Zeros of Partial Sums of the Riemann Zeta-Function

S. M. Gonek (with A. H. Ledoan)

Department of Mathematics

University of Rochester

Upstate Number Theory Conference 2012

Zeros of $\sum_{n \leqslant x} n^{-s}$

Zeros of $\sum_{n<x} n^{-s}$

Let $s=\sigma+i t$ and $X \geq 2$.

Zeros of $\sum_{n<x} n^{-s}$

Let $s=\sigma+i t$ and $X \geq 2$.

Set $F_{X}(s)=\sum_{n \leq X} n^{-s}$.

Zeros of $\sum_{n<x} n^{-s}$

Let $s=\sigma+i t$ and $X \geq 2$.
Set $F_{X}(s)=\sum_{n \leq X} n^{-s}$.
How are the zeros of $F_{X}(s)$ distributed?

Zeros of $\sum_{n \leqslant x} n^{-s}$

Let $s=\sigma+i t$ and $X \geq 2$.
Set $F_{X}(s)=\sum_{n \leq X} n^{-s}$.
How are the zeros of $F_{X}(s)$ distributed?
This has been studied near $\sigma=1$ by:

Zeros of $\sum_{n<X} n^{-s}$

Let $s=\sigma+i t$ and $X \geq 2$.
Set $F_{X}(s)=\sum_{n \leq X} n^{-s}$.
How are the zeros of $F_{X}(s)$ distributed?
This has been studied near $\sigma=1$ by:
P. Turán, N. Levinson, S. M. Voronin, H. L. Montgomery, and
H. L. Montgomery \& R. C. Vaughan.

Zeros of $\sum_{n<x} n^{-s}$

Let $s=\sigma+i t$ and $X \geq 2$.
Set $F_{X}(s)=\sum_{n \leq X} n^{-s}$.
How are the zeros of $F_{X}(s)$ distributed?
This has been studied near $\sigma=1$ by:
P. Turán, N. Levinson, S. M. Voronin, H. L. Montgomery, and
H. L. Montgomery \& R. C. Vaughan.

What can we say about the zeros further to the left of $\sigma=1$?

Zeros of

Let $s=\sigma+i t$ and $X \geq 2$.
Set $F_{X}(s)=\sum_{n \leq X} n^{-s}$.
How are the zeros of $F_{X}(s)$ distributed?
This has been studied near $\sigma=1$ by:
P. Turán, N. Levinson, S. M. Voronin, H. L. Montgomery, and
H. L. Montgomery \& R. C. Vaughan.

What can we say about the zeros further to the left of $\sigma=1$?

There have been numerical studies by R. Spira and, more recently, P. Borwein et al..

Zeros of $F_{211}(s)$

Figure: Zeros of $F_{211}(s)$ from P. Borwein et al.

Notation

Notation

Let

$$
\rho_{X}=\beta_{X}+i \gamma_{X}
$$

denote a generic zero of $F_{X}(s)$,

Notation

Let

$$
\rho_{X}=\beta_{X}+i \gamma_{X}
$$

denote a generic zero of $F_{X}(s)$,

$$
N_{X}(T)=\sum_{0 \leq \gamma_{X} \leq T} 1
$$

Notation

Let

$$
\rho_{X}=\beta_{X}+i \gamma_{X}
$$

denote a generic zero of $F_{X}(s)$,

$$
\begin{gathered}
N_{X}(T)=\sum_{0 \leq \gamma_{X} \leq T} 1, \\
N_{X}(\sigma, T)=\sum_{\substack{0 \leq \gamma_{x} \leq T \\
\beta X \geq \sigma}} 1 .
\end{gathered}
$$

The Parameters X and T

The Parameters X and T

There are two natural ways to pose questions about the zeros of $F_{X}(T)$.

The Parameters X and T

There are two natural ways to pose questions about the zeros of $F_{X}(T)$. We can

The Parameters X and T

There are two natural ways to pose questions about the zeros of $F_{X}(T)$. We can

- fix an X and let $T \rightarrow \infty$,

The Parameters X and T

There are two natural ways to pose questions about the zeros of $F_{X}(T)$. We can

- fix an X and let $T \rightarrow \infty$, or
- let $X=f(T)$ with $f(T) \rightarrow \infty$ as $T \rightarrow \infty$.

