The dynamical Mordell-Lang conjecture for Linear Maps

Joel D. Dreibelbis

April 28, 2012

Outline

(1) Introduction

- Dynamical-Mordell Lang
- Related Items
(2) Dynamical Mordell-Lang for Linear Maps
- Dynamical-Mordell Lang for Linear Maps, $g=2$
- Dynamical-Mordell Lang for Linear Maps, $g>2$
(3) Conclusion

Outline

(1) Introduction

- Dynamical-Mordell Lang
- Related Items
(2) Dynamical Mordell-Lang for Linear Maps
- Dynamical-Mordell Lang for Linear Maps, $g=2$
- Dynamical-Mordell Lang for Linear Maps, $g>2$
(3) Conclusion

Outline

(1) Introduction

- Dynamical-Mordell Lang
- Related Items
(2) Dynamical Mordell-Lang for Linear Maps
- Dynamical-Mordell Lang for Linear Maps, $g=2$
- Dynamical-Mordell Lang for Linear Maps, $g>2$
(3) Conclusion

The Usual Setup

- S is a set (such as \mathbb{Z} or \mathbb{C}^{g}).
- $f: S \rightarrow S$ is a self-map of S.
- $q \in S$
- The orbit set of q under f is

$$
\{q, f(q), f(f(q)), f(f(f(q)),), \ldots\}
$$

or more concisely, $\operatorname{Orb}_{f}(q):=\left\{f^{n}(q) \mid n \in \mathbb{N}\right\}$ where $f^{n}:=f\left(f^{n-1}\right)$ is the n-fold composition of f with itself.

- Study $\operatorname{Orb}_{f}(q)$ and make interesting conclusions for various S, f, and q.

The Usual Setup

- S is a set (such as \mathbb{Z} or \mathbb{C}^{g}).
- $f: S \rightarrow S$ is a self-map of S.
- $q \in S$
- The orbit set of q under f is

$$
\{q, f(q), f(f(q)), f(f(f(q)),), \ldots\}
$$

or more concisely, $\operatorname{Orb}_{f}(q):=\left\{f^{n}(q) \mid n \in \mathbb{N}\right\}$ where $f^{n}:=f\left(f^{n-1}\right)$ is the n-fold composition of f with itself.

- Study $\operatorname{Orb}_{f}(q)$ and make interesting conclusions for various S, f, and q.

The Usual Setup

- S is a set (such as \mathbb{Z} or \mathbb{C}^{g}).
- $f: S \rightarrow S$ is a self-map of S.
- $q \in S$
- The orbit set of q under f is

$$
\{q, f(q), f(f(q)), f(f(f(q)),), \ldots\}
$$

or more concisely, $\operatorname{Orb}_{f}(q):=\left\{f^{n}(q) \mid n \in \mathbb{N}\right\}$ where $f^{n}:=f\left(f^{n-1}\right)$ is the n-fold composition of f with itself.

- Study $\operatorname{Orb}_{f}(q)$ and make interesting conclusions for various S, f, and q.

The Usual Setup

- S is a set (such as \mathbb{Z} or \mathbb{C}^{g}).
- $f: S \rightarrow S$ is a self-map of S.
- $q \in S$
- The orbit set of q under f is

$$
\{q, f(q), f(f(q)), f(f(f(q)),), \ldots\}
$$

or more concisely, $\operatorname{Orb}_{f}(q):=\left\{f^{n}(q) \mid n \in \mathbb{N}\right\}$ where $f^{n}:=f\left(f^{n-1}\right)$ is the n-fold composition of f with itself.

- Study $\operatorname{Orb}_{f}(q)$ and make interesting conclusions for various S, f, and q.

The Usual Setup

- S is a set (such as \mathbb{Z} or \mathbb{C}^{g}).
- $f: S \rightarrow S$ is a self-map of S.
- $q \in S$
- The orbit set of q under f is

$$
\{q, f(q), f(f(q)), f(f(f(q)),), \ldots\}
$$

or more concisely, $\operatorname{Orb}_{f}(q):=\left\{f^{n}(q) \mid n \in \mathbb{N}\right\}$ where $f^{n}:=f\left(f^{n-1}\right)$ is the n-fold composition of f with itself.

- Study $\operatorname{Orb}_{f}(q)$ and make interesting conclusions for various S, f, and q.

Intersections of Orbit Sets with Curves

- Let $S=\mathbb{C}^{2}, f(x, y)$ be defined by polynomials in each coordinate, $\mathbf{q} \in \mathbb{C}^{2}$, and consider $\operatorname{Orb}_{f}(\mathbf{q})$.
- What can be said about $\operatorname{Orb}_{f}(\mathbf{q}) \cap C$ for some curve C ?
- Example: Let $S=\mathbb{C}^{2}, f(x, y)=(a x+b y, c x+d y)$ be a self-map of $S, \mathbf{q}=\left(q_{1}, q_{2}\right)$, and C is a curve of degree d. If the orbit set has finite intersection with C then there at most $(2 N)^{35 N^{3}}$ points in the intersection where $N=(d+1)^{2}$.

