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Let Ok be any domain with field of fractions K. Let F(x, y) € Oklx, y]
be a homogeneous polynomial of degree n, coprime to y, and assumed to
have unit content (i.e., the coefficients of F' generate the unit ideal in O).
Assume that gcd(n, char(K)) = 1. Let h € Ok and assume that the poly-
nomial 27" — F(x, y) is irreducible in K|x, ¥, z]. We denote by X /K the
nonsingular complete model of the projective plane curve Cr /K defined
by the equation hz" — F(x,y) = 0. We shall assume in this article that
gXrEn) = 2.

When K is a number field, Mordell’s Conjecture (now Faltings’ Theo-
rem) implies that | Xz, (K)| < oo. Caporaso, Harris, and Mazur ([CHM,
1.1]) have shown that if Lang’s conjecture for varieties of general type is
true, then for any number field K, the size | X (K)| of the set of K-rational
points of any curve X/K of genus g(X) > 2 can be bounded by a constant
depending only on g(X). Prior to the paper [CHM], Mazur and others had
asked whether | X(K)| can be bounded by a constant depending only on
g(X) and the Mordell-Weil rank of X/K over K (that is, the rank of the
group J(K) of K-rational points of the jacobian J/K of X/K). These far-
reaching questions are totally open. As we shall recall in Sect. 1, the method
of Chabauty-Coleman sometimes yields a bound for | X g, (K)| depending
only on g(Xr,,) when it is known in advance that the Mordell-Weil rank of
X /K is small. Unfortunately, the Chabauty-Coleman method does not
yield a bound for | X g5 (K')| independent of the coefficients of hz" — F(x, y)
for all curves of the form X . It does, however, produce such a nice bound
for the number of primitive integral solutions of F(x, y) = h, as we now
explain.

Let K = Q and O = Z. A classical Thue equation is an equation
F(x,y) = h where F(x, 1) does not have repeated roots. Thue showed in
1909 that such an equation has finitely many solutions (x, y) € Z*if n > 3.
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Letus say that (x, y) is a primitive solution if gcd(x, y) = 1. In this work, we
are interested in the following open question raised for instance by Erddés,
Stewart, and Tijdeman ([Ste, p. 816]). Let N(F, h) denote the cardinality
of the set

{(x,y) € Z* | F(x,y) = h and gcd(x, y) = 1}.

Is there a bound for N(F, h) in terms of n only whenever n > 3? Two known
results on N(F, h) are as follows:

Theorem (Bombieri-Schmidt, [B-S]). Assume that F(x, 1) is irreducible.
There exists a constant By, which can be taken to be 215 when n is sufficiently
large, such that N(F,h) < B " PF where w(h) equals the number of
prime factors of h.

This bound depends on n and h. A generalization to the case where
F(x, 1) has distinct roots is given in [Ste, Theorem 1]. Let r(X ;) denote
the Mordell-Weil rank over Q of the jacobian of X, /Q.

Theorem (Silverman, [Sil]). Assume that F(x, 1) has distinct roots in Q.
There exists an ineffective constant h(F) such that for all n* power-free

h > h(F), the bound N(F, h) < n2"2(8n3)’(XF-h) holds.

For a fixed F, this bound depends only on n and r(X ), but only works
for & sufficiently large. For an improvement in the special case where F(x, 1)
has a root in QQ, see [Fuj]. Our main theorem is:

Theorem 3.9. Ifr(Xg;) < g(Xpp), then N(F, h) < 2n® —2n — 3.

This bound only holds when r(X ;) is small, but when it holds, it
depends only on n. We are able to refine our method in some special cases
to obtain a bound of the form N(F,h) < O(n?). There is no empirical
evidence that would indicate that N(F, h) cannot always be bounded by
O(n).

Both [B-S] and [Sil] make use of diophantine approximation methods,
and in particular make use of the Thue-Siegel-Roth theorem on approxi-
mations of algebraic numbers. The proof of Theorem 3.9, by contrast, does
not involve diophantine approximation; it relies instead on the method of
Chabauty-Coleman. In order to use this method to bound | X ,(Q)[, one
needs to pick a prime p and compute enough of a regular model X /Z, of
Xrn/Q) to be able to bound the number N; of components of multiplicity
1 in the special fiber Y/]Fp. The number N, is not, in general, bounded
by a constant depending only on g(Xr ). Hence, this method does not al-
ways enable us to bound | X, (Q)] in terms of g(X ;) only. Surprisingly,
however, it is possible to bound, in terms of n only, the number of reduc-
tion classes in the special fiber of a regular model X /Z,, of the primitive

solutions of F(x, y) = h. Let F(x, 1) = c]_[le(x — a;)" in Q[x], and set
d*(F) = ¢*¢~D [1i,;(@ — @;) € Z. To obtain a bound on the number of
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reduction classes in the special fiber of the primitive solutions, the most
difficult case to be treated is when p | d*(F) and p | h. In this case, our
main result is:

Theorem 3.5/3.8. Let Xr,/Q be such that for some prime p > n,
p | d*(F)and p | h. Let X/ Z, be the regular minimal model of X ;/Qp.
Let N denote the set of reductions in the special fiber X, of the solutions

of F(x,y) =hin Zi with gcd(x, y) = 1. Then |N| < snp.

