## Zeros of Partial Sums of the Riemann Zeta-Function

S. M. Gonek (with A. H. Ledoan)

Department of Mathematics University of Rochester

Upstate Number Theory Conference 2012

▲□▶▲圖▶▲圖▶▲圖▶ 圖 めんの



Let  $s = \sigma + it$  and  $X \ge 2$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Let 
$$s = \sigma + it$$
 and  $X \ge 2$ .

Set  $F_X(s) = \sum_{n \leq X} n^{-s}$ .



Let 
$$s = \sigma + it$$
 and  $X \ge 2$ .

Set 
$$F_X(s) = \sum_{n \leq X} n^{-s}$$
.

How are the zeros of  $F_X(s)$  distributed?



Let 
$$s = \sigma + it$$
 and  $X \ge 2$ .

Set 
$$F_X(s) = \sum_{n \leq X} n^{-s}$$
.

How are the zeros of  $F_X(s)$  distributed?

This has been studied near  $\sigma = 1$  by:

Let 
$$s = \sigma + it$$
 and  $X \ge 2$ .

Set  $F_X(s) = \sum_{n \leq X} n^{-s}$ .

How are the zeros of  $F_X(s)$  distributed?

This has been studied near  $\sigma = 1$  by:

P. Turán, N. Levinson, S. M. Voronin, H. L. Montgomery, and H. L. Montgomery & R. C. Vaughan.

Let 
$$s = \sigma + it$$
 and  $X \ge 2$ .

Set  $F_X(s) = \sum_{n \leq X} n^{-s}$ .

How are the zeros of  $F_X(s)$  distributed?

This has been studied near  $\sigma = 1$  by:

P. Turán, N. Levinson, S. M. Voronin, H. L. Montgomery, and H. L. Montgomery & R. C. Vaughan.

What can we say about the zeros further to the left of  $\sigma = 1$ ?

Let 
$$s = \sigma + it$$
 and  $X \ge 2$ .

Set  $F_X(s) = \sum_{n \leq X} n^{-s}$ .

How are the zeros of  $F_X(s)$  distributed?

This has been studied near  $\sigma = 1$  by:

P. Turán, N. Levinson, S. M. Voronin, H. L. Montgomery, and H. L. Montgomery & R. C. Vaughan.

What can we say about the zeros further to the left of  $\sigma = 1$ ?

There have been numerical studies by R. Spira and, more recently, P. Borwein *et al.*.

## Zeros of $F_{211}(s)$



Figure: Zeros of  $F_{211}(s)$  from P. Borwein et al.

## Notation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let

$$\rho_X = \beta_X + i\gamma_X$$

æ

< ロ > < 部 > < き > < き > ...

denote a generic zero of  $F_X(s)$ ,

Let

$$\rho_X = \beta_X + i\gamma_X$$

denote a generic zero of  $F_X(s)$ ,

$$N_X(T) = \sum_{0 \le \gamma_X \le T} 1,$$

æ

Let

$$\rho_X = \beta_X + i\gamma_X$$

denote a generic zero of  $F_X(s)$ ,

$$N_X(T) = \sum_{0 \le \gamma_X \le T} 1,$$

$$N_X(\sigma, T) = \sum_{\substack{0 \le \gamma_X \le T \\ \beta_X \ge \sigma}} 1.$$

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

## The Parameters X and T

▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

・ロト ・日 ・ ・ ヨ ・ ・

-

< ロ > < 部 > < 通 > < 通

・ロト ・日 ・ ・ ヨ ・ ・

• fix an X and let  $T \to \infty$ ,

・ロト ・日 ・ ・ ヨ ・ ・

• fix an X and let  $T \to \infty$ , or

• let 
$$X = f(T)$$
 with  $f(T) \to \infty$  as  $T \to \infty$ .

▲冊▶ ▲ 臣▶ ▲ 臣

• fix an X and let  $T \to \infty$ , or

• let 
$$X = f(T)$$
 with  $f(T) \to \infty$  as  $T \to \infty$ .

Here we are mostly concerned with the latter.

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| 釣んの

(C. E. Wilder, R. E. Langer, ..., P. Borwein et al.) The zeros of *F<sub>X</sub>(s)* lie in the strip -*X* < σ < 1.72865.</li>

- (C. E. Wilder, R. E. Langer, ..., P. Borwein et al.) The zeros of  $F_X(s)$  lie in the strip  $-X < \sigma < 1.72865$ .
- (Montgomery) Let  $0 < c < 4/\pi 1$ . If  $X \ge X_0(c)$ , then  $F_X(s)$  has zeros in

$$\sigma > 1 + rac{c \log \log X}{\log X}.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

- (C. E. Wilder, R. E. Langer, ..., P. Borwein et al.) The zeros of  $F_X(s)$  lie in the strip  $-X < \sigma < 1.72865$ .
- (Montgomery) Let  $0 < c < 4/\pi 1$ . If  $X \ge X_0(c)$ , then  $F_X(s)$  has zeros in

$$\sigma > 1 + \frac{c \log \log X}{\log X}$$

 (Montgomery & Vaughan) If X is sufficiently large, F<sub>X</sub>(s) has no zeros in

$$\sigma \geq 1 + \left(\frac{4}{\pi} - 1\right) \frac{\log \log X}{\log X}.$$

▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQの

#### Theorem



#### Theorem

Let  $X, T \ge 2$ .