Intersections of Orbit Sets with Curves

- Let $S=\mathbb{C}^{2}, f(x, y)$ be defined by polynomials in each coordinate, $\mathbf{q} \in \mathbb{C}^{2}$, and consider $\operatorname{Orb}_{f}(\mathbf{q})$.
- What can be said about $\operatorname{Orb}_{f}(\mathbf{q}) \cap C$ for some curve C ?
- Example: Let $S=\mathbb{C}^{2}, f(x, y)=(a x+b y, c x+d y)$ be a self-map
of $S, \mathbf{q}=\left(q_{1}, q_{2}\right)$, and C is a curve of degree d.
If the orbit set has finite intersection with C then there at most $(2 N)^{35 N^{3}}$ points in the intersection where $N=(d+1)^{2}$

Intersections of Orbit Sets with Curves

- Let $S=\mathbb{C}^{2}, f(x, y)$ be defined by polynomials in each coordinate, $\mathbf{q} \in \mathbb{C}^{2}$, and consider $\operatorname{Orb}_{f}(\mathbf{q})$.
- What can be said about $\operatorname{Orb}_{f}(\mathbf{q}) \cap C$ for some curve C ?
- Example: Let $S=\mathbb{C}^{2}, f(x, y)=(a x+b y, c x+d y)$ be a self-map of $S, \mathbf{q}=\left(q_{1}, q_{2}\right)$, and C is a curve of degree d.
If the orbit set has finite intersection with C then there at most $(2 N)^{35 N^{3}}$ points in the intersection where $N=(d+1)^{2}$.
When $d=1$, this provides a uniform upper bound of 8^{2240}.
Better bounds exist in special cases.

Intersections of Orbit Sets with Curves

- Let $S=\mathbb{C}^{2}, f(x, y)$ be defined by polynomials in each coordinate, $\mathbf{q} \in \mathbb{C}^{2}$, and consider $\operatorname{Orb}_{f}(\mathbf{q})$.
- What can be said about $\operatorname{Orb}_{f}(\mathbf{q}) \cap C$ for some curve C ?
- Example: Let $S=\mathbb{C}^{2}, f(x, y)=(a x+b y, c x+d y)$ be a self-map of $S, \mathbf{q}=\left(q_{1}, q_{2}\right)$, and C is a curve of degree d. If the orbit set has finite intersection with C then there at most $(2 N)^{35 N^{3}}$ points in the intersection where $N=(d+1)^{2}$. When $d=1$, this provides a uniform upper bound of 8^{2240}. Better bounds exist in special cases.

The Eigenvalues of a linear map f

- $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is a linear map defined as $f(x, y):=(a x+b y, c x+d y)$ for some $a, b, c, d \in \mathbb{C}$.
- $M:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is the associated matrix of f since $f^{n}(x, y)=M^{n} \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$ where $f^{n}:=f^{n-1} \circ f$.
- The eigenvalues of f are the eigenvalues of M.
- For a linear map $f: \mathbb{C}^{g} \rightarrow \mathbb{C}^{g}$, we may also speak of the associated eigenvalues which arise from the $g \times g$ matrix of coefficients.

The Eigenvalues of a linear map f

- $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is a linear map defined as $f(x, y):=(a x+b y, c x+d y)$ for some $a, b, c, d \in \mathbb{C}$.
- $M:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is the associated matrix of f since $f^{n}(x, y)=M^{n} \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$ where $f^{n}:=f^{n-1} \circ f$.
- The eigenvalues of f are the eigenvalues of M.
- For a linear map $f: \mathbb{C}^{g} \rightarrow \mathbb{C}^{g}$, we may also speak of the associated eigenvalues which arise from the $g \times g$ matrix of coefficients.

The Eigenvalues of a linear map f

- $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is a linear map defined as
$f(x, y):=(a x+b y, c x+d y)$ for some $a, b, c, d \in \mathbb{C}$.
- $M:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is the associated matrix of f since $f^{n}(x, y)=M^{n} \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$ where $f^{n}:=f^{n-1} \circ f$.
- The eigenvalues of f are the eigenvalues of M.
- For a linear map $f: \mathbb{C}^{g} \rightarrow \mathbb{C}^{g}$, we may also speak of the associated eigenvalues which arise from the $g \times g$ matrix of coefficients.

The Eigenvalues of a linear map f

- $f: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is a linear map defined as $f(x, y):=(a x+b y, c x+d y)$ for some $a, b, c, d \in \mathbb{C}$.
- $M:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is the associated matrix of f since

$$
f^{n}(x, y)=M^{n} \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] \text { where } f^{n}:=f^{n-1} \circ f
$$

- The eigenvalues of f are the eigenvalues of M.
- For a linear map $f: \mathbb{C}^{g} \rightarrow \mathbb{C}^{g}$, we may also speak of the associated eigenvalues which arise from the $g \times g$ matrix of coefficients.

The Dynamical-Mordell Lang Conjecture

$$
f=\left(f_{1}, \ldots f_{g}\right), S=\mathbb{C}^{g}, \text { and } \mathbf{q}=\left(q_{1}, \ldots, q_{g}\right)
$$

Conjecture (Ghioca, Tucker, Zieve 2007)

Iet f_{1}, \ldots, f_{g} be nolynomials in $\mathbb{C}\left[r_{1}, \ldots, r_{g}\right]$ and let V be a subvariety of \mathbb{C}^{g} which contains no positive dimensional subvariety that is periodic under the action of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g}. Then V has finite intersection with each orbit of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g}.