In the cases where p fails to divide both 2 and d*(F'), similar results
are obtained in the proofs of 3.1, 3.2, and 3.3. Determining whether J(Q)
has rank less than g(Xr ) is in general very difficult. There is no known
algorithm that provably determines the Mordell-Weil rank of a jacobian,
even for elliptic curves. Upper bounds for the rank are obtainable, at least in
theory, by computing the size of a suitable Selmer group. The Mordell-Weil
rank in the case of superelliptic curves of the form y” = f(x) with p prime
is treated in [P-S] and [Sch]. A computational implementation in the case
p = 2 and deg(f) = 6 is discussed in [St3]. There are at this time no
educated guesses regarding the proportion of isomorphism classes of non-
singular plane Thue curves of degree n whose Mordell-Weil rank over Q is
less than (n — 1) (n—2)/2. Similarly, fixing F, there are no general results on
the proportion of the n-th power free integers 4 such that the Mordell-Weil
rank of X, is less than g(Xr ;). To our knowledge, it is not known whether
the set of such integers is always infinite, or even non-empty. On a more
positive note, we can produce in 3.10 infinitely many explicit examples of
Thue equations where the bound given in Theorem 3.9 holds.

The method of Chabauty-Coleman, when applicable, very often also
provides bounds for |X g, (Q)| and not just for N(F, k). In particular, we
show:

Theorem 3.1/3.2. Let p > n be a prime with p t d*(F). Assume that
r(Xgp) < 8(Xpgp). Then | Xpp(Q)| < np + i—:;(2g — 2). In particular,
there always exists such a prime p with p < max(2n, 2d*(F)), so | X r.,(Q)|
is bounded by a constant depending only on F, and not on h.

This explicit theorem is a special case of [Si2, Theorem 1], which states
that if X /K is any curve of genus g > 2 over a number field, and X, /K
is any twist of X, then |X,(K)| can be bounded in terms of a constant
¢ = ¢(X/K) and the Mordell-Weil rank of X, /K.

This paper is organized as follows. In the first section, we refine the
method of Chabauty-Coleman so that it can be applied to any regular model
over Z, of a curve X/Q of genus g > 1 with p* > 2g + 1. In the second
section, we describe some regular models of the curves X ;. We then
prove in the third section our main theorem on primitive solutions of Thue
equations using these models.
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1. The method of Chabauty-Coleman

Let K be any number field with a place v over a prime p. Let K, denote
the completion of K at v, with uniformizer 7 and residue field IF,, where
q is a power of p. Let X/K be a smooth proper geometrically connected
curve of genus g > 1, with Jacobian J/K. When the rank of J(K) is less
than g, the method of Coleman-Chabauty allows one to bound | X(K)| in
terms of the number of zeros of a well-chosen p-adic analytic function
My ¢ X(K,) — K,. Coleman [Co2, 0.ii] considered the case where the
curve X has good reduction at v (that is, where X/ K, has a smooth model X
over Ok, ). McCallum [McC1] applied the method of Chabauty-Coleman at
primes of bad reduction in the special case of Fermat curves. In Theorem 1.1
below, we show that the method of Chabauty-Coleman produces bounds for
| X(K)| even when X /K is not assumed to have good reduction. At the 1999
Arizona Winter School, McCallum suggested that a slight variant of [Co2,
0.ii] should hold on any regular model X /O, ; we prove that his suggestion
is indeed correct in 1.11.

Let A/K be any abelian variety of dimension g. We will write I'(A,
Q2 4/k,) for the module of global sections over Ak, of the sheaf of differen-
tials 4, /k,. As a p-adic Lie group, A(K,) is endowed with a logarithm
map

log : A(K,) — Hom(I'(A, Q4/k,), K,) = K3,

as we shall recall below, borrowing from [Wet]. The Chabauty rank of
A at v, denoted by Chab(A, K, v), is the dimension of the K,-subvector
space of K§ generated by the elements of log(A(K)). Note that since log
is a homomorphism, Chab(A, K, v) is less than or equal to the Mordell-
Weil rank of A(K). Define the Chabauty rank of a curve X/K at v to
be Chab(J, K, v), and denote it by Chab(X, K, v). Let X s (IF;) denote the
subset of non-singular [,-points of the special fiber X of a proper flat model

X/Ok, of X/K,.Letr : X(K,) — X(F,) denote the reduction map. The
main theorem of this section is:

Theorem 1.1. Let X/K be a curve of genus g > 1 defined over a number
field K with completion K, unramified over Q,,. Assume that Chab(J, K, v)
< g. Let d be a positive integer such that p > d and p® > 2g —1+d. Then,
for any subset U C X, (Fy) of the special fiber X of a model X/, of
X/K,, we have

PN W) N X(K)| < Ul + (p—_l) (22 —2).
p—d

Our theorem applies whenever p is such that p?~! — p > 2¢ — 2. The
only obstacle to applying the Chabauty-Coleman method to even smaller
primes is finding a suitable variant of Lemma 1.5. The key to the method
of Chabauty-Coleman is the remark that if Chab(A, K, v) < g, then there
exists a linear projection 6 : K¢ — K, such that the composition 6 o log :
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A(K,) — K, is an analytic function A that vanishes on A(K). As we shall
recall, it turns out that there always exists a differential n € I'(A, Q4,k,)
such that d(A) = n. Given a curve X/K and a map j : X — J defined
over K, one can consider the associated analytic function A o j : X(K,) —
J(K,) - K, and the differential j*(5). A bound for | X(K)| is obtained by
bounding the number of zeros of A o j in terms of the number of zeros of
j*(m). The proof of 1.1 is postponed to 1.8.