#### Theorem

Let  $X, T \geq 2$ . Then

$$\left| N_X(T) - \frac{T}{2\pi} \log [X] \right| < \frac{X}{2}.$$

▲ロト▲御ト▲恵ト▲恵ト 恵 めんぐ

#### Theorem

Let  $X, T \ge 2$ . Then

$$\left| N_X(T) - \frac{T}{2\pi} \log \left[ X \right] \right| < \frac{X}{2}.$$

Here [X] denotes the greatest integer less than or equal to X.

2

|▲□▶▲圖▶▲圖▶▲圖▶ | 圖|| の��

#### Theorem

#### Theorem

Let  $X \ll T^{1/2}$  and  $X \to \infty$  with T.



#### Theorem

Let  $X \ll T^{1/2}$  and  $X \to \infty$  with T. Then  $N_X(\sigma, T) \ll TX^{1-2\sigma} \log^5 T$ uniformly for  $1/2 \le \sigma \le 1$ .

▲ロト▲園ト▲目ト▲目ト 目 のへで

#### Theorem

Let  $X \ll T^{1/2}$  and  $X \to \infty$  with T. Then  $N_X(\sigma, T) \ll TX^{1-2\sigma} \log^5 T$ uniformly for  $1/2 \le \sigma \le 1$ . If  $T^{1/2} \ll X = o(T)$ , the X on the right-hand side is replaced by T/X.

#### Theorem

Let  $X \ll T^{1/2}$  and  $X \to \infty$  with T. Then  $N_X(\sigma, T) \ll TX^{1-2\sigma} \log^5 T$ uniformly for  $1/2 \le \sigma \le 1$ . If  $T^{1/2} \ll X = o(T)$ , the X on the right-hand side is replaced by T/X.

Idea of the proof: As for  $\zeta(s)$ : mollify  $F_X(s)$  and apply Littlewood's lemma.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Corollary

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

#### Corollary

Suppose that  $X \ll T^{1/2}$  and  $X \to \infty$  with T.

#### Corollary

Suppose that  $X \ll T^{1/2}$  and  $X \to \infty$  with T. Then for any constant  $C \ge 5/2$ ,

#### Corollary

Suppose that  $X \ll T^{1/2}$  and  $X \to \infty$  with T. Then for any constant  $C \ge 5/2$ ,

$$\beta_X \le \frac{1}{2} + \frac{C\log\log 7}{\log X}$$

for almost all zeros of  $\rho_X$  with  $0 \le \gamma_X \le T$ .

#### Corollary

Suppose that  $X \ll T^{1/2}$  and  $X \to \infty$  with T. Then for any constant  $C \ge 5/2$ ,

$$\beta_X \le \frac{1}{2} + \frac{C \log \log T}{\log X}$$

for almost all zeros of  $\rho_X$  with  $0 \le \gamma_X \le T$ .

If  $T^{1/2} \ll X = o(T)$ , the X on the right-hand side is replaced by T/X.

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQの

#### Theorem

#### Theorem

Assume the Riemann Hypothesis and suppose that  $9 \le X \le T^2$ .

< ロ > < 部 > < き > < き > ...

크

#### Theorem

Assume the Riemann Hypothesis and suppose that  $9 \le X \le T^2$ . Then there is an absolute constant B > 0 such that for T sufficiently large

イロト イヨト イヨト イ

#### Theorem

Assume the Riemann Hypothesis and suppose that  $9 \le X \le T^2$ . Then there is an absolute constant B > 0 such that for T sufficiently large

$$eta_X \leq rac{1}{2} + rac{B\log T}{\log X \log\log T}$$

< D > < B > < E > <</p>

for all zeros of  $\rho_X$  with  $X^{1/2} \leq \gamma_X \leq T$ .

#### Theorem

Assume the Riemann Hypothesis and suppose that  $9 \le X \le T^2$ . Then there is an absolute constant B > 0 such that for T sufficiently large

$$\beta_X \leq \frac{1}{2} + \frac{B\log T}{\log X \log\log T}$$

for all zeros of  $\rho_X$  with  $X^{1/2} \leq \gamma_X \leq T$ .

Idea of the proof: On RH

$$\zeta(s) = F_X(s) + O\left(X^{1/2-\sigma} \exp\left(\frac{A\log t}{\log\log t}\right)\right)$$

for  $9 \le X \le t^2$ , and  $1/2 \le \sigma \le 2$ .

#### Theorem

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 - のQC

#### Theorem

Suppose that  $X \ll T$  and  $X \rightarrow \infty$ .



#### Theorem

Suppose that  $X \ll T$  and  $X \rightarrow \infty$ . Let  $U \ge 2X$ .