The Dynamical-Mordell Lang Conjecture

$$
f=\left(f_{1}, \ldots f_{g}\right), S=\mathbb{C}^{g}, \text { and } \mathbf{q}=\left(q_{1}, \ldots, q_{g}\right)
$$

Conjecture (Ghioca, Tucker, Zieve 2007)

Let f_{1}, \ldots, f_{g} be polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{g}\right]$ and let V be a subvariety of \mathbb{C}^{g} which contains no positive dimensional subvariety that is periodic under the action of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g}. Then V has finite intersection with each orbit of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g}.

Dynamical Mordell-Lang for Linear Maps

$f=\left(f_{1}, \ldots f_{g}\right), S=\mathbb{C}^{g}$, and $\mathbf{q}=\left(q_{1}, \ldots, q_{g}\right)$.

Conjecture (D. 2012)

Let f_{1}, \ldots, f_{g} be linear polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{g}\right]$ of the form $f_{i}(x)=a_{i, 1} x_{1}+\cdots+a_{i, g} x_{g}$ and let V be a subvariety of \mathbb{C}^{g} which contains no positive dimensional subvariety that is periodic under the action of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g}. Then the number of points in the intersection of V and an orbit of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g} is at most $(2 N)^{35 N^{3}}$ where $N=(d+1)^{g}$.

Dynamical Mordell-Lang for Linear Maps

$$
f=\left(f_{1}, \ldots f_{g}\right), S=\mathbb{C}^{g}, \text { and } \mathbf{q}=\left(q_{1}, \ldots, q_{g}\right)
$$

Conjecture (D. 2012)

Let f_{1}, \ldots, f_{g} be linear polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{g}\right]$ of the form $f_{i}(x)=a_{i, 1} x_{1}+\cdots+a_{i, g} x_{g}$ and let V be a subvariety of \mathbb{C}^{g} which contains no positive dimensional subvariety that is periodic under the action of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g}. Then the number of points in the intersection of V and an orbit of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g} is at most $(2 N)^{35 N^{3}}$ where $N=(d+1)^{g}$.

Strategy

- Parameterize the coordinates of the points, P_{n}, in the orbit set, $\operatorname{Orb}_{f}(\mathbf{q})$, as $P_{n}=\left(h_{1}(n), \ldots, h_{g}(n)\right)$ for suitable functions $h_{i}(n)$.
- If $P_{n} \in V=Z$

- The last summation will be a polynomial-exponential sum in the variable n whose order is N which depends on g and d.
- Apply a result due to Schlickewei for the maximum number of zeroes within a polynomial-exponential sum of order N.

Strategy

- Parameterize the coordinates of the points, P_{n}, in the orbit set, $\operatorname{Orb}_{f}(\mathbf{q})$, as $P_{n}=\left(h_{1}(n), \ldots, h_{g}(n)\right)$ for suitable functions $h_{i}(n)$.
- If $P_{n} \in V=Z\left(\sum_{\substack{i_{1}+\cdots+i_{g} \leq d \\ i_{1}, \ldots, i_{g} \geq 0}} a_{i_{1}, \ldots, i_{g}} x_{1}^{i_{1}} \cdots x_{g}^{i_{g}}\right)$ then

$$
\sum_{\substack{i_{1}+\cdots+i_{g} \leq d \\ i_{1}, \ldots, i_{g} \geq 0}} a_{i_{1}, \ldots, i_{g}}\left(h_{1}(n)\right)^{i_{1}} \cdots\left(h_{g}(n)\right)^{i_{g}}=0 .
$$

- The last summation will be a polynomial-exponential sum in the variable n whose order is N which depends on g and d.
- Apply a result due to Schlickewei for the maximum number of zeroes within a polynomial-exponential sum of order N.

Strategy

- Parameterize the coordinates of the points, P_{n}, in the orbit set, $\operatorname{Orb}_{f}(\mathbf{q})$, as $P_{n}=\left(h_{1}(n), \ldots, h_{g}(n)\right)$ for suitable functions $h_{i}(n)$.
- If $P_{n} \in V=Z\left(\sum_{\substack{i_{1}+\cdots+i_{g} \leq d \\ i_{1}, \ldots, i_{g} \geq 0}} a_{i_{1}, \ldots, i_{g}} x_{1}^{i_{1}} \cdots x_{g}^{i_{g}}\right)$ then

$$
\sum_{\substack{i_{1}+\cdots+i_{g} \leq d \\ i_{1}, \ldots, i_{g} \geq 0}} a_{i_{1}, \ldots, i_{g}}\left(h_{1}(n)\right)^{i_{1}} \cdots\left(h_{g}(n)\right)^{i_{g}}=0 .
$$

- The last summation will be a polynomial-exponential sum in the variable n whose order is N which depends on g and d.
- Apply a result due to Schlickewei for the maximum number of zeroes within a polynomial-exponential sum of order N.