We begin by fixing some notation. Let V/ K, be a proper, geometrically
integral variety of dimension e. A model V/QOk, of V/K is an integral
scheme V and a flat proper morphism V — Spec(Ug,) such that the
generic fiber of this morphism is the given map V — Spec(K). Let V :=
V X spec(0k,) Spec (U, / (7)) denote the special fiber of V. Since V is proper,
we have a reduction map r : V(K,) — v(IF‘q), which sends points in
V(K,) to points in V(IF,). More precisely, let P be a point in V(K,). The
image of P under the map r is the intersection of V with the closure of
the image of P in Vi, . This map is well-defined because the closure of the
image of P in Vi, corresponds to the prime spectrum of the ring of integers
O in some finite extension L/K,, and such a ring @, is local when K, is
complete. If O € v(Fq), denote by Dy (L) the set r~1(Q) N V(L). When
P € V(K,), the set D,(p (K,) is called the residue class of P. For simplicity,
we may denote the set Dy (K,) simply by D.

Let now 4 be the Néron model over Ok, of an abelian variety A/K.
The scheme + is not in general proper over Ok,, but the natural map
A(Ok,) — A(K,) is always an isomorphism. We use this map to define
a reduction map r : A(K,) — A(F,).

Denote by Vs (IF,) the set of points of v(IE‘q) which are smooth points
of the map V — Spec(0Ok,). Since the field I, is also the ground field
for 'V, we find that the set V,,(F,) is in fact the set of regular points of V
with residue field F,. Let Q € V,,,(F,). Each point P € V(K,) for which
r(P) = Q givesrise to aprime J in Qv ¢ of height e. Since O ¢ is aregular
local ring, J can be generated by e elements zi, . .., z,. We will call these
z; local coordinates for P. Each z; can be evaluated at any other point
P e DQ(f,,) by setting z;(P’) equal to the image of z; in O o/P’, where
P’ is the prime in Oy o corresponding to P’. A set of local coordinates
defines a bijection between D¢ (K,) and 7Ok, X --- X mOk, (Where the
product contains e terms). Indeed, let @V,Q denote the completion of the
ring O, ¢ with respect to the prime ideal . One shows that the canonical
map from Homg, (@V’Q, Ok,) to Homg, (Oy ¢, Ok,) is a bijection. We
say that the formal power series

L
a2 € Kllzn .zl

l‘l,-A--,l'eZO

converges in DQ(EU) if, for any P’'e DQ(EU) with residue field L, the
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sum

3 iz (P2 (P

Il seeny ie>0

converges in L,,. This power series defines an analytic map from D, (K,) to
K. We shall use repeatedly the following important fact: Given any analytic
map A on V(K,) which, when restricted to Dy (K,), is equal to an analytic
map given as above by a power series expansion converging on Dg(K,),
then the determination of the zeros of A on Dy (K,) is equivalent to the
determination of the zeros of the power series on the set (7 9k, )°.

Proposition 1.2. Let A be an abelian variety of dimension g and let n €
I'(A, Q4/k,). Then there exists a unique map A, : A(K,) — K, such
that: a) A, is analytic, b) d(A,) = n, and c) A, is a group homomorphism.
Let A be the Néron model of A over Ok,. Let P € A(K,), and choose
asetzy, ...,z of local coordinates for P. Then there is a nonzerot € Oy,
(independent of P) such that th,, restricted to D,p,(K,) has a local power
series expansion

i i
t)x,, =by + Z b,»lmigz’f <o Z;

i1y0mnrig =0

with by € K, and izb;, . ;,
expansion converges on D,(p (K,).

€ Ok, for £ = 1,...,g. This power series

Proof. Let 0 denote the identity in A(K,). The multiplication law
A X Spec(Ok,) A — A gives a map (QA,r(O) —> (9(,\,’,(0) ®(9Ku (9A,r(0)- Since
O 4.r©) 1s a smooth local ring, we can choose a set of local coordinates at 0,
and obtain by completion the formal group law ¥:

Ok, llz1, ..., 2g]l — Ok, llz1, ..., 26]] oy, Ok, llz1, ..., Z,]l.

Letn € I'(A, Q4/k,). Thus 7 is an invariant differential on A (see, e.g.,
[Sha], page 168). There is a nonzero t € O, such that rn € I'(A, Q.4/04,)-
The invariant differential 71 induces an invariant differential for the formal
group law, in the sense of [Hon], page 216, and can be written as

8

i i
M=) Y a3 zgdy

e=1iy,...,ig>0

with a;, i« € Ok, Itis shown in [Hon], 1.3, that a formal integral G, €
Ky[lz1, ..., zg]] of m exists. We choose G, such that G,,(0) = 0. Such
a formal integral converges on the kernel of the reduction D, ), because
lim,_, o x"/|n|, = O for any 0 < x < 1. Taking a basis 7, ..., n, of
the invariant differentials, Honda describes in [Hon], Theorem 1, a strict
isomorphism f of formal groups over K, between ¥ and the additive
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formal group of dimension g. Evaluating on points, we obtain a group
homomorphism

[ Droy(Ky) = F (Ok,) — K3,

given by P > (G, (P), ..., G, (P)). Since ) can be written in terms of
N, ..., Ng, it follows that there exists a projection p : K§ — K, such that
the composition p o f : Dy)(K,) — K, is a group homomorphism given
by the power series G,.

