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Zeros of
∑

n≤X n−s

Let s = σ + it and X ≥ 2.

Set FX (s) =
∑

n≤X n−s.

How are the zeros of FX (s) distributed?

This has been studied near σ = 1 by:

P. Turán, N. Levinson, S. M. Voronin, H. L. Montgomery, and
H. L. Montgomery & R. C. Vaughan.

What can we say about the zeros further to the left of σ = 1?

There have been numerical studies by R. Spira and, more
recently, P. Borwein et al..
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Zeros of F211(s)

Figure: Zeros of F211(s) from P. Borwein et al.



Notation

Let
ρX = βX + iγX

denote a generic zero of FX (s),

NX (T ) =
∑

0≤γX≤T

1,

NX (σ,T ) =
∑

0≤γX≤T
βX≥σ
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The Parameters X and T

There are two natural ways to pose questions about the zeros
of FX (T ). We can

fix an X and let T →∞, or

let X = f (T ) with f (T )→∞ as T →∞.

Here we are mostly concerned with the latter.
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Some Known Results

(C. E. Wilder, R. E. Langer, . . . , P. Borwein et al.) The
zeros of FX (s) lie in the strip −X < σ < 1.72865.

(Montgomery) Let 0 < c < 4/π − 1. If X ≥ X0(c), then
FX (s) has zeros in

σ > 1 +
c log log X

log X
.

(Montgomery & Vaughan) If X is sufficiently large, FX (s)
has no zeros in

σ ≥ 1 +
(4
π
− 1
) log log X

log X
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Number of Zeros up to Height T

Theorem

Let X ,T ≥ 2. Then

∣∣∣ NX (T )− T
2π

log [X ]
∣∣∣ < X

2
.

Here [X ] denotes the greatest integer less than or equal to X.
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A Zero Density Estimate

Theorem

Let X � T 1/2 and X →∞ with T . Then

NX (σ,T )� TX 1−2σ log5 T

uniformly for 1/2 ≤ σ ≤ 1.

If T 1/2 � X = o(T ), the X on the right-hand side is replaced
by T/X.

Idea of the proof: As for ζ(s): mollify FX (s) and apply
Littlewood’s lemma.
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Ordinates of Zeros

Corollary

Suppose that X � T 1/2 and X →∞ with T . Then for any
constant C ≥ 5/2,

βX ≤
1
2

+
C log log T

log X

for almost all zeros of ρX with 0 ≤ γX ≤ T .

If T 1/2 � X = o(T ), the X on the right-hand side is replaced
by T/X.
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A Conditional Result

Theorem

Assume the Riemann Hypothesis and suppose that
9 ≤ X ≤ T 2. Then there is an absolute constant B > 0 such
that for T sufficiently large

βX ≤
1
2

+
B log T

log X log log T

for all zeros of ρX with X 1/2 ≤ γX ≤ T .

Idea of the proof: On RH

ζ(s) = FX (s) + O
(

X 1/2−σ exp
(

A log t
log log t

))
for 9 ≤ X ≤ t2, and 1/2 ≤ σ ≤ 2.



A Conditional Result

Theorem

Assume the Riemann Hypothesis and suppose that
9 ≤ X ≤ T 2. Then there is an absolute constant B > 0 such
that for T sufficiently large

βX ≤
1
2

+
B log T

log X log log T

for all zeros of ρX with X 1/2 ≤ γX ≤ T .

Idea of the proof: On RH

ζ(s) = FX (s) + O
(

X 1/2−σ exp
(

A log t
log log t

))
for 9 ≤ X ≤ t2, and 1/2 ≤ σ ≤ 2.



A Conditional Result

Theorem
Assume the Riemann Hypothesis and suppose that
9 ≤ X ≤ T 2.

Then there is an absolute constant B > 0 such
that for T sufficiently large

βX ≤
1
2

+
B log T

log X log log T

for all zeros of ρX with X 1/2 ≤ γX ≤ T .

Idea of the proof: On RH

ζ(s) = FX (s) + O
(

X 1/2−σ exp
(

A log t
log log t

))
for 9 ≤ X ≤ t2, and 1/2 ≤ σ ≤ 2.



A Conditional Result

Theorem
Assume the Riemann Hypothesis and suppose that
9 ≤ X ≤ T 2. Then there is an absolute constant B > 0 such
that for T sufficiently large

βX ≤
1
2

+
B log T

log X log log T

for all zeros of ρX with X 1/2 ≤ γX ≤ T .

Idea of the proof: On RH

ζ(s) = FX (s) + O
(

X 1/2−σ exp
(

A log t
log log t

))
for 9 ≤ X ≤ t2, and 1/2 ≤ σ ≤ 2.



A Conditional Result

Theorem
Assume the Riemann Hypothesis and suppose that
9 ≤ X ≤ T 2. Then there is an absolute constant B > 0 such
that for T sufficiently large

βX ≤
1
2

+
B log T

log X log log T

for all zeros of ρX with X 1/2 ≤ γX ≤ T .

Idea of the proof: On RH

ζ(s) = FX (s) + O
(

X 1/2−σ exp
(

A log t
log log t

))
for 9 ≤ X ≤ t2, and 1/2 ≤ σ ≤ 2.



A Conditional Result

Theorem
Assume the Riemann Hypothesis and suppose that
9 ≤ X ≤ T 2. Then there is an absolute constant B > 0 such
that for T sufficiently large

βX ≤
1
2

+
B log T

log X log log T

for all zeros of ρX with X 1/2 ≤ γX ≤ T .

Idea of the proof: On RH

ζ(s) = FX (s) + O
(

X 1/2−σ exp
(

A log t
log log t

))
for 9 ≤ X ≤ t2, and 1/2 ≤ σ ≤ 2.



A Sum Involving the Ordinates

Theorem

Suppose that X � T and X →∞. Let U ≥ 2X. Then∑
0≤γX≤T

(βX + U) = U
T
2π

log X + O(UX ) + O(T ).

Idea of the proof: Apply Littlewood’s lemma directly to FX (s)
on a rectangle whose left edge is on <s = −U.

2π
∑

0≤γX≤T

(βX + U) =

∫ T

0
log |FX (−U + it)|dt + · · · .
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The Average of the Ordinates is 0

Corollary

Suppose that X � T 1/2 and X →∞ with T . Then

1
NX (T )

∑
0≤γX≤T

βX �
1

log X
.

Idea of the proof: By the last theorem with U=2X ,∑
0≤γX≤T

(βX + 2X ) = 2X
T
2π

log X + O(T ).

But ∑
0≤γX≤T

2X = 2X
T
2π

log X + O(T ).
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Distance of Ordinates from a Line

Theorem

Suppose that X = o(T ) and that X →∞ with T . Then
uniformly for σ < 1/2, we have∑

0≤γX≤T
βX>σ

(βX − σ) ≤ (1/2− σ)
T
2π

log X − T
4π

log(1/2− σ)

+ O
(
(1 + |σ|)X

)
+ O(T ).

Idea of the proof: Apply Littlewood’s lemma to FX (s).
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Open Questions

Why are there “tails” of zeros?

For σ < 1/2 and bounded, is it true that∑
0≤γX≤T
βX>σ

(βX − σ) ∼ (1/2− σ)(T/2π) log X?

What proportion of the zeros of FX (s) have βX ≥ 1/2?
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