit equation can be generalized to sums of more units:

Theorem (Evertse, van der Poorten and Schlickewei)

All but finitely many solutions of the equation

$$
a_{0} u_{0}+a_{1} u_{1}+\ldots+a_{n} u_{n}=a_{n+1} \quad \text { in } u_{0}, \ldots, u_{n} \in \mathcal{O}_{k, s}^{*}
$$

where $a_{0}, \ldots, a_{n+1} \in k^{*}$, satisfy an equation of the form
$\sum_{i \in I} a_{i} u_{i}=0$, where $I \subset\{0, \ldots, n\}$.

- Solutions to this equation yield integral points on \mathbb{P}^{n} minus $n+2$ hyperplanes in general position (the coordinate hyperplanes and the hyperplane $a_{0} x_{0}+\cdots+a_{n} x_{n}=0$).
- For $n \geq 2$, the proofs of the theorem aren't effective.
- There is a bound for the number of nondegenerate solutions, however, and this bound depends only on $|S|$ and n !

Vojta's Theorem

- In his thesis, Vojta proved:

Theorem (Vojta)

Let k be a number field and S a finite set of places of k containing the archimedean places. Suppose that $|S| \leq 3$. Let $a_{1}, a_{2}, a_{3}, a_{4} \in k^{*}$. Then there exists an effectively computable constant C such that every solution to

$$
a_{1} u_{1}+a_{2} u_{2}+a_{3} u_{3}=a_{4}, \quad u_{1}, u_{2}, u_{3} \in \mathcal{O}_{k, S}^{*}
$$

with $a_{i} u_{i}+a_{j} u_{j} \neq 0,1 \leq i<j \leq 3$, satisfies $h\left(u_{i}\right) \leq C$, $i=1,2,3$.

- If $p, q \in \mathbb{Z}$ are fixed primes, an example $(k=\mathbb{Q}, S=\{\infty, p, q\})$ of such an equation is

$$
p^{x} q^{y}-p^{z}-q^{w}=1, \quad w, x, y, z \in \mathbb{Z}
$$

The projective plane

- Versions of this result were subsequently rediscovered by Skinner and by Mo and Tijdeman.
- Geometrically: S-integral points on $\mathbb{P}^{2} \backslash 4$ lines in general position, $|S|<4$. Here is a generalization:

Theorem (L.)

Let C_{1}, \ldots, C_{r} be distinct curves in \mathbb{P}^{2}, defined over a number field k. Let S a finite set of places of k containing the archimedean places. Suppose that
(1) For any point $P \in \mathbb{P}^{2}(\bar{k})$ there are at least two curves C_{i}, C_{j}, not containing P.
(2) $|S|<r$.

Take an affine embedding of $X=\mathbb{P}^{2} \backslash \cup_{i=1}^{r} C_{i}$ in some \mathbb{A}^{N}. Then the set of S-integral points $X\left(\mathcal{O}_{k, S}\right) \subset \mathbb{A}^{N}\left(\mathcal{O}_{k, S}\right)$ is contained in an effectively computable finite union of curves in \mathbb{P}^{2}.

Higher Dimensions

Theorem (L.)

Let D_{1}, \ldots, D_{r} be distinct hypersurfaces in \mathbb{P}^{n}, defined over a number field k. Let m be a positive integer. Suppose that
(1) The intersection of any m distinct hypersurfaces D_{i} consists of a finite number of points.
(2) For any point $P \in \mathbb{P}^{n}(\bar{k})$ there are at least two hypersurfaces D_{i}, D_{j}, not containing P.
(3) $(m-1)|S|<r$.

Take an affine embedding of $X=\mathbb{P}^{n} \backslash \cup_{i=1}^{r} D_{i}$ in some \mathbb{A}^{N}. Then the set of S-integral points $X\left(\mathcal{O}_{k, s}\right) \subset \mathbb{A}^{N}\left(\mathcal{O}_{k, s}\right)$ is contained in an effectively computable proper closed subset of X.

- More generally: effective result for integral points on $V \backslash \cup \operatorname{Supp} D_{i}$, where V is a projective variety and the D_{i} are effective divisors that have linearly equivalent multiples.