Let H be any open subgroup of A(K, ), suchas D, (K,). Since A(K,) is
compact, [A(K,) : H]is finite, so for any P € A(K,), there is some positive
integer cp such that cp P € H. Thus, any homomorphism ¢ from H to a
K -vector space W extends uniquely to a homomorphism ¢ : A(K,) — W
by setting ¢(P) := ¢(P)/cp. In particular, the homomorphism G, extends
uniquely to a homomorphism A, : A(K,) — K,. Welet A, := %)\,,,.

Let P € A(K,), and let ¢tp denote the map P’ +— P’ + P on A(K,).
Writing 3,1, for the composition A, o tp, we see that d(tpr,) = d(r, +
An(P)) = dA, so the differential di, must be translation invariant. Hence,
it must be equal to n on all of A(K,) since 7 is also translation invariant.

To show that A, has the desired convergent power series expansion
at any point in A(K,) (which implies in particular that A, is analytic),
we note that if P € A(K,), then for all P’ with r(P) = r(P’), we can
write A,(P") = A, (P" — P) + A,(P), with (P — P’) € D, (K,). Let
us denote as ¢p the map from O 4 ) to O4 p induced by 7p and use
7 = ¢p(z;)),i = 1,...,g, as local coordinates on D,p (K,). Then, A,
expanded on D;(p)(K,) using the coordinates z}, . . . z, has the ‘same’ power
series expansion as its power series expansion on D, (K,) using zy, .. ., Zg,
except with a different constant term (namely, A, (P) instead of 0).

The function A, is unique because any analytic homomorphism A :
A(K,) — K, with d()) = n must have the same power series expansion
as A, in some neighborhood of 0 and must therefore equal A, on this
neighborhood; since any neighborhood contains an open subgroup of finite
index in A(K,) this means that A = A, everywhere. This concludes the
proof of 1.2. Further information about p-adic integration can be found in
[Col] and [Cz].

We define
log : A(K,) —> Hom(I'(A, Qa/x,), K,)

by the formula log(P)(n) := A,(P). This map is well-defined since 1, is
unique. It is clearly a group homomorphism since the maps A, are. Let

6, : Hom(I'(A, Q4/k,), K,) — K,

denote the evaluation at 7. Then A,, = 6, olog. It follows from the definition
of Chabauty rank that whenever Chab(A, K, v) < g, there is a nonzero
differential n € I'(A, Q4/k,) such that 1,(A(K)) = 0.
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Proposition 1.3. Let X/K, be a smooth proper geometrically connected
curve of genus g > 1. Given a differential w € T'(X, Qx/k,), there is an
analytic map

(1) Ao P X(K)) — K,

such that d(\,) = w. Moreover, let X5 be any model for X over Ok, and
assume that X,,(IF,) is not empty. Let P € X(K,) be any point with

r(P) € X, (Fy). Let u be a local coordinate for P. Then there is a nonzero
t € Ok, (independent of P) such that tA,, has a local power series expansion
converging on D,p (K,) of the form

o0
@) tho=ag+ Y %"u’"
=1

with ay € K, and a,, € Ok, for m > 0.

Proof. Let J/ K, denote the jacobian of X/K,. Weuse P € X(K,) toobtain
an embedding j : X — J defined over K. This embedding induces an iso-
morphism j* from I'(J, Q,/k,) to I'(X, Qx/k,), so every w € I'(X, Qx/x,)
is j*(n) for some n € I'(J, ,/k,). The function A, := A, o j is an analytic
map from X(K,) to K, and d(A,,) = d(A, o j) = j*dA, = j*nw. We may
choose a non-zero t € Ok, for which 7, has a power series expansion
as in Proposition 1.2; we will use this expansion to derive power series
expansions of the form (2) for 7A,,.

Let X*" denote the subset of X that is smooth over Ok, . Denote the
Néron model of J by ¢. The universal property of Néron models implies
that the map j extends to an Ok, ,-map ¢ : X*" — ¢. (In particular,
¢ Xk, Ky = j.) It follows that j(D,p)(K,)) is contained in D,(](p))(K ).
We also obtain a map of local rings O 4(-p) = Ox.r(p since ¢ is a O, -
morphism. Completlng Og.4-(p) at the prlme corresponding to j(P) and
Ox.r(p at the prime corresponding to P gives a map ¥ : Ok, [[z1, ..., 2]l
—> Ok, [[u]], which yields a power series for A, as

Do=bo+ D by i w(d) vz,

i1y ig>0

Furthermore, since d(t),,) = j*(tn), this power series must have a derivative

of the form .
¢*(Z Z ..., ig,eZ;1 ---z?dze)

€=1i1,..0,ig>0

with a;, i, € Ok,. Computing the above out (by the chain rule) gives

8
. i
i) =Y N V(@) Uz Td

£=1i1,..0rig>0



Thue equations and the method of Chabauty-Coleman 55

which is in O [[u]]ldu since % € Ok, [lu]] (since it is simply the formal
derivative of ¥(z;) € O, [[u]]). Thus, tA, has a power series at P that is

the formal integral of a power series with Ok, coefficients, as in (2).