Strategy

- Parameterize the coordinates of the points, P_{n}, in the orbit set, $\operatorname{Orb}_{f}(\mathbf{q})$, as $P_{n}=\left(h_{1}(n), \ldots, h_{g}(n)\right)$ for suitable functions $h_{i}(n)$.
- If $P_{n} \in V=Z\left(\sum_{\substack{i_{1}+\cdots+i_{g} \leq d \\ i_{1}, \ldots, i_{g} \geq 0}} a_{i_{1}, \ldots, i_{g}} x_{1}^{i_{1}} \cdots x_{g}^{i_{g}}\right)$ then

$$
\sum_{\substack{i_{1}+\cdots+i_{g} \leq d \\ i_{1}, \ldots, i_{g} \geq 0}} a_{i_{1}, \ldots, i_{g}}\left(h_{1}(n)\right)^{i_{1}} \cdots\left(h_{g}(n)\right)^{i_{g}}=0 .
$$

- The last summation will be a polynomial-exponential sum in the variable n whose order is N which depends on g and d.
- Apply a result due to Schlickewei for the maximum number of zeroes within a polynomial-exponential sum of order N.

Polynomial-Exponential Sums

- A polynomial-exponential sum is a summation with the form

$$
E(x):=\sum_{i=1}^{m}\left(P_{i}(x) b_{i}^{x}\right)
$$

where $P_{i}(x) \in k[x]$ and $b_{i} \in k$ for some field k.

- The order of a poly-exp sum is $m+\sum_{i=1} \operatorname{deg}\left(P_{i}\right)$.
- These poly-exp sums show up in linear recurrences and the orbit set problem.

Polynomial-Exponential Sums

- A polynomial-exponential sum is a summation with the form

$$
E(x):=\sum_{i=1}^{m}\left(P_{i}(x) b_{i}^{x}\right)
$$

where $P_{i}(x) \in k[x]$ and $b_{i} \in k$ for some field k.

- The order of a poly-exp sum is $m+\sum_{i=1}^{m} \operatorname{deg}\left(P_{i}\right)$.
- These poly-exp sums show up in linear recurrences and the orbit set problem.

Polynomial-Exponential Sums

- A polynomial-exponential sum is a summation with the form

$$
E(x):=\sum_{i=1}^{m}\left(P_{i}(x) b_{i}^{x}\right)
$$

where $P_{i}(x) \in k[x]$ and $b_{i} \in k$ for some field k.

- The order of a poly-exp sum is $m+\sum_{i=1}^{m} \operatorname{deg}\left(P_{i}\right)$.
- These poly-exp sums show up in linear recurrences and the orbit set problem.

Recurrence Sequences

- A linear recurrence sequence of order N over a field k is a sequence, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, of the form

$$
a_{n+N}:=\alpha_{1} a_{n+N-1}+\alpha_{2} a_{n+N-2}+\cdots+\alpha_{N} a_{n}
$$

for $n \geq 0$ with initial values
$\left(a_{0}, a_{1}, \ldots, a_{N-1}\right):=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{N-1}\right)$ for some $\alpha_{i}, \beta_{i} \in k$ and $\alpha_{N} \neq 0$. (or just N-ary recurrence sequence over k for short).
with roots $r_{1}, r_{2}, \ldots, r_{m}$ with r_{i} having multiplicity m_{i} so that

- A recurrence sequence is non-degenerate if it takes on the value

Recurrence Sequences

- A linear recurrence sequence of order N over a field k is a sequence, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, of the form

$$
a_{n+N}:=\alpha_{1} a_{n+N-1}+\alpha_{2} a_{n+N-2}+\cdots+\alpha_{N} a_{n}
$$

for $n \geq 0$ with initial values
$\left(a_{0}, a_{1}, \ldots, a_{N-1}\right):=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{N-1}\right)$ for some $\alpha_{i}, \beta_{i} \in k$ and $\alpha_{N} \neq 0$. (or just N-ary recurrence sequence over k for short).

- Characteristic polynomial $x^{N}-\alpha_{1} x^{N-1}-\alpha_{2} x^{N-2}-\cdots-\alpha_{N}$ with roots $r_{1}, r_{2}, \ldots, r_{m}$ with r_{i} having multiplicity m_{i} so that

$$
a_{n}=\sum_{i=1}^{m}\left(\sum_{j=1}^{m_{i}} c_{i, j} n^{j-1}\right) r_{i}^{n}
$$

- A recurrence sequence is non-degenerate if it takes on the value

Recurrence Sequences

- A linear recurrence sequence of order N over a field k is a sequence, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, of the form

$$
a_{n+N}:=\alpha_{1} a_{n+N-1}+\alpha_{2} a_{n+N-2}+\cdots+\alpha_{N} a_{n}
$$

for $n \geq 0$ with initial values
$\left(a_{0}, a_{1}, \ldots, a_{N-1}\right):=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{N-1}\right)$ for some $\alpha_{i}, \beta_{i} \in k$ and $\alpha_{N} \neq 0$. (or just N-ary recurrence sequence over k for short).

- Characteristic polynomial $x^{N}-\alpha_{1} x^{N-1}-\alpha_{2} x^{N-2}-\cdots-\alpha_{N}$ with roots $r_{1}, r_{2}, \ldots, r_{m}$ with r_{i} having multiplicity m_{i} so that

$$
a_{n}=\sum_{i=1}^{m}\left(\sum_{j=1}^{m_{i}} c_{i, j} n^{j-1}\right) r_{i}^{n}
$$

- A recurrence sequence is non-degenerate if it takes on the value 0 finitely many times.