The Parameters X and T

There are two natural ways to pose questions about the zeros of $F_{X}(T)$. We can

- fix an X and let $T \rightarrow \infty$, or
- let $X=f(T)$ with $f(T) \rightarrow \infty$ as $T \rightarrow \infty$.

Here we are mostly concerned with the latter.

Some Known Results

Some Known Results

- (C. E. Wilder, R. E. Langer, ..., P. Borwein et al.) The zeros of $F_{X}(s)$ lie in the strip $-X<\sigma<1.72865$.

Some Known Results

- (C. E. Wilder, R. E. Langer, ..., P. Borwein et al.) The zeros of $F_{X}(s)$ lie in the strip $-X<\sigma<1.72865$.
- (Montgomery) Let $0<c<4 / \pi-1$. If $X \geq X_{0}(c)$, then $F_{X}(s)$ has zeros in

$$
\sigma>1+\frac{c \log \log X}{\log X}
$$

Some Known Results

- (C. E. Wilder, R. E. Langer, ..., P. Borwein et al.) The zeros of $F_{X}(s)$ lie in the strip $-X<\sigma<1.72865$.
- (Montgomery) Let $0<c<4 / \pi-1$. If $X \geq X_{0}(c)$, then $F_{X}(s)$ has zeros in

$$
\sigma>1+\frac{c \log \log X}{\log X}
$$

- (Montgomery \& Vaughan) If X is sufficiently large, $F_{X}(s)$ has no zeros in

$$
\sigma \geq 1+\left(\frac{4}{\pi}-1\right) \frac{\log \log X}{\log X}
$$

Number of Zeros up to Height T

Number of Zeros up to Height T

Theorem

Number of Zeros up to Height T

Theorem

Let $X, T \geq 2$.

Number of Zeros up to Height T

Theorem

Let $X, T \geq 2$. Then

$$
\left|N_{X}(T)-\frac{T}{2 \pi} \log [X]\right|<\frac{X}{2}
$$

Number of Zeros up to Height T

Theorem

Let $X, T \geq 2$. Then

$$
\left|N_{X}(T)-\frac{T}{2 \pi} \log [X]\right|<\frac{X}{2}
$$

Here $[X]$ denotes the greatest integer less than or equal to X.

A Zero Density Estimate

A Zero Density Estimate

Theorem

A Zero Density Estimate

Theorem

Let $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T.

A Zero Density Estimate

Theorem

Let $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T. Then

$$
N_{X}(\sigma, T) \ll T X^{1-2 \sigma} \log ^{5} T
$$

uniformly for $1 / 2 \leq \sigma \leq 1$.

A Zero Density Estimate

Theorem

Let $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T. Then

$$
N_{X}(\sigma, T) \ll T X^{1-2 \sigma} \log ^{5} T
$$

uniformly for $1 / 2 \leq \sigma \leq 1$.
If $T^{1 / 2} \ll X=o(T)$, the X on the right-hand side is replaced by T / X.

A Zero Density Estimate

Theorem

Let $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T. Then

$$
N_{X}(\sigma, T) \ll T X^{1-2 \sigma} \log ^{5} T
$$

uniformly for $1 / 2 \leq \sigma \leq 1$.
If $T^{1 / 2} \ll X=O(T)$, the X on the right-hand side is replaced by T / X.

Idea of the proof: As for $\zeta(s)$: mollify $F_{X}(s)$ and apply Littlewood's lemma.

Ordinates of Zeros

Ordinates of Zeros

Corollary

Ordinates of Zeros

Corollary

Suppose that $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T.

Ordinates of Zeros

Corollary

Suppose that $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T. Then for any constant $C \geq 5 / 2$,

Ordinates of Zeros

Corollary

Suppose that $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T. Then for any constant $C \geq 5 / 2$,

$$
\beta_{X} \leq \frac{1}{2}+\frac{C \log \log T}{\log X}
$$

for almost all zeros of ρ_{X} with $0 \leq \gamma_{X} \leq T$.