1.4. Let us now prove a simple lemma that will allow us to bound the
number of zeros of A, in terms of information about local power series
expansions. Similar arguments can be found in [Col], [Co2], [McCl],
[McC2], and [Wet]. For simplicity, let us assume that K,/Q,, is unrami-
fied. Let A : X(K,) — K, be a p-adic analytic function. Let P € X(K,)
with reduction 7(P) = Q in X and let u be a local coordinate at P. This local
coordinate induces a bijection Dy (K,) — pOk,. For simplicity, we shall
denote Dy (K,) by Dg. Suppose that A has a power series expansion of the
form A = ay + anozl %um, where ay € K, a,, € Ok,, and v(a,,) = 0 for
some m, convergent on Dy. We can thus consider A as a power series A(u)
in the variable u, converging on the disk |¢#| < |p|. The p-adic Weierstrass
preparation theorem ([Kob, Thm. 14]) allows us to bound the number of
zeros of A in Dy. As this result is most easily stated on the disc O, , we
will make the substitution z := u/ p. This gives us a power series expansion
for A in z as

o0
A
)\’ — " m m,
() =ao+ ; A

converging for all z € O,. Let us make the definitions

I(A, Do) := min{m | v(a,) < 0},

J(X, Dg) := min{m | v(agpe/ﬁ) > v(a, p"/m) forall £ > m},
(in the above formula when m = 0, read a,, p™ /m to be ay). The Weierstrass
preparation theorem then implies that the number of z € O, for which
A(z) = 0 is at most J(A, Dy). It also follows from this theorem that when

I\, Dg) > 0, the number of z € O, for which 1'(z) = 0 is at most
I\, Dg) — 1 (where 1/(z) denotes the formal derivative of A(z)).

Lemma 1.5. Let p > 2. Assume that K,,/Q,, is unramified. Write I(x, D)
simply as I. Let d be any integer such that p > d and p? > I +d.

a) Supposethatp | I+1,142,...,0r[+d—1.Then J(A, Dg) < [+d—1.
b) Suppose that p4 1+ 1,1+2,...,and I +d — 1. Then J(A, Dgy) < I.

Proof. Consider the function p(x) := x — logpx. It is clear that p(m) is
a lower bound for v(a,, p™/m) when a,, € Ok, , since v(x) < logp x. The
derivative of p(x) is p’(x) = 1 — 1/xIn p, so when p > 2, the function p is
increasing for x > 1. Note that p(/ +d) =1 +d — logp(l +d) > I, since
I+d < pd.Similarly, foralll <i <d—1,wehave p(/+i+d) > [+i—1.
Let us now prove a). Suppose that p | / +i forsome 0 <i <d — 1. We

find that
Ar+i 4 <T4i—1
v(1+ip ) <Il+1i .
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Since p | I +i,and d — 1 < p, we find that p 1 I + j, for all j =
e

i+1,...,i +d — 1. Hence, v(%) >I1+j>1+i—1forall

j=i+1,...,i+d— 1. As we mentioned above,

I+i+d
( Artivd P

) >pU+i+d)>T+i—1.
I+i+d>_p(+l+)> +i

Since p(x) is increasing for x > 1, it follows that for all j > I +i + 1, we
have v(a;p’/j) > I +i — 1. Hence, J(A, Dg) < I(A, Dp) +d — 1.

Part b) is clear when / = 0. To prove b) when / > 0, it is easy to see
that we need only show that v(%pj) > [ forall j > I, since v(#) <1
for I > 0. Now, since p{ I +ifori =1,...,d — 1, we find that

Ai+i 4 .
v >1+4+i>1
(I+ip )‘

Recall that p(I + d) > I. Using the fact that p(x) is increasing for x > 1,
we see that p(j) > [ for all j > I, and Lemma 1.5 is proved.

Let us fix some notation to be used in our next proposition. Let X /O,
be any model of X/K,. Let Q € X, (IF;). Denote by @ the local ring
Ox, 0. Let Py € X(K,) be a point reducing to Q. Choose a local coordinate
u for Py. Let (§Q denote the completion of the ring @ at the prime (). One
easily shows that the natural map from the ring Ok, [[u]] of formal power
series to the ring @Q (which sends u to u) is an isomorphism. It is also easy
to check that the @ y-module of relative differentials 6,0y, 18 generated
by du. Any differential w € €2¢,,0,, can thus be written as a power series
o= anu"du with a,, € Ok, forallm € Zy.

Since Q is a nonsingular point of X, the local ring Ox o is a discrete
valuation ring, and we denote by vy its valuation. For any P € Xk,
we denote by vp the valuation of the local ring Ox, p. A differential
w € T'(X, Qx/0,,) pulls back to a differential i*w via the natural map
i : Xg, — X from the generic fiber X ¢, of X to X. We denote by (i*w)
the divisor of zeros of i*w, and we shall write (i*w)g = ) p vp(i*w) P.

Proposition 1.6. Let X/K, be a smooth proper geometrically connected
curve of genus g > 1. Let X/Ok, be a model of X/K,. Keep the notation
introduced above. Let o € I'(X, Qx0,,) and let Q € X s (Fy). Then there
exists an element t € K, (dependent on Q) such that tw € T'(X, Qx/04,)

and has a local power series expansion (when viewed as an element of

Q@Q/@KU)

o0
3) tw = Z A" du,

m=0
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with a,+1 € Ok, for allm € Zs, such that

@ minfm | van) =0} = ) [Ku(P): Ky Jup (o),

r(P)=Q
where the sum is taken over all points P of the scheme X, such that the
intersection of the closure of P in X with X is Q.