An application

Corollary

Let $f \in k[x, y]$ be a polynomial of degree d such that $f(0,0) \neq 0$ and x^{d} and y^{d} appear nontrivially in f. Let S be a finite set of places of k containing the archimedean places with $|S| \leq 3$. Then the set of solutions to

$$
f(u, v)=w, \quad u, v, w \in \mathcal{O}_{k, s}^{*}
$$

can be effectively determined.

- This corresponds to applying the theorem to three lines in $\mathbb{P}^{2}(x=0, y=0, z=0)$ and the curve defined by $f(x, y)=0$. The conditions on $f(x, y)$ are equivalent to a general position assumption on the lines and the curve.
- Taking linear functions of the form $f(x, y)=a_{1} x+a_{2} y+a_{3}$, $a_{1}, a_{2}, a_{3} \in k^{*}$, yields Vojta's effective unit theorem.

Another application

Corollary

Let S be a finite set of places of a number field k containing the archimedean places with $|S| \leq 3$. Let $a, b, c, d \in k^{*}$. Then the set of solutions to

$$
a u v+b u+c v+d=w, \quad u, v, w \in \mathcal{O}_{k, s}^{*}
$$

with $u \notin\left\{-\frac{d}{b},-\frac{c}{a}\right\}, v \notin\left\{-\frac{d}{c},-\frac{b}{a}\right\}$, is finite and effectively computable.

- This case wasn't covered by the last corollary. For this, one looks at integral points on

$$
\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash\left\{x_{1} x_{2} y_{1} y_{2}\left(a x_{1} x_{2}+b x_{1} y_{2}+c y_{1} x_{2}+d y_{1} y_{2}\right)=0\right\}
$$

where the coordinates are $\left(x_{1}, y_{1}\right) \times\left(x_{2}, y_{2}\right)$.

Runge's method

Runge's method

- An old (1887) result of Runge proves the effective finiteness of the set of integral points on certain affine curves.
- Here's a modern formulation:

Theorem

Let k be a number field and S a set of places of k containing the archimedean places. Let $C \subset \mathbb{A}^{n}$ be an affine curve over k and \tilde{C} a projective closure of C. Suppose that $\tilde{C} \backslash C$ contains r irreducible components over k. If $|S|<r$ then $C\left(\mathcal{O}_{k, s}\right)$ is finite and effectively computable.

- Remarkably, Bombieri showed that one could prove a uniform version of Runge's theorem, allowing the number field k and set of places S to vary: $\cup_{k,|S|<r} C\left(\mathcal{O}_{k, S}\right)$ is finite.

Runge's method in higher dimensions

- Generalized to higher dimensions appropriately, Runge's method gives:

Theorem (L.)

Let \tilde{X} be a nonsingular projective variety and $D=\sum_{i=1}^{r} D_{i}$ a sum of ample effective divisors on X defined over k. Let m be a positive integer and S a finite set of places of k containing the archimedean places. Suppose that
(1) The intersection of the supports of any $m+1$ distinct divisors D_{i} is empty.
(2) $m|S|<r$

If $X=\widetilde{X} \backslash D \subset \mathbb{A}^{n}$ then the set of integral points $X\left(\mathcal{O}_{k, s}\right)$ is finite and effectively computable.

Comparison with Runge's method

- A quick comparison of the higher-dimensional Runge theorem with higher-dimensional results based on Baker's theorem.
- Runge's method:
- No linear equivalence requirement.
- Effective bounds much smaller.
- Result is actually uniform in $|S|$ (finiteness even as S and k vary, subject to the key inequality $m|S|<r$).
- Our main theorem:
- Weak intersection condition (especially on surfaces).
- Needed inequality on $|S|$ is superior.

Proofs

Result on the projective plane

Theorem

Let C_{1}, \ldots, C_{r} be distinct curves in \mathbb{P}^{2}, defined over a number field k. Let S a finite set of places of k containing the archimedean places. Suppose that
(1) For any point $P \in \mathbb{P}^{2}(\bar{k})$ there are at least two curves C_{i}, C_{j}, not containing P.
(2) $|S|<r$.