Example of a Recurrence Sequence of Order 2

- $a_{n+2}:=a_{n+1}+a_{n}$ with $\left(a_{0}, a_{1}\right):=(0,1)$.
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}=\{0,1,1,2,3,5,8, \ldots\}$.
- Characteristic polynomial is $x^{2}-x-1$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$.

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1
\end{aligned}
$$

- $a_{n}=\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
- a_{n} is a poly-exp sum of order $2(2+0+0)$.

Example of a Recurrence Sequence of Order 2

- $a_{n+2}:=a_{n+1}+a_{n}$ with $\left(a_{0}, a_{1}\right):=(0,1)$.
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}=\{0,1,1,2,3,5,8, \ldots\}$.
- Characteristic polynomial is $x^{2}-x-1$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$

$a_{0}=0$
$a_{1}=1$
- $a_{n}=\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
- a_{n} is a poly-exp sum of order $2(2+0+0)$.

Example of a Recurrence Sequence of Order 2

- $a_{n+2}:=a_{n+1}+a_{n}$ with $\left(a_{0}, a_{1}\right):=(0,1)$.
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}=\{0,1,1,2,3,5,8, \ldots\}$.
- Characteristic polynomial is $x^{2}-x-1$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$.

- $a_{n}=\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
- a_{n} is a poly-exp sum of order $2(2+0+0)$.

Example of a Recurrence Sequence of Order 2

- $a_{n+2}:=a_{n+1}+a_{n}$ with $\left(a_{0}, a_{1}\right):=(0,1)$.
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}=\{0,1,1,2,3,5,8, \ldots\}$.
- Characteristic polynomial is $x^{2}-x-1$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$.
-

$$
\begin{aligned}
& a_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& a_{0}=0 \\
& a_{1}=1
\end{aligned}
$$

- $a_{n}=\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$
- a_{n} is a poly-exp sum of order $2(2+0+0)$.

Example of a Recurrence Sequence of Order 2

- $a_{n+2}:=a_{n+1}+a_{n}$ with $\left(a_{0}, a_{1}\right):=(0,1)$.
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}=\{0,1,1,2,3,5,8, \ldots\}$.
- Characteristic polynomial is $x^{2}-x-1$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$.
-

$$
\begin{aligned}
& a_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& a_{0}=0 \\
& a_{1}=1
\end{aligned}
$$

- $a_{n}=\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
- a_{n} is a poly-exp sum of order $2(2+0+0)$.

Example of a Recurrence Sequence of Order 2

- $a_{n+2}:=a_{n+1}+a_{n}$ with $\left(a_{0}, a_{1}\right):=(0,1)$.
- $\left\{a_{n}\right\}_{n \in \mathbb{N}}=\{0,1,1,2,3,5,8, \ldots\}$.
- Characteristic polynomial is $x^{2}-x-1$ whose roots are $\frac{1 \pm \sqrt{5}}{2}$.
-

$$
\begin{aligned}
& a_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \\
& a_{0}=0 \\
& a_{1}=1
\end{aligned}
$$

- $a_{n}=\frac{\sqrt{5}}{5}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{\sqrt{5}}{5}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.
- a_{n} is a poly-exp sum of order $2(2+0+0)$.

Connections to Linear Recurrences

- Given the orbit set problem (f, \mathbf{q}, V) over \mathbb{C}^{g}, there is a linear recurrence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ so that $a_{n}=0 \Longleftrightarrow f^{n}(\mathbf{q}) \in V$.
- If V has degree d then the linear recurrence will have order at most $(d+1)^{g}$.
- Uniform bounds already exist for the number of zeroes in a linear recurrences of order N (Schlickewei, ranging from triply exponential in N to the most recent, doubly exponential result, about 20 years).

Connections to Linear Recurrences

- Given the orbit set problem (f, \mathbf{q}, V) over \mathbb{C}^{g}, there is a linear recurrence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ so that $a_{n}=0 \Longleftrightarrow f^{n}(\mathbf{q}) \in V$.
- If V has degree d then the linear recurrence will have order at most $(d+1)^{g}$.
- Uniform bounds already exist for the number of zeroes in a linear recurrences of order N (Schlickewei, ranging from triply exponential in N to the most recent, doubly exponential result, about 20 years).

Connections to Linear Recurrences

- Given the orbit set problem (f, \mathbf{q}, V) over \mathbb{C}^{g}, there is a linear recurrence $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ so that $a_{n}=0 \Longleftrightarrow f^{n}(\mathbf{q}) \in V$.
- If V has degree d then the linear recurrence will have order at most $(d+1)^{g}$.
- Uniform bounds already exist for the number of zeroes in a linear recurrences of order N (Schlickewei, ranging from triply exponential in N to the most recent, doubly exponential result, about 20 years).

Skolem-Mahler-Lech Theorem

Theorem (Skolem-Mahler-Lech 1933-1935-1953)

If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a recurrence sequence of complex numbers, then the set of all integers n such that $a_{n}=0$ is the union of a finite number of arithmetic sequences.

Arithmetic Sequences

- An arithmetic sequence of natural numbers is a sequence, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, of the form

$$
a_{n}:=s+n t
$$

for some fixed $s, t \in \mathbb{N}$ and with $n \in \mathbb{N}$.