Proof. Since Qx; /¢, is locally free of rank 1 at Q because Q is a smooth
point by hypothesis, the element du is a generator of the stalk 2¢,,/0,, Of
Qxj0k, at Q. We can write the stalk of w at Q as sdu, where s € Og.

¢ / :
Factor s as s = y,'---yn", where the y; are generators for primes

corresponding to points P; on the generic fiber of X. It is not hard to see
that vp, (i*w) = ¢;. Indeed one obtains the local ring Ox, p; localizing
O at the prime 1deal generated by y;, so we see that the ideal generated by
sin Oxy | P; is just MP , Where Mp; is the maximal ideal in Oy, P since

f pulls back toa generator for the stalk of Qu. sk, at P, s f must pull back
to a differential with order of vanishing equal to v pi(s) =¢; for all j.

After dividing s by 7*" we obtain an element s, that is not in 70 ¢ (thus

t = 7~ will satisfy the statement of the proposition). Now complete O
at (). We obtain a power series expansion s;du = anozo A u™du. It is

easy to check that @y /() is the completion of Oy /() at the maximal
ideal (u). Thus the valuation vy of Oy /() extends to a valuation on

@Q /(7), again denoted by v, and identified with ord,. Denoting by ¢, the
map taking (§Q to (§Q /(7r), it is clear that

min{m | v(a,) = 0} = vy (P (s1)).
Since v (¢ (51)) = i Livo (¢ (), itsuffices to show that vy (¢, (y;)) =

j=1
[K,(P)) : K,]. This follows from the fact that:

vo(¢x () = dimg, ((O0/7O0)/(¢x(y)))) = ranko,, (O0/v;O0)
= [Kv(Pj) . KUL
since Op/v;O is a free Og,-module. This concludes the proof of 1.6.

Let us now apply Lemma 1.5 and Proposition 1.6 to the sort of p-adic
analytic function that arises in the Chabauty-Coleman method.

Proposition 1.7. Let X/K be a curve of genus g > 1defined over a number
field K with completion K, unramified over Q. Let X/ O, be any model

for X/K,, and let U C X, (Fy). Let d be any positive integer such that
p>dand p* >2g —14+d.If A, is as in (1), then

(&) rH W) NG O0)] < I‘lll+(p )(2 2).
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Proof. Choose Q € U. For any nonzero element ¢ € K, multiplying A,
by ¢ will not change the zeros of A,,. Furthermore, A,, = A, (since dA,, =
d(th,) and 1, (0) = 0 = 13.,,(0)),50 [r =" (Q)NA, 1 (0)| = |~ (Q)NA,, (0)].
Thus, we may choose t, € K, and apply Proposition 1.6 to obtain a power
series expansion of the form (3) for which equation (4) holds (since w €
I'(X, Qx/k,) in (1), we first choose #' so that #'w € I'(X, Qx/0,, ) and apply
1.6 to 'w). We denote by Z(w, Q) the sum Z,(P):Q[KU(P) K Jup(i*w)
appearing in the statement of Proposition 1.6. When 1(%,,,, Do) > 0, we
must have Z(w, Q) = (A0, Do) — 1, since d(Ay,) = fw. Since

D Z@.Q) = ) Ku(P): KJup(ifo) =28 =2 < p' —d — 1,
Qe‘u PEXKU

we find that /(A;,,, Do) < p¢ —d, and we can apply Lemma 1.5 (note that
the hypothesis on the coefficients of X in 1.4 is satisfied since Z(w, Q) > 0).
When I(4,0, Do) = 0, then A, is invertible and [Dg N A;l(O)l = 0. We
obtain

ol Y [Dena'0)

QU
IDoNA5! (0)]>0
< Y JCuger Do)
QU
(6)
< ) (Z,Q+d)
Pl(Z(w,0)+2),...,

or pl(Z(w, Q)+d)

+ Y Z@ O+,
PIZ(0.004b,

If p| (Z(w, Q) 4+ i) for some i = 2,...,d, then Z(w, Q) > p — d.
Since ZQe‘u Z(w, Q) < 2g — 2, there are at most (2g — 2)/(p — d) points
0 e X,”(Fq) for which p | (Z(w, Q) +i) forsomei = 2, ..., d. Plugging
this information into (6) shows that |[r~!(U) N k;l (0)] is bounded as desired
by

2g —
p_

2 d—1
ZZ(w,Q)+|‘ll|+(d—l) d§|U|+<l+m>(2g—2).

QeU

We are now ready prove Theorem 1.1.

1.8. Proof of 1.1. Each differential n € I'(J, €,/k,) gives rise to a homo-
morphism A, : J(K,) — K,. Since Chab(/J, K, v) < g, there is a nonzero
n for which A, (J(K)) = 0. We may assume that X(K) contains a point Q,
as otherwise our assertion is trivial. Hence, we may embed X(K,) into J
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via the mapping j : X — J, which sends P € X(K,) to the class of P — Q.
Now, n pulls back to a differential w on X, and A,, restricts to a function A,
that vanishes on X (K) (because j sends points in X (K) to points in J(K)).
Applying Proposition 1.7 then gives the desired result.