Take an affine embedding of $X=\mathbb{P}^{2} \backslash \cup_{i=1}^{r} C_{i}$ in some \mathbb{A}^{N}. Then the set of S-integral points $X\left(\mathcal{O}_{k, S}\right) \subset \mathbb{A}^{N}\left(\mathcal{O}_{k, S}\right)$ is contained in an effectively computable finite union of curves in \mathbb{P}^{2}.

Using the pigeonhole principle

- Throughout, the implicit constant in $O(1)$ will always be an effective constant.

Proof.

Let $d_{i}=\operatorname{deg} C_{i}$. We have

$$
\sum_{v \in S} h_{C_{i}, v}(P)=d_{i} h(P)+O(1), \quad i=1, \ldots, r
$$

for all $P \in X\left(\mathcal{O}_{k, S}\right)$, where $h_{C_{i}, v}$ is a local Weil function for C. Let $P \in X\left(\mathcal{O}_{k, S}\right)$. Then for each i, there exists a place $v \in S$ such that $h_{C_{i}, v}(P) \geq \frac{1}{|S|} h(P)+O(1)$. Since $|S|<r$, there exists a place $v \in S$ and distinct elements $i, j \in\{1, \ldots, r\}$ such that

$$
\min \left\{h_{C_{i}, v}(P), h_{C_{j}, v}(P)\right\} \geq \frac{1}{|S|} h(P)+O(1)
$$

A Lemma

- The theorem is then a consequence of the following lemma.

Lemma

Let k be a number field and let $C_{1}, \ldots, C_{r} \subset \mathbb{P}^{2}, r \geq 4$, be distinct curves over k such that at most $r-2$ of the curves C_{i} intersect at any point of $\mathbb{P}^{2}(\bar{k})$. Let S be a finite set of places of k containing the archimedean places. Let $\epsilon>0$,
$i, j \in\{1, \ldots, r\}, i \neq j$, and $v \in S$. Let $X=\mathbb{P}^{2} \backslash \cup_{i=1}^{r} C_{i} \subset \mathbb{A}^{n}$.
Then the set of points

$$
\left\{P \in X\left(\mathcal{O}_{k, s}\right) \mid \min \left\{h_{C_{i}, V}(P), h_{C_{j}, v}(P)\right\}>\epsilon h(P)\right\}
$$

is effectively computable.

Local heights associated to closed subschemes

- Local heights associated to closed subschemes (Silverman):
- Let Y and Z be closed subschemes of a projective variety X.
- To Y and Z we can associate local heights $h_{Y, v}, h_{Z, v}$, $v \in M_{k}$, such that (up to $O(1)$):
- If Y and Z are (Cartier) divisors on X then the local heights are the usual ones.
- We have the following properties:

$$
\begin{aligned}
h_{Y \cap Z, v} & =\min \left\{h_{Y, v}, h_{Z, v}\right\} \\
h_{Y+Z, v} & =h_{Y, v}+h_{Z, v} \\
h_{Y, v} & \leq h_{Z, v}, \quad \text { if } Y \subset Z .
\end{aligned}
$$

- If $\phi: W \rightarrow X$ is a morphism, $Y \subset X$, then

$$
h_{Y, v}(\phi(P))=h_{\phi^{*} Y, v}(P), \quad \forall P \in W(k) .
$$

Proof of the Lemma

Proof of the lemma.

By extending k and enlarging S, we easily reduce to the case where every point in $C_{i} \cap C_{j}$ is k-rational.
We have

$$
\min \left\{h_{C_{i}, V}(P), h_{C_{j}, V}(P)\right\}=h_{C_{i} \cap C_{j}, v}(P)
$$

Let N be an integer such that $C_{i} \cap C_{j} \subset N \operatorname{Supp}\left(C_{i} \cap C_{j}\right)$. Then

$$
\begin{aligned}
h_{C_{i} \cap C_{j}, v}(P) & \leq h_{N \operatorname{Supp}\left(C_{i} \cap C_{j}\right), v}(P)+O(1) \\
& \leq N \sum_{Q \in\left(C_{i} \cap C_{j}\right)(k)} h_{Q, v}(P)+O(1)
\end{aligned}
$$

for all $P \in \mathbb{P}^{2}(k) \backslash\left(C_{i} \cap C_{j}\right)$.

- The proof is completed using another lemma.

Lemma

Let $Q \in\left(C_{i} \cap C_{j}\right)(k)$. Let $\epsilon^{\prime}>0$. Then

$$
h_{Q, v}(P)<\epsilon^{\prime} h(P)+O(1)
$$

for all $P \in X\left(\mathcal{O}_{k, s}\right) \backslash Z_{Q}$, where Z_{Q} is some effectively computable proper closed subset of \mathbb{P}^{2}.

- Assuming the lemma, we proceed as follows:

Proof.

Summing over all points Q in $C_{i} \cap C_{j}$, we obtain
$\min \left\{h_{C_{i}, v}(P), h_{C_{j}, v}(P)\right\} \leq N \sum_{Q \in\left(C_{i} \cap C_{j}\right)} h_{Q, v}(P)+O(1)<\frac{\epsilon}{2} h(P)+C$
for all $P \in X\left(\mathcal{O}_{k, S}\right) \backslash Z$, where $Z=\cup_{Q \in\left(C_{i} \cap C_{j}\right)(k)} Z_{Q}$ and C is an effectively computable constant. So if $P \in X\left(\mathcal{O}_{k, s}\right) \backslash Z$ satisfies

$$
\min \left\{h_{C_{i}, v}(P), h_{C_{j}, v}(P)\right\}>\epsilon h(P)
$$

then $h(P)<\frac{2}{\epsilon} C$. It follows that we have

$$
\begin{aligned}
& \left\{P \in X\left(\mathcal{O}_{k, S}\right) \mid \min \left\{h_{C_{i}, v}(P), h_{C_{j}, v}(P)>\epsilon h(P)\right\}\right. \\
& \subset Z \cup\left\{P \in \mathbb{P}^{2}(k) \left\lvert\, h(P)<\frac{2}{\epsilon} C\right.\right\},
\end{aligned}
$$

and the latter set yields a proper closed subset of X.

Proof of the final lemma.

Let $Q \in\left(C_{i} \cap C_{j}\right)(k)$. Then there exists $I, m \in\{1, \ldots, r\}$ such that $Q \notin C_{l} \cup C_{m}$. If C_{l} is defined by $f_{l} \in k[x, y]$ and C_{m} by $f_{m} \in k[x, y]$, let $\phi=\frac{f_{l}^{d_{m}}}{f_{m}^{d_{m}}}$. So $\operatorname{div}(\phi)=d_{m} C_{l}-d_{l} C_{m}$. Let $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$ also denote the associated rational map. Let $R=\phi(Q)$. Since ϕ has its zeros and poles in $C_{l} \cup C_{m}$, without loss of generality, after enlarging S we can assume that $\phi(P) \in \mathcal{O}_{k, S}^{*}$ for all $P \in X\left(\mathcal{O}_{k, S}\right)$. Now by Baker's theorem (1st inequality) and properties of heights (note: This isn't technically correct; we should really work on a blow-up of \mathbb{P}^{2} so that ϕ lifts to a morphism, but nothing really essential changes below).

$$
\begin{aligned}
h_{R, v}(\phi(P)) & <\epsilon h(\phi(P))+O(1), \quad \forall P \in X\left(\mathcal{O}_{k, S}\right), \phi(P) \neq R \\
h_{\phi^{*} R, v}(P) & <\epsilon h_{\phi^{*} \infty}(P)+O(1), \quad \forall P \in X\left(\mathcal{O}_{k, S}\right), \phi(P) \neq R \\
h_{Q, v}(P) & <h_{\phi^{*} R, v}(P)+O(1), \quad \forall P \in X(k), \phi(P) \neq R, \\
\epsilon h_{\phi^{*} \infty}(P) & <d_{l} d_{m} \epsilon h(P)+O(1), \quad \forall P \in X(k) .
\end{aligned}
$$

End of proof

Proof.

Combining the above inequalities yields

$$
h_{Q, v}(P)<\epsilon h(P)+O(1)
$$

for all $P \in X\left(\mathcal{O}_{k, S}\right)$ with $\phi(P) \neq \phi(Q)$. So in fact Z_{Q} is just the closure of $\phi^{-1}(Q)$.

