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Laurent Polynomials

Let g = p? where pis a prime and ais a positive integer. Let
[F4 denote the field of g elements.

For a Laurent polynomial f € Fq[x{', ..., x3'] we may
represent f as:

J
f=> ax" a#0,

j=1

where each exponent V; = (v, ..., Vy) is a lattice point in
Z" and the power x is the product x, " - ... - x,".
Example

f(x, %) = 2 + 10xx3 + 82

lattice points = {(-1,0) , (1,2) , (0,0)}



Fp(A)

Let A(f) denote Newton polyhedron of £, that is, the convex
closure of the origin and { V4, ..., V,}, the integral
exponents of f.

Definition

Given a convex integral polytope A which contains the
origin, let Fg(A) be the space of functions generated by the
monomials in A with coefficients in the algebraic closure of
[Fq, a field of g elements.

In other words,

Fq(A) = {f € Fo[x{, ..., x| A(f) C A}



The polytope A

Example

Let A be the polytope
generated by f(x,y,z) =
1/z+ x5z + y°z.




The polytope A

Example

(1,0,5)

(1,4,1)

(1,5,0)

'(‘71‘,0‘,0)

It is also the convex
closure of the lattice
points (including interior
points).



The polytope A

We can correspond
each lattice point to a
monomial in n variables
(including interior
points).



The polytope A

Fp(A) is space of
functions the generated
by these monomials
(including interior
points).



Mq(A)

Definition

The Laurent polynomial f is called non-degenerate if for
each closed face ¢ of A(f) of arbitrary dimension which
does not contain the origin, the n partial derivatives

o ok
oxy’ 7 Oxp

have no common zeros with xq - - - X, # 0 over the algebraic
closure of [Fg.

Definition
Let My(A) be the functions in Fq(A) that are
non-degenerate.



Definition of the L-function

Let f € Fg[xi', ..., xi']. Let ¢, be a p-th root of unity and
g = p?. For each positive integer k, consider the
exponential sum:

S;(f) — Z Cprkf(X1 ..... Xn)'

The behavior of S;(f) as k increases is difficult to
understand.



L-function

To better understand S;(f) we define the L-function as
follows:

Fq, F e, F g,
Sith), S, .. Si(f),
Si(HT+ S;(H>+ ...+ Sif) e+

Tk
L*(f, T) = exp (Zsk k)

k=1

By a theorem of Dwork-Bombieri-Grothendieck L(f, T) is a
rational function.



NP(f)

Adolphson and Sperber showed that if f is non-degenerate
Le(F, T) ZA )T, Ai(f) € Z[G]

is a polynomial of degree n!Vol(A).

Definition

Define the Newton polygon of f, denoted NP(f) to be the
lower convex closure in R? of the points

(k,ordgAx(£)), k = 0,1,.... nVoI(A).



Example

Forp=qg =3 and

f= )2—1 + X1X2 + X1 X2.
One can computed directly:

L(f, T =

—27T*

(4,3)

_|_

073

(3,00)

1872 + 8T + 1

(2,2) (1,0) (0,0)



The Hodge Polygon

There exists a combinatorial lower bound to the Newton
polygon called the Hodge polygon HP(A). This is
constructed using the cone generated by A consisting of all

rays passing through nonzero points of A emanating from
the origin.

Example




Main Question

Definition

When NP(f) = HP(A) we say f is ordinary.

Generic Newton Polygon

Let GNP(A,p) = inffEMp(A) NP(f)

Adophson and Sperber showed that GNP(A, p) > HP(A)
for every p.




Generic Ordinarity

Main Question

When is GNP(A, p) = HP(A)?

If GNP(A, p) = HP(A) we say A is generically ordinary at
p.

Adolphson and Sperber conjectured that if p = 1 (mod D(A)) the
Mp(A) is generically ordinary.

Wan showed that this is not quite true, but if we replace D(A)
with an effectively computable D*(A) this is true.

Wan’s Conjecture

lim GNP(A, p) = HP(A)

p—>00



Example of Ordinarity

Recall for p= g =3 and f = - + x;x§ + x1 x5, the Newton
polygon of L(f, T)(=D""" = _27T4 4+ 1872+ 8T + 1.




Example

e The Newton polygon A(f) the polytope spanned by the
origin, (—-1,0,0), (1,2,0) and (1,0, 2).

e HP(A(f)) is the lower convex hull of the points
(0,0),(1,0) and (4, 3) which is identical to NP(f).

e From this we see that the Newton Polygon is equal to
the Hodge polygon. Hence f is ordinary.




In 2002 Zhu showed that Wan’s Conjecture holds for
the one variable case.

This was done by considering a specific family x? + ax.

Through direct computation she found the Generic
Newton Polygon to be the lower convex hull of the

points
n(n+1)
(0, =5g— +en)
Where
lim e, =0
p—0o0

The Hodge polygon can be shown to be the lower
convex hull of the points:

n(n+1)
(n. 555)




In 2004 Regis Blache showed that Wan’s Conjecture
holds for families of the form:

d di—1
ad11x1‘—|—ad1_11x1‘ + ...+ aot

d—1

ad.
+ad22x22 + ad,—12X5 + ...+ ao2

+ag,n X" + ag, 10XV + .+ ag,

These are families of polynomials with no cross terms
like X1Xo2.

This was accomplished primarily by ‘factoring’ the
Newton Polygon by variable. That is, he reduced this
special multivariable case into the single variable case.

He also addressed ‘rectangular’ families such as those
generated by the polytope (0, 0), (d4,0), (0, db), (d1, db).



Last year Liu tackled these two specific families:
3 3 2 1 1
a3,0)X7 +8(0,3)X; + a1,2)X1 X5 + a2 1)XeXo + a(1,1)X1 X2

+ao)X; + +a02)X5 + a(1.0% + &0.1)% + 2(0.0)

and
3 1 2 2
a(3,0)X{ + an,1)X1 X2 + ap0)Xy + +3a(00,2)X2 + ae1,0)X1

+3(0,1)X2 + 8(0,0)

This is an isosceles right triangle with leg length 3, and
a leg length 2 isosceles right triangle with an additional
point at (3, 0).

This was done in an entirely brute force method,
computing the Newton Polygon speficially for these two
families and showing that they tend toward the Hodge
Polygon as p tends to infinity:



For the family:
3 3 2 1 1
ai3,0)X1 T 8(0,3)X2 + A(1,2)X1 X2 + 82,1)X2Xo + A(1,1)X1X2

+a(270)X12 + +a(072)x22 + ap1,00X1 + @(0,1)X2 + &(0,0)

For p > 9 and p = 2 (mod 3) the generic Newton Polygon is
found to be:

(0.0).(1.0).(3. 525, (5:2). (6. 35—,
(8. 14p — 13),(9,6)

3(p—1)




For the family:
a(3.0)% + a(1,1)X1% + ae0)XF + +a0,2)%5 + a(1,0)X1

+a(0,1 )X2 + (0,0

For p > 18 and p = 2 (mod 3) the generic Newton Polygon
is found to be:

p+1 5p—1 3p—1
(070)7(170)7(27 m)a(Bv G(p— 1))7(47 2(p_ 1))7
7p—2 7
(Svm)v(67§)




A Decomposition of the
Polytope

Wan and Le showed that certain decompositions will also
decompose ordinarity.




Facial Decomposition

Let {o4,...,0n} be the set of faces of A that do not contain
the origin.

Theorem (Facial Decomposition Theorem)

Let f be non-degenerate and let A(f) be n-dimensional.
Then f is ordinary if and only if each f,, is ordinary.
Equivalently, f is non-ordinary if and only if if some f, is
non-ordinary.

Using the facial decomposition theorem we may assume
that A(f) is generated by a single codimension 1 face not
containing the origin.

This allows us to concentrate on methods to decompose the
individual faces of A.




Coherent Decomposition

Let 6 be a face of A not containing the origin.

Definition
A coherent decomposition of ¢ is a decomposition T into
polytopes d1, . .., 0p such that there is a piecewise linear function

¢ : 6 — R such that
@ ¢ isconcaveie. ¢(tx + (1 — H)x') > top(x) + (1 — H)p(xX'),
forall x,x’ € 6,0 <t <1.
@® The domains of linearity of ¢ are precisely the n-dimensional
simplices 0; for 1 </ < m.

Coherent decompositions are sometimes called concave
decompositions.



Coherent Decomposition
Theorem

Let A be a polytope containing a unique face é away from
the origin. Let 6 = UJ; be a complete coherent
decomposition of 4. Let A; denoted the convex closure of §;
and the origin. Then A = UA,. We call this a coherent
decomposition of A.

Theorem (Coherent Decomposition (L-))

Suppose each lattice point of § is a vertex of 6; for some i. If
each fp, is generically non-degenerate and ordinary for
some prime p, then f is also generically non-degenerate
and ordinary for the same prime p.



Example
(1,0,5)

There are two faces away
from the origin. Using the
facial decomposition theorem

(1.5,0we can divide this into two
polytopes.




Example
(1,0,5)

Consider the polytope A’
with vertices
(0,0,0),(—1,0,0),(1,5,0)
and (1,0,5). Wan’s work has

(1.5.0shown that the back face is
ordinary for any prime so we
can ignore it.




Example
(1,0,5)

e

We can decompose the front
(41 face, which will decompose
@.5,0the entire polytope




Example
(1,0,5)

Forany f € My(A') if fis

ordinary when restricted to

each of these pieces, it is
50 .

ordinary on all of f.

(1.4,1)

—
[N




Example
(1,0,5)

One can show that
D(A’)=5and A’ is
generically ordinary when
(41 p=1(mod 5), that is,
(1.5.0Adolphson and Sperber’s
and Wan’s conjecture holds
in this case.

(-1,0,0)




The End
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