1.9. Note that if an abelian variety A/K is K-isogenous to a product [ ] 4;,
then Chab(A, K, v) = ) _ Chab(A;, K, v). Thus, the method of Chabauty-
Coleman can be applied to A if and only if Chab(A4;, K, v) < dim(A;) for
some i. We will use this fact later.

Note that the Chabauty rank Chab(A, K, v) is zero if and only if the
Mordell-Weil rank of A/K is zero. When this is the case, we can strengthen
Theorem 1.1 as follows.

Proposition 1.10. Let X/K be a curve of genus g > 1 defined over a num-
ber field K with completion K,/Q, such that v(p) < p — 1. Let X/Ok, be
any regular model for X /K. If the Mordell-Weil rank of X /K is zero, then
IX(K)| = [Xns(EgI.

Proof. We claim that for each Q € X, (Fy), the set r~1(Q) contains at
most one K-rational point of X. Indeed, suppose that P and P’ belong to
r~'(Q) N X(K). Then P’ — P belongs to the kernel of reduction of J(K),
which does not contain any torsion point other than O (see for instance [Ser,
LG 4.25-4.26]). Thus, P’ = P.

The following statement, suggested by McCallum at the 1999 Arizona
Winter School, is obtained from Theorem 1.1 by considering ¢ = 1 and
U = Xps(IFy).

Corollary 1.11. Let X/K be a curve of genus g > 1 defined over a num-
ber field K with completion K, unramified over Q,. Let X/Ok, be any
regular model for X /K. If p > 2g and Chab(J, K, v) < g, then |X(K)| <
|an(Fq)| + 2g —2.

In view of 1.10 and 1.11, it is natural to wonder, under the hypotheses
of 1.11, whether the bound for |X(K)| can be made to depend on the
precise value of Chab(J, K, v), such as a bound of the form |X(K)| <
|%,s(F,)| 4+ 2Chab(J, K, v).

2. Constructing regular models of curves

Let K be a field with a discrete valuation vg. Let Ok denote the ring of
integers of K, with maximal ideal (g ) and residue field k. Let p := char(k).
Let X/K be the nonsingular proper model of the plane curve C/K given
by a homogeneous equation f(x,y,z) € Oglx, y, z] with unit content.
Explicitly resolving the singularities of Proj(Oklx, y, z]/(f)) to produce
a regular model X/Ok of X/K is very difficult in general; in this article,
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we use instead a quotient construction to obtain information on a regular
model of X/K. This construction can be summarized as follows. It may
happen that over a Galois extension L /K, a normal model % /O, of X /L
can be described. If the Galois group Gal(L/K) acts on ¥, lifting its action
on Spec( ), then we may consider the quotient % /Gal(L/K) as a scheme
over Spec(Ok). The scheme Y /Gal(L/K) is a normal model of X/K and,
thus, a desingularization p : X — ¥%/Gal(L/K) leads to a regular model
X/Ok of X/K. A key feature of this method is the fact that when Y is
regular, the singularities of Y /Gal(L/K) are quotient singularities and that
when L /K is tame, such singularities are well-understood and, thus, a model
for X /K can be described.

To apply the Chabauty-Coleman method to the case of the curves
Xrn/Q, we need a description of a regular model for X over Z;‘,’”.

These models are obtained in two steps, first by describing a model of X,
over a well-chosen extension L/Q}", and then by using the quotient con-
struction to obtain a model over Z)"". The second step is done in the next
section, in Propositions 3.1, 3.2, 3.3, and 3.5. In this section, we first con-
struct regular models of the curves X, over the appropriate extensions L,
and then we review for the convenience of the reader the details of the quo-
tient construction. To deal with the cases where F(x, 1) does not have simple
roots, we introduce the following notation. Let F(x, 1) = ¢ ]_[f.:1 (x —a)™
in K[x]. Let

d*(F) = ] [ — @) € O.
i#]

When a curve has potentially good reduction after a tame extension L /K,
such as the superelliptic curves X := X with ng t+ d*(F) and p > n
(see 2.1 below), the quotient construction is applied to the smooth minimal
model ¥/0; of X, /L, where L/K is chosen large enough to ensure that
X1 /L has good reduction. In this case, the resulting model for X /K is not
hard to describe and this description is reviewed in 2.15.

The core of this section is the study of the difficult case where g | d*(F)
and g | h. In this case, we are not able to describe a proper regular model
for X over Z4", but we will construct in 3.5 just enough of a regular
model to be able to bound the number of residue classes of primitive integral
solutions to the Thue equation F(x, y) = h. Let L/K be the splitting field
over K of the polynomial F(x, 1), and let Y /@ be the normalization of the
model

C :=Proj Or[x, y, z1/(h7" — F(x, y)).

The quotient construction is applied to ¥/@, in 3.5. In this section, we
describe some smooth open affine subsets of the model Y and prove in
2.6 the crucial result that the reductions of the primitive integral solutions
are contained in at most n such open subsets. Let us start with a couple of
preliminary lemmas.
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Lemma 2.1. Assume that char(k) { n. Let X := X, /K.

a) If g td*(F) and g t h, then X/K has good reduction.
b) If nx 1 d*(F) and 7wk | h, then X/K achieves good reduction over

L := K(h).