- If $t=0$, then the arithmetic sequence is a singleton.
- If $t \neq 0$, then the arithmetic sequence is said to be a full arithmetic sequence (contains infinitely many numbers).
- A finite union of arithmetic sequences is a finite set (possibly empty) union a finite number (possibly 0) of full arithmetic sequences.

Arithmetic Sequences

- An arithmetic sequence of natural numbers is a sequence, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, of the form

$$
a_{n}:=s+n t
$$

for some fixed $s, t \in \mathbb{N}$ and with $n \in \mathbb{N}$.

- If $t=0$, then the arithmetic sequence is a singleton.
- If $t \neq 0$, then the arithmetic sequence is said to be a full arithmetic sequence (contains infinitely many numbers).
- A finite union of arithmetic sequences is a finite set (possibly empty) union a finite number (possibly 0) of full arithmetic sequences.

Arithmetic Sequences

- An arithmetic sequence of natural numbers is a sequence, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, of the form

$$
a_{n}:=s+n t
$$

for some fixed $s, t \in \mathbb{N}$ and with $n \in \mathbb{N}$.

- If $t=0$, then the arithmetic sequence is a singleton.
- If $t \neq 0$, then the arithmetic sequence is said to be a full arithmetic sequence (contains infinitely many numbers).
- A finite union of arithmetic sequences is a finite set (possibly empty) union a finite number (possibly 0) of full arithmetic sequences.

Arithmetic Sequences

- An arithmetic sequence of natural numbers is a sequence, $\left\{a_{n}\right\}_{n \in \mathbb{N}}$, of the form

$$
a_{n}:=s+n t
$$

for some fixed $s, t \in \mathbb{N}$ and with $n \in \mathbb{N}$.

- If $t=0$, then the arithmetic sequence is a singleton.
- If $t \neq 0$, then the arithmetic sequence is said to be a full arithmetic sequence (contains infinitely many numbers).
- A finite union of arithmetic sequences is a finite set (possibly empty) union a finite number (possibly 0) of full arithmetic sequences.

Ternary Recurrence Theorems

Theorem (Beukers 1991)
 If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a non-degenerate ternary recurrence sequence of rational numbers, then there are at most 6 integers n such that $a_{n}=0$.

Theorem (Beukers 1996)

If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a non-degenerate ternary recurrence sequence of complex numbers, then there are at most 61 integers n such that $a_{n}=0$.

Ternary Recurrence Theorems

Theorem (Beukers 1991)

If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a non-degenerate ternary recurrence sequence of rational numbers, then there are at most 6 integers n such that $a_{n}=0$.

Theorem (Beukers 1996)

If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a non-degenerate ternary recurrence sequence of complex numbers, then there are at most 61 integers n such that $a_{n}=0$.

N-ary Recurrence Theorems

Theorem (Schlickewei 2000)

If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a non-degenerate N-ary recurrence sequence of complex numbers, then there are at most $(2 N)^{35 N^{3}}$ integers n such that $a_{n}=0$.

Theorem (D. 2010)

For $N>1$, if $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a non-degenerate N-ary recurrence sequence of real numbers whose characteristic roots are all real, then there are at most $2 N-3$ integers n such that $a_{n}=0$.

N-ary Recurrence Theorems

Theorem (Schlickewei 2000)

If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a non-degenerate N-ary recurrence sequence of complex numbers, then there are at most $(2 N)^{35 N^{3}}$ integers n such that $a_{n}=0$.

Theorem (D. 2010)

For $N>1$, if $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ is a non-degenerate N-ary recurrence sequence of real numbers whose characteristic roots are all real, then there are at most $2 N-3$ integers n such that $a_{n}=0$.

Orbit Sets and Varieties

Analyze $\left\{n \in \mathbb{N} \mid f^{n}(\mathbf{q}) \in W\right\}$ where $f: V \rightarrow V, \mathbf{q} \in V$, and W is a subvariety of $V:=\bigcap_{i=1}^{m} Z\left(P_{i}(\vec{x})\right)$.

Theorem (Bel 2006)

Let V be an affine variety over a field k of characteristic 0 . Let \mathbf{q} be a point in V and f an automorphism of V. If W is a subvariety of V then the set $\left\{n \in \mathbb{N} \mid f^{n}(\mathbf{q}) \in W\right\}$ is a finite union of arithmetic sequences.

Orbit Sets and Varieties

Analyze $\left\{n \in \mathbb{N} \mid f^{n}(\mathbf{q}) \in W\right\}$ where $f: V \rightarrow V, \mathbf{q} \in V$, and W is a m subvariety of $V:=\bigcap_{i=1}^{m} Z\left(P_{i}(\vec{x})\right)$.

Theorem (Bell 2006)

Let V be an affine variety over a field k of characteristic 0 . Let \mathbf{q} be a point in V and f an automorphism of V. If W is a subvariety of V then the set $\left\{n \in \mathbb{N} \mid f^{n}(\mathbf{q}) \in W\right\}$ is a finite union of arithmetic sequences.

Orbit Sets and Varieties

Theorem (Bell, Ghioca, Tucker 2009)

Let $f: V \rightarrow V$ be an ètale endomorphism of any quasiprojective variety defined over \mathbb{C}. Then for any subvariety W of V, and for any point $\mathbf{q} \in V$ the set $\left\{n \in \mathbb{N} \mid f^{n}(\mathbf{q}) \in W\right\}$ is a finite union of arithmetic sequences.

Theorem (D. 2010)
If the eigenvalues of a linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are real, $q \in \mathbb{R}^{2}$
$C \subset \mathbb{R}^{2}$ is a curve of degree d, and $\left|\operatorname{Orb}_{f}(q) \cap C\right|$ is finite, then

Orbit Sets and Varieties

Theorem (Bell, Ghioca, Tucker 2009)

Let $f: V \rightarrow V$ be an ètale endomorphism of any quasiprojective variety defined over \mathbb{C}. Then for any subvariety W of V, and for any point $\mathbf{q} \in V$ the set $\left\{n \in \mathbb{N} \mid f^{n}(\mathbf{q}) \in W\right\}$ is a finite union of arithmetic sequences.

Theorem (D. 2010)

If the eigenvalues of a linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are real, $\mathbf{q} \in \mathbb{R}^{2}$, $C \subset \mathbb{R}^{2}$ is a curve of degree d, and $\left|\operatorname{Orb}_{f}(q) \bigcap C\right|$ is finite, then $\left|\operatorname{Orb}_{f}(\mathbf{q}) \bigcap C\right| \leq d^{2}+3 d-1$.

Orbit Sets and Varieties

Theorem (Bell, Ghioca, Tucker 2009)

Let $f: V \rightarrow V$ be an ètale endomorphism of any quasiprojective variety defined over \mathbb{C}. Then for any subvariety W of V, and for any point $\mathbf{q} \in V$ the set $\left\{n \in \mathbb{N} \mid f^{n}(\mathbf{q}) \in W\right\}$ is a finite union of arithmetic sequences.

Theorem (D. 2010)

If the eigenvalues of a linear map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are real, $\mathbf{q} \in \mathbb{R}^{2}$, $C \subset \mathbb{R}^{2}$ is a curve of degree d, and $\left|\operatorname{Orb}_{f}(q) \bigcap C\right|$ is finite, then $\left|\operatorname{Orb}_{f}(\mathbf{q}) \bigcap C\right| \leq d^{2}+3 d-1$.

Dynamical-Mordell Lang for Linear Maps

Conjecture (D. 2012)

Let f_{1}, \ldots, f_{g} be linear polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{g}\right]$ of the form $f_{i}(x)=a_{i, 1} x_{1}+\cdots+a_{i, g} x_{g}$ and let V be a subvariety of \mathbb{C}^{g} which contains no positive dimensional subvariety that is periodic under the action of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g}. Then the number of points in the intersection of V and an orbit of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g} is at most $(2 N)^{35 N^{3}}$ where $N=(d+1)^{g}$.

Sketch of Proof - Distinct Eigenvalues

Then,
$f^{n}(\mathbf{q})=\left(\lambda_{1}^{n} q_{1}, \lambda_{2}^{n} q_{2}\right)$ and if $f^{n}(\mathbf{q}) \in V$ then

The left-hand side expression is a polynomial-exponential sum, in the variable n, of order N where $N \leq(d+1)^{2}$ and so there are at most $(2 N)^{35 N^{3}}$ zeroes due to Schlickewei's result.

Sketch of Proof - Distinct Eigenvalues

Suppose $f(x, y)=\left(\lambda_{1} x, \lambda_{2} y\right), \mathbf{q} \in \mathbb{C}^{2}$, and $V=Z\left(\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j} x^{i} y^{j}\right)$.
Then,
$f^{n}(\mathbf{q})=\left(\lambda_{1}^{n} q_{1}, \lambda_{2}^{n} q_{2}\right)$ and if $f^{n}(\mathbf{q}) \in V$ then

$$
\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j}\left(\lambda_{1}^{n} q_{1}\right)^{i}\left(\lambda_{2}^{n} q_{2}\right)^{j}=\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j} q_{1}^{i} q_{2}^{j}\left(\lambda_{1}^{i} \lambda_{2}^{j}\right)^{n}=0 .
$$

The left-hand side expression is a polynomial-exponential sum, in the variable n, of order N where $N \leq(d+1)^{2}$ and so there are at most $(2 N)^{35 N^{3}}$ zeroes due to Schlickewei's result.

Sketch of Proof - Distinct Eigenvalues

Suppose $f(x, y)=\left(\lambda_{1} x, \lambda_{2} y\right), \mathbf{q} \in \mathbb{C}^{2}$, and $V=Z\left(\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j} x^{i} y^{j}\right)$.
Then, $f^{n}(\mathbf{q})=\left(\lambda_{1}^{n} q_{1}, \lambda_{2}^{n} q_{2}\right)$ and if $f^{n}(\mathbf{q}) \in V$ then

$$
\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j}\left(\lambda_{1}^{n} q_{1}\right)^{i}\left(\lambda_{2}^{n} q_{2}\right)^{j}=\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j} q_{1}^{i} q_{2}^{j}\left(\lambda_{1}^{i} \lambda_{2}^{j}\right)^{n}=0
$$

The left-hand side expression is a polynomial-exponential sum, in the variable n, of order N where $N \leq(d+1)^{2}$ and so there are at most $(2 N)^{35 N^{3}}$ zeroes due to Schlickewei's result.