크

-

#### Theorem

Suppose that  $X \ll T$  and  $X \rightarrow \infty$ . Let  $U \ge 2X$ . Then

$$\sum_{0\leq \gamma_X\leq T} (\beta_X + U) = U \frac{T}{2\pi} \log X + O(UX) + O(T).$$

(日)

크

#### Theorem

Suppose that  $X \ll T$  and  $X \rightarrow \infty$ . Let  $U \ge 2X$ . Then

$$\sum_{0\leq \gamma_X\leq T} (\beta_X + U) = U \frac{T}{2\pi} \log X + O(UX) + O(T).$$

Idea of the proof: Apply Littlewood's lemma directly to  $F_X(s)$  on a rectangle whose left edge is on  $\Re s = -U$ .

#### Theorem

Suppose that  $X \ll T$  and  $X \rightarrow \infty$ . Let  $U \ge 2X$ . Then

$$\sum_{0\leq \gamma_X\leq T} (\beta_X+U) = U\frac{T}{2\pi}\log X + O(UX) + O(T).$$

Idea of the proof: Apply Littlewood's lemma directly to  $F_X(s)$  on a rectangle whose left edge is on  $\Re s = -U$ .

$$2\pi \sum_{0 \leq \gamma_X \leq T} (\beta_X + U) = \int_0^T \log |F_X(-U + it)| dt + \cdots$$

▲口▶▲圖▶▲圖▶▲圖▶ ■ のQの

# Corollary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

#### Corollary

Suppose that  $X \ll T^{1/2}$  and  $X \to \infty$  with T.

<ロト <回 > < 回 > < 回 > .

Ξ.

#### Corollary

Suppose that  $X \ll T^{1/2}$  and  $X \to \infty$  with T. Then

$$\frac{1}{N_X(T)}\sum_{0\leq \gamma_X\leq T}\beta_X\ll \frac{1}{\log X}.$$

크

#### Corollary

Suppose that  $X \ll T^{1/2}$  and  $X \to \infty$  with T. Then

$$\frac{1}{N_X(T)}\sum_{0\leq \gamma_X\leq T}\beta_X\ll \frac{1}{\log X}.$$

**Idea of the proof:** By the last theorem with U=2X,

$$\sum_{0 \leq \gamma_X \leq T} (\beta_X + 2X) = 2X \frac{T}{2\pi} \log X + O(T).$$

르

#### Corollary

Suppose that  $X \ll T^{1/2}$  and  $X \to \infty$  with T. Then

$$\frac{1}{N_X(T)}\sum_{0\leq \gamma_X\leq T}\beta_X\ll \frac{1}{\log X}.$$

Idea of the proof: By the last theorem with U=2X,

$$\sum_{0\leq \gamma_X\leq T} (\beta_X+2X) = 2X\frac{T}{2\pi}\log X + O(T).$$

But

$$\sum_{0\leq \gamma_X\leq T} 2X = 2X\frac{T}{2\pi}\log X + O(T).$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < @

▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQの

#### Theorem



#### Theorem

Suppose that X = o(T) and that  $X \to \infty$  with T.

< ロ > < 団 > < 豆 > <</p>

포 > 표

#### Theorem

Suppose that X = o(T) and that  $X \to \infty$  with T. Then uniformly for  $\sigma < 1/2$ , we have

-

크

#### Theorem

Suppose that X = o(T) and that  $X \to \infty$  with T. Then uniformly for  $\sigma < 1/2$ , we have

$$\sum_{\substack{0 \leq \gamma_X \leq T \ eta_X > \sigma}} (eta_X - \sigma) \leq (1/2 - \sigma) rac{T}{2\pi} \log X - rac{T}{4\pi} \log(1/2 - \sigma) + O((1 + |\sigma|)X) + O(T).$$

▲日▼▲□▼▲目▼▲目▼ 回 ろく⊙

#### Theorem

Suppose that X = o(T) and that  $X \to \infty$  with T. Then uniformly for  $\sigma < 1/2$ , we have

$$\sum_{\substack{\mathbf{0}\leq\gamma_X\leq T\ eta_X>\sigma}}(eta_X-\sigma)\leq (1/2-\sigma)rac{T}{2\pi}\log X-rac{T}{4\pi}\log(1/2-\sigma)\ +Oig((1+|\sigma|)Xig)+O(T).$$

< ロ > < 団 > < 豆 > <</p>

Idea of the proof: Apply Littlewood's lemma to  $F_X(s)$ .

## **Open Questions**

|▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ | 圖|| 釣んの

#### • Why are there "tails" of zeros?

- Why are there "tails" of zeros?
- For  $\sigma < 1/2$  and bounded, is it true that

$$\sum_{\substack{0 \leq \gamma_X \leq T \\ \beta_X > \sigma}} (\beta_X - \sigma) \sim (1/2 - \sigma)(T/2\pi) \log X?$$

▲□ ► < ⊇ ► <</p>

- Why are there "tails" of zeros?
- For  $\sigma < 1/2$  and bounded, is it true that

$$\sum_{\substack{0 \leq \gamma_X \leq T \\ \beta_X > \sigma}} (\beta_X - \sigma) \sim (1/2 - \sigma)(T/2\pi) \log X?$$

• What proportion of the zeros of  $F_X(s)$  have  $\beta_X \ge 1/2$ ?