Proof. Consider the model C/Ok givenby Proj(Okl[x, y, z]/(h7"—F(x, y))
and its normalization C"" /O k. The generic fiber of C"*", that is, the curve
Xrp, has genus equal to 2g(X) —2 = n(s — 2) — > i_, ged(n, n;). If
g(X) =0, then X/K has obviously good reduction over O g. Assume then
that g(X) > 0. Recall that deg(F)F = x% + y%. Thus, at a singular point

(x0, ¥o) of the reduction F — h = 0, we find that deg(F) F'(x¢, yo) = O.
Since i # 0, p | deg(F) when the reduction has a singular point. When
7k 1 h and g { d*(F), we find that the geometric genus of C}”" is equal
to g(X). Thus, C/" is non-singular since its arithmetical genus is equal to
the genus of X. It follows that C"*" /O is the (minimal) regular model of
X/K.

If g | h, consider the change of variables 7/ = Vhz, x' = x and y =y
Then Proj(O.[x', y', z'1/(z" — F(x', ¥'))) is a model for X; /L. Hence, we
may apply a) to find that X; /L has good reduction. This concludes the
proof of 2.1.

For most of the applications that we have in mind, the residue field
Ok /() will be ¥, and we will assume that p > n. The following lemma
shows that we may assume, under these hypotheses, that F(x, 1) is monic.

Lemma 2.2. Assume that |Ok/(wk)| > s. Then, up to a change of vari-
able, we may assume that F(x, 1) is monic in Og|[x].

Proof. Let L/K be an extension such that F(x, y) = [[i_;(Bix — piy)™,
with B;, p; in O The substitution y’ = y+ux yields F(x, y') = [];_, ((Bi+
pi)x — p;y)". Since the coefficients of F have no common factor, we must
have min(vz (B;), v (p;)) = O for each i. Thus, for each i, we will have
piu + B; € OF for all but one choice of residue class for u. We have s
expressions p;u + f; and more than s residue classes in Ok /(7wg), SO we
can choose u € Ok with p;u + B; € Oj for all i. Then, the coefficient of x"
in F(x,y") = [Ii_,; (B + piw)x — p;y)" will be in O N O = O%.

2.3. Some regular affine subsets of the normalization of C

In what follows, we assume that F(x, 1) is monic, that wx | A& and that
g | d*(F). Assume also that K is complete, so that for any finite extension
L /K, the integral closure @, of Ok in L is a local ring.

Let L/K be the splitting field over K of the polynomial F(x, 1). We
denote by v the valuation of @, and let 7 be a uniformizer of @,. We write
our original equation F(x, y) = h as

N
[T —cimy = pm,
i=1



62 D. Lorenzini, T.J. Tucker

where p is unit in @y and w = v(h). Let us say that P = (a,b) is
a primitive integral solutionto F(x,y) = hifa, b € Ok and gcd(a, b) = 1.
We will sometimes also refer to such an (a, b) as a primitive integral point.
We describe below an affine regular scheme U/O; such that U Xgpec(o,)
Spec(L) is open in Xp; and P € U(L) has a non-trivial reduction
modulo (). In other words, the closure of P in U includes a point on
the special fiber of U.

Consider any root «; of F(x, 1) such that v(a—a;b) = max;(v(a—a;b)).
Let t := v(a — a;b). Change variables from x to zp := x — o;y, so that
F(zo,y) = 20 ]_[j;ll(zo — y;»)", where y; == a; — «; for j < i and
Yj =4 — «; for j > i. Define s := 0, and then recursively define

se i=min{v(y;) | £ > v(y;) > si-1},

for k > 1. We obtain in this way a finite increasing sequence of integers. If
t is not the largest integer of this sequence, add ¢ to the sequence. Denote
the elements of the new sequence by sy < s; < --+ < s, = t. Define, for
k < m,
B =1y | v(y)) = sl

The set 4, is defined to be {y; | v(y;) > s,}. If ¥ is aroot of F(zo, 1), let
n(y) denote its multiplicity. Then, for k < m, define z; to be zo/*, and let
F} be the polynomial

Fi(zi, y) := 1_[ 1_[ SkSizy — —Ajy)n(}/) 1_[ (Zk . W_Sky)n(y).

J=0yes; V¢U_,;:05.i

Set
k m
we= Y (Y nMsi+ Y O n)si.
j=0 ye4; Jj=k+1 yes;

Then F(zx, y) = Fo(zo, y)r~"*. Finally, let

A = Oplze Y/ (Fi(zi y) — ™),

for k < m (recall that h = un™). Note now that when (a, b) is primitive
and 7 | h, then v(b) = 0. Indeed, if v(b) > 0 and (a, b) is primitive,
then v(a) = 0. Thus, v(a — «;jb) = 0 for all j, contradicting the fact that
v(F(a, b)) = v(h) > 0. Hence, v(b) = 0. If follows that for j # i, the
inequality

v(a — baj) > min(v(a — ba;), v(ba; — b))
implies that either v(a — b ;) = t and v(e; —«j) > t,0r v(a —ba;) < t and

v(a—baj) = v(a; —«). In particular, we find that when (a, b) is primitive,
W= Uy,.
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Lemma 2.4. Assume that p { n. The ring A, is regular and Spec(A,,)/
Spec(Oy) is smooth.

Proof. The generic fiber of A, is easