Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

On the state of Wan's Conjecture

Phong Le

Department of Mathematics Niagara University

April 2012 Upstate Number Theory Conference Rochester, NY

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < ○</p>

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

Laurent Polynomials

Let $q = p^a$ where *p* is a prime and *a* is a positive integer. Let \mathbb{F}_a denote the field of *q* elements.

For a Laurent polynomial $f \in \mathbb{F}_q[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$ we may represent f as:

$$f=\sum_{j=1}^J a_j x^{V_j}, a_j\neq 0,$$

where each exponent $V_j = (v_{1j}, ..., v_{nj})$ is a lattice point in \mathbb{Z}^n and the power x^{V_j} is the product $x_1^{V_{1j}} \cdot ... \cdot x_n^{V_{nj}}$.

Example

$$\begin{array}{rcl} f(x_1,x_2) & = & \frac{2}{x_1} & + & 10x_1x_2^2 & + & 82 \\ \text{lattice points} & = & \{(-1,0) & , & (1,2) & , & (0,0)\} \end{array}$$

$\mathbb{F}_{\rho}(\Delta)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Wan's Conjecture Phong Le

L Nov

Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems Let $\Delta(f)$ denote Newton polyhedron of f, that is, the convex closure of the origin and $\{V_1, \ldots, V_J\}$, the integral exponents of f.

Definition

Given a convex integral polytope Δ which contains the origin, let $\mathbb{F}_q(\Delta)$ be the space of functions generated by the monomials in Δ with coefficients in the algebraic closure of \mathbb{F}_q , a field of q elements.

In other words,

$$\mathbb{F}_q(\Delta) = \{f \in \mathbb{F}_q[x_1^{\pm 1}, \dots, x_n^{\pm 1}] \mid \Delta(f) \subseteq \Delta\}.$$

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

The polytope Δ

Let Δ be the polytope generated by $f(x, y, z) = 1/z + x^5z + y^5z$.

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

The polytope Δ

It is also the convex closure of the lattice points (including interior points).

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

The polytope Δ

We can correspond each lattice point to a monomial in *n* variables (including interior points).

イロト イロト イヨト イヨト 三日

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

The polytope Δ

 $\mathbb{F}_{p}(\Delta)$ is space of functions the generated by these monomials (including interior points).

イロト イポト イヨト イヨト ニヨー

Conjectur Phong Le

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

Definition

The Laurent polynomial *f* is called non-degenerate if for each closed face δ of $\Delta(f)$ of arbitrary dimension which does not contain the origin, the *n* partial derivatives

$$\{\frac{\partial f_{\delta}}{\partial x_1},\ldots,\frac{\partial f_{\delta}}{\partial x_n}\}$$

have no common zeros with $x_1 \cdots x_n \neq 0$ over the algebraic closure of \mathbb{F}_q .

Definition

Let $M_q(\Delta)$ be the functions in $\mathbb{F}_q(\Delta)$ that are non-degenerate.

$M_q(\Delta)$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

e

Definition of the L-function

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems Let $f \in \mathbb{F}_q[x_1^{\pm 1}, \ldots, x_n^{\pm 1}]$. Let ζ_p be a *p*-th root of unity and $q = p^a$. For each positive integer *k*, consider the exponential sum:

$$S_k^*(f) = \sum_{(x_1,\ldots,x_n)\in\mathbb{F}_{q^k}^*} \zeta_p^{T_kf(x_1,\ldots,x_n)}$$

The behavior of $S_k^*(f)$ as *k* increases is difficult to understand.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

L-function

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Newton Polygon of

Ordinarity

Decomposition Theorems To better understand $S_k^*(f)$ we define the *L*-function as follows:

By a theorem of Dwork-Bombieri-Grothendieck L(f, T) is a rational function.

NP(f)

 \triangle

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems Adolphson and Sperber showed that if f is non-degenerate

$$L^*(f,T)^{(-1)^{n-1}} = \sum_{i=0}^{\infty} A_i(f)T^i, \quad A_i(f) \in \mathbb{Z}[\zeta_p]$$

is a polynomial of degree $n! Vol(\Delta)$.

Definition

Define the Newton polygon of *f*, denoted NP(f) to be the lower convex closure in \mathbb{R}^2 of the points

$$(k, \operatorname{ord}_q A_k(f)), k = 0, 1, \ldots, n! \operatorname{Vol}(\Delta)$$

Phong Le

 \triangle

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

・ロト・西ト・ヨト・ヨト・日下 ひゃつ

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decompositior Theorems

The Hodge Polygon

There exists a combinatorial lower bound to the Newton polygon called the Hodge polygon $HP(\Delta)$. This is constructed using the cone generated by Δ consisting of all rays passing through nonzero points of Δ emanating from the origin.