Ordinates of Zeros

Corollary

Suppose that $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T. Then for any constant $C \geq 5 / 2$,

$$
\beta_{X} \leq \frac{1}{2}+\frac{C \log \log T}{\log X}
$$

for almost all zeros of ρ_{X} with $0 \leq \gamma_{X} \leq T$.
If $T^{1 / 2} \ll X=o(T)$, the X on the right-hand side is replaced by T / X.

A Conditional Result

A Conditional Result

Theorem

A Conditional Result

Theorem

Assume the Riemann Hypothesis and suppose that $9 \leq X \leq T^{2}$.

A Conditional Result

Theorem

Assume the Riemann Hypothesis and suppose that $9 \leq X \leq T^{2}$. Then there is an absolute constant $B>0$ such that for T sufficiently large

A Conditional Result

Theorem

Assume the Riemann Hypothesis and suppose that $9 \leq X \leq T^{2}$. Then there is an absolute constant $B>0$ such that for T sufficiently large

$$
\beta_{X} \leq \frac{1}{2}+\frac{B \log T}{\log X \log \log T}
$$

for all zeros of ρ_{X} with $X^{1 / 2} \leq \gamma_{X} \leq T$.

A Conditional Result

Theorem

Assume the Riemann Hypothesis and suppose that $9 \leq X \leq T^{2}$. Then there is an absolute constant $B>0$ such that for T sufficiently large

$$
\beta_{X} \leq \frac{1}{2}+\frac{B \log T}{\log X \log \log T}
$$

for all zeros of ρ_{X} with $X^{1 / 2} \leq \gamma_{X} \leq T$.

Idea of the proof: On RH

$$
\zeta(s)=F_{X}(s)+O\left(X^{1 / 2-\sigma} \exp \left(\frac{A \log t}{\log \log t}\right)\right)
$$

for $9 \leq X \leq t^{2}$, and $1 / 2 \leq \sigma \leq 2$.

A Sum Involving the Ordinates

A Sum Involving the Ordinates

Theorem

A Sum Involving the Ordinates

Theorem
Suppose that $X \ll T$ and $X \rightarrow \infty$.

A Sum Involving the Ordinates

Theorem
Suppose that $X \ll T$ and $X \rightarrow \infty$. Let $U \geq 2 X$.

A Sum Involving the Ordinates

Theorem
Suppose that $X \ll T$ and $X \rightarrow \infty$. Let $U \geq 2 X$. Then

$$
\sum_{0 \leq \gamma x \leq T}\left(\beta_{X}+U\right)=U \frac{T}{2 \pi} \log X+O(U X)+O(T) .
$$

A Sum Involving the Ordinates

Theorem

Suppose that $X \ll T$ and $X \rightarrow \infty$. Let $U \geq 2 X$. Then

$$
\sum_{0 \leq \gamma x \leq T}\left(\beta_{X}+U\right)=U \frac{T}{2 \pi} \log X+O(U X)+O(T)
$$

Idea of the proof: Apply Littlewood's lemma directly to $F_{X}(s)$ on a rectangle whose left edge is on $\Re s=-U$.

A Sum Involving the Ordinates

Theorem

Suppose that $X \ll T$ and $X \rightarrow \infty$. Let $U \geq 2 X$. Then

$$
\sum_{0 \leq \gamma x \leq T}\left(\beta_{X}+U\right)=U \frac{T}{2 \pi} \log X+O(U X)+O(T)
$$

Idea of the proof: Apply Littlewood's lemma directly to $F_{X}(s)$ on a rectangle whose left edge is on $\Re s=-U$.

$$
2 \pi \sum_{0 \leq \gamma x \leq T}\left(\beta_{X}+U\right)=\int_{0}^{T} \log \left|F_{X}(-U+i t)\right| d t+\cdots
$$

The Average of the Ordinates is 0

The Average of the Ordinates is 0

Corollary

The Average of the Ordinates is 0

Corollary
Suppose that $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T.