Sketch of Proof - Repeated Eigenvalues

Then,
$f^{n}(\mathbf{q})=\left(\left(\lambda^{n}+n \lambda^{n-1}\right) q_{1}, \lambda^{n} q_{2}\right)$ and if $f^{n}(\mathbf{q}) \in V$ then

The left-hand side expression is a polynomial-exponential sum, in the variable n, of order N where $N \leq(d+1)^{2}$ and so there are at most $(2 N)^{35 N^{3}}$ zeroes due to Schlickewei's result.

Sketch of Proof - Repeated Eigenvalues

Suppose $f(x, y)=(\lambda x+y, \lambda y), \mathbf{q} \in \mathbb{C}^{2}$, and $V=Z\left(\sum_{\substack{i j \leq \leq d \\ i, j \geq 0}} a_{i, j} x^{i} y^{j}\right)$.
Then,
$f^{n}(\mathbf{q})=\left(\left(\lambda^{n}+n \lambda^{n-1}\right) q_{1}, \lambda^{n} q_{2}\right)$ and if $f^{n}(\mathbf{q}) \in V$ then

$$
\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j}\left(\left(\lambda^{n}+n \lambda^{n-1}\right) q_{1}\right)^{i}\left(\lambda^{n} q_{2}\right)^{j}=0 .
$$

The left-hand side expression is a polynomial-exponential sum, in the variable n, of order N where $N \leq(d+1)^{2}$ and so there are at most $(2 N)^{35 N^{3}}$ zeroes due to Schlickewei's result.

Sketch of Proof - Repeated Eigenvalues

Suppose $f(x, y)=(\lambda x+y, \lambda y), \mathbf{q} \in \mathbb{C}^{2}$, and $V=Z\left(\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j} x^{i} y^{j}\right)$.
Then, $f^{n}(\mathbf{q})=\left(\left(\lambda^{n}+n \lambda^{n-1}\right) q_{1}, \lambda^{n} q_{2}\right)$ and if $f^{n}(\mathbf{q}) \in V$ then

$$
\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j}\left(\left(\lambda^{n}+n \lambda^{n-1}\right) q_{1}\right)^{i}\left(\lambda^{n} q_{2}\right)^{j}=0 .
$$

The left-hand side expression is a polynomial-exponential sum, in the variable n, of order N where $N \leq(d+1)^{2}$ and so there are at most $(2 N)^{35 N^{3}}$ zeroes due to Schlickewei's result.

Sketch of Proof - For any Linear Map

Suppose $f(x, y)=(a x+b y, c x+d y), \mathbf{q} \in \mathbb{C}^{2}$, and
$V=Z\left(\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j} x^{i} y^{j}\right)$. Then,
change coordinates so that the matrix corresponding to f is in Jordan

Sketch of Proof - For any Linear Map

Suppose $f(x, y)=(a x+b y, c x+d y), \mathbf{q} \in \mathbb{C}^{2}$, and
$V=Z\left(\sum_{\substack{i+j \leq d \\ i, j \geq 0}} a_{i, j} x^{i} y^{j}\right)$. Then,
change coordinates so that the matrix corresponding to f is in Jordan
normal form, either $M=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right]$ or $M=\left[\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right]$.

Dynamical-Mordell Lang for Linear Maps

Conjecture (D. 2012)

Let f_{1}, \ldots, f_{g} be linear polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{g}\right]$ of the form $f_{i}(x)=a_{i, 1} x_{1}+\cdots+a_{i, g} x_{g}$ and let V be a subvariety of \mathbb{C}^{g} which contains no positive dimensional subvariety that is periodic under the action of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g}. Then the number of points in the intersection of V and an orbit of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g} is at most $(2 N)^{35 N^{3}}$ where $N=(d+1)^{g}$.

Sketch of Proof

- Either directly or by induction, first show that the conjecture is true for linear maps with a nice form (those corresponding to one of the Jordan normal forms).
- Then, for any linear map, show that you may change coordinates so that the resulting matrix is in Jordan normal form.

Sketch of Proof

- Either directly or by induction, first show that the conjecture is true for linear maps with a nice form (those corresponding to one of the Jordan normal forms).
- Then, for any linear map, show that you may change coordinates so that the resulting matrix is in Jordan normal form.

Sketch of Proof

- Either directly or by induction, first show that the conjecture is true for linear maps with a nice form (those corresponding to one of the Jordan normal forms).
- Then, for any linear map, show that you may change coordinates so that the resulting matrix is in Jordan normal form.
- \square

Dynamical-Mordell Lang for Linear Maps

Conjecture (D. 2012)

Let f_{1}, \ldots, f_{g} be linear polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{g}\right]$ of the form $f_{i}(x)=a_{i, 1} x_{1}+\cdots+a_{i, g} x_{g}$ and let V be a subvariety of \mathbb{C}^{g} which contains no positive dimensional subvariety that is periodic under the action of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g}. Then the number of points in the intersection of V and an orbit of $\left(f_{1}, \ldots, f_{g}\right)$ on \mathbb{C}^{g} is at most $(2 N)^{35 N^{3}}$ where $N=(d+1)^{g}$.

The dynamical Mordell-Lang conjecture for Linear Maps

Joel D. Dreibelbis

April 28, 2012