Example

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Main Question

Definition

When $NP(f) = HP(\Delta)$ we say *f* is **ordinary**.

Generic Newton Polygon

Let $GNP(\Delta, p) = \inf_{f \in M_p(\Delta)} NP(f)$.

Adophson and Sperber showed that $GNP(\Delta, p) \ge HP(\Delta)$ for every p.

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

Generic Ordinarity

Main Question

When is $GNP(\Delta, p) = HP(\Delta)$?

If $GNP(\Delta, p) = HP(\Delta)$ we say Δ is generically ordinary at p.

Adolphson and Sperber conjectured that if $p \equiv 1 \pmod{D(\Delta)}$ the $M_p(\Delta)$ is generically ordinary.

Wan showed that this is not quite true, but if we replace $D(\Delta)$ with an effectively computable $D^*(\Delta)$ this is true.

Wan's Conjecture

 $\lim_{\rho \to \infty} \textit{GNP}(\Delta, p) = \textit{HP}(\Delta)$

シック・ 川 ・ 小川・ 小川・ 小口・

Δ

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

Example of Ordinarity

Recall for p = q = 3 and $f = \frac{1}{x_1} + x_1 x_2^2 + x_1 x_3^2$, the Newton polygon of $L(f, T)^{(-1)^{(n-1)}} = -27T^4 + 18T^2 + 8T + 1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

- The Newton polygon Δ(*f*) the polytope spanned by the origin, (−1,0,0), (1,2,0) and (1,0,2).
- HP(Δ(f)) is the lower convex hull of the points (0,0), (1,0) and (4,3) which is identical to NP(f).
- From this we see that the Newton Polygon is equal to the Hodge polygon. Hence *f* is ordinary.

- Δ
- Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

- In 2002 Zhu showed that Wan's Conjecture holds for the one variable case.
- This was done by considering a specific family $x^d + ax$.
- Through direct computation she found the Generic Newton Polygon to be the lower convex hull of the points

$$(n,\frac{n(n+1)}{2d}+\epsilon_n)$$

Where

$$\lim_{n\to\infty}\epsilon_n=0$$

• The Hodge polygon can be shown to be the lower convex hull of the points:

$$(n,\frac{n(n+1)}{2d})$$

<ロト < 団 > < 三 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- \triangle
- Newton Polygon of
- $HP(\Delta)$
- Ordinarity
- Decomposition Theorems

 In 2004 Regis Blache showed that Wan's Conjecture holds for families of the form:

$$a_{d_11}x_1^{d_1} + a_{d_1-11}x_1^{d_1-1} + \ldots + a_{01}$$

 $+a_{d_22}x_2^{d_2}+a_{d_2-12}x_2^{d_2-1}+\ldots+a_{02}$

$$+a_{d_nn}x_n^{d_n}+a_{d_n-1n}x_n^{d_n-1}+\ldots+a_{0n}$$

- These are families of polynomials with no cross terms like *x*₁*x*₂.
- This was accomplished primarily by 'factoring' the Newton Polygon by variable. That is, he reduced this special multivariable case into the single variable case.
- He also addressed 'rectangular' families such as those generated by the polytope (0,0), (d₁,0), (0, d₂), (d₁, d₂).

- Δ
- Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

ć

• Last year Liu tackled these two specific families:

$$\begin{aligned} a_{(3,0)}x_1^3 + a_{(0,3)}x_2^3 + a_{(1,2)}x_1x_2^2 + a_{(2,1)}x_2x_2^1 + a_{(1,1)}x_1x_2^1 \\ &+ a_{(2,0)}x_1^2 + a_{(0,2)}x_2^2 + a_{(1,0)}x_1 + a_{(0,1)}x_2 + a_{(0,0)} \\ \end{aligned}$$
 and

$$a_{(3,0)}x_1^3 + a_{(1,1)}x_1x_2^1 + a_{(2,0)}x_1^2 + a_{(0,2)}x_2^2 + a_{(1,0)}x_1$$

$$+a_{(0,1)}x_2+a_{(0,0)}$$

- This is an isosceles right triangle with leg length 3, and a leg length 2 isosceles right triangle with an additional point at (3,0).
- This was done in an entirely brute force method, computing the Newton Polygon speficially for these two families and showing that they tend toward the Hodge Polygon as *p* tends to infinity:

 Δ

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

$$a_{(3,0)}x_1^3 + a_{(0,3)}x_2^3 + a_{(1,2)}x_1x_2^2 + a_{(2,1)}x_2x_2^1 + a_{(1,1)}x_1x_2^1$$

$$+a_{(2,0)}x_1^2++a_{(0,2)}x_2^2+a_{(1,0)}x_1+a_{(0,1)}x_2+a_{(0,0)}$$

For p > 9 and $p \equiv 2 \pmod{3}$ the generic Newton Polygon is found to be:

$$(0,0), (1,0), (3, \frac{2p+2}{3(p-1)}, (5,2), (6, \frac{8p-7}{3(p-1)}),$$

 $(8, \frac{14p-13}{3(p-1)}), (9,6)$

 Δ

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

$$a_{(3,0)}x_1^3 + a_{(1,1)}x_1x_2^1 + a_{(2,0)}x_1^2 + a_{(0,2)}x_2^2 + a_{(1,0)}x_1$$

$$+a_{(0,1)}x_2+a_{(0,0)}$$

For p > 18 and $p \equiv 2 \pmod{3}$ the generic Newton Polygon is found to be:

$$(0,0), (1,0), (2, \frac{p+1}{3(p-1)}), (3, \frac{5p-1}{6(p-1)}), (4, \frac{3p-1}{2(p-1)}), (5, \frac{7p-2}{3(p-1)}), (6, \frac{7}{2})$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Decomposition of the Polytope

Newton Polygon of a

 $HP(\Delta)$

Ordinarity

Decomposition Theorems Wan and Le showed that certain decompositions will also decompose ordinarity.

・ロト・西ト・ヨト・ヨト・日下 ひゃつ

Δ

L

Newton Polvaon o

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

Facial Decomposition

Let $\{\sigma_1, \ldots, \sigma_h\}$ be the set of faces of Δ that do not contain the origin.

Theorem (Facial Decomposition Theorem)

Let f be non-degenerate and let $\Delta(f)$ be n-dimensional. Then f is ordinary if and only if each f_{σ_i} is ordinary. Equivalently, f is non-ordinary if and only if if some f_{σ_i} is non-ordinary.

Using the facial decomposition theorem we may assume that $\Delta(f)$ is generated by a single codimension 1 face not containing the origin.

This allows us to concentrate on methods to decompose the individual faces of Δ .

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

Coherent Decomposition

Let δ be a face of Δ not containing the origin.

Definition

A **coherent** decomposition of δ is a decomposition T into polytopes $\delta_1, \ldots, \delta_h$ such that there is a piecewise linear function $\phi : \delta \mapsto \mathbb{R}$ such that

- ϕ is concave i.e. $\phi(tx + (1 t)x') \ge t\phi(x) + (1 t)\phi(x')$, for all $x, x' \in \delta, 0 \le t \le 1$.
- 2 The domains of linearity of ϕ are precisely the *n*-dimensional simplices δ_i for $1 \le i \le m$.

Coherent decompositions are sometimes called concave decompositions.

Coherent Decomposition Theorem

Polygon of a

 $HP(\Delta)$

Ordinarity

Decomposition Theorems Let Δ be a polytope containing a unique face δ away from the origin. Let $\delta = \bigcup \delta_i$ be a complete coherent decomposition of δ . Let Δ_i denoted the convex closure of δ_i and the origin. Then $\Delta = \bigcup \Delta_i$. We call this a coherent decomposition of Δ .

Theorem (Coherent Decomposition (L-))

Suppose each lattice point of δ is a vertex of δ_i for some *i*. If each f_{Δ_i} is generically non-degenerate and ordinary for some prime *p*, then *f* is also generically non-degenerate and ordinary for the same prime *p*.

Phong Le

Δ

L

Newton Polygon o

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

There are two faces away from the origin. Using the facial decomposition theorem (1,5,0)we can divide this into two polytopes.

< □ > < □ > < 三 > < 三 > < 三 > < 三 > < ○ < ○

Phong Le

Δ

L

Newton Polygon o

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

Consider the polytope Δ' with vertices (0,0,0), (-1,0,0), (1,5,0)and (1,0,5). Wan's work has (1,5,0)shown that the back face is ordinary for any prime so we can ignore it.

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○臣 - のへで

Phong Le

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

We can decompose the front ¹⁾ face, which will decompose (1,5,0)the entire polytope

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Phong Le

Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

(-1,0,0)

For any $f \in M_p(\Delta')$ if f is ordinary when restricted to each of these pieces, it is ordinary on all of f.

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Phong Le

 Δ

L

Newton Polygon of

 $HP(\Delta)$

Ordinarity

Decomposition Theorems

One can show that $D(\Delta') = 5$ and Δ' is generically ordinary when ¹⁾ $p \equiv 1 \pmod{5}$, that is, ^(1,5,0)Adolphson and Sperber's and Wan's conjecture holds in this case.

・ロト ・ 母 ト ・ ヨ ト ・ 目 ・ の へ ()・

The End

L Newto

 $HP(\Delta)$

Ordinarity

Decomposition Theorems