The Average of the Ordinates is 0

Corollary
Suppose that $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T. Then

$$
\frac{1}{N_{X}(T)} \sum_{0 \leq \gamma_{X} \leq T} \beta_{X} \ll \frac{1}{\log X} .
$$

The Average of the Ordinates is 0

Corollary

Suppose that $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T. Then

$$
\frac{1}{N_{X}(T)} \sum_{0 \leq \gamma_{X} \leq T} \beta_{X} \ll \frac{1}{\log X} .
$$

Idea of the proof: By the last theorem with $\mathrm{U}=2 X$,

$$
\sum_{0 \leq \gamma x \leq T}\left(\beta_{X}+2 X\right)=2 X \frac{T}{2 \pi} \log X+O(T) .
$$

The Average of the Ordinates is 0

Corollary

Suppose that $X \ll T^{1 / 2}$ and $X \rightarrow \infty$ with T. Then

$$
\frac{1}{N_{X}(T)} \sum_{0 \leq \gamma_{X} \leq T} \beta_{X} \ll \frac{1}{\log X} .
$$

Idea of the proof: By the last theorem with $\mathrm{U}=2 X$,

$$
\sum_{0 \leq \gamma x \leq T}\left(\beta_{X}+2 X\right)=2 X \frac{T}{2 \pi} \log X+O(T) .
$$

But

$$
\sum_{0 \leq \gamma x \leq T} 2 X=2 X \frac{T}{2 \pi} \log X+O(T) .
$$

Distance of Ordinates from a Line

Distance of Ordinates from a Line

Theorem

Distance of Ordinates from a Line

Theorem

Suppose that $X=o(T)$ and that $X \rightarrow \infty$ with T.

Distance of Ordinates from a Line

Theorem

Suppose that $X=o(T)$ and that $X \rightarrow \infty$ with T. Then uniformly for $\sigma<1 / 2$, we have

Distance of Ordinates from a Line

Theorem

Suppose that $X=o(T)$ and that $X \rightarrow \infty$ with T. Then uniformly for $\sigma<1 / 2$, we have

$$
\begin{aligned}
\sum_{\substack{0 \leq \gamma \leq T \\
\beta_{X}>\sigma}}\left(\beta_{X}-\sigma\right) & \leq(1 / 2-\sigma) \frac{T}{2 \pi} \log X-\frac{T}{4 \pi} \log (1 / 2-\sigma) \\
& +O((1+|\sigma|) X)+O(T)
\end{aligned}
$$

Distance of Ordinates from a Line

Theorem

Suppose that $X=o(T)$ and that $X \rightarrow \infty$ with T. Then uniformly for $\sigma<1 / 2$, we have

$$
\begin{aligned}
\sum_{\substack{0 \leq \gamma \leq T \\
\beta_{X}>\sigma}}\left(\beta_{X}-\sigma\right) & \leq(1 / 2-\sigma) \frac{T}{2 \pi} \log X-\frac{T}{4 \pi} \log (1 / 2-\sigma) \\
& +O((1+|\sigma|) X)+O(T)
\end{aligned}
$$

Idea of the proof: Apply Littlewood's lemma to $F_{X}(s)$.

Open Questions

Open Questions

- Why are there "tails" of zeros?

Open Questions

- Why are there "tails" of zeros?
- For $\sigma<1 / 2$ and bounded, is it true that

$$
\sum_{\substack{\leq \leq \gamma X \leq T \\ \beta_{X}>\sigma}}\left(\beta_{X}-\sigma\right) \sim(1 / 2-\sigma)(T / 2 \pi) \log X ?
$$

Open Questions

- Why are there "tails" of zeros?
- For $\sigma<1 / 2$ and bounded, is it true that

$$
\sum_{\substack{0 \leq \gamma x \leq T \\ \beta_{X}>\sigma}}\left(\beta_{X}-\sigma\right) \sim(1 / 2-\sigma)(T / 2 \pi) \log X ?
$$

- What proportion of the zeros of $F_{X}(s)$ have $\beta_{X} \geq 1 / 2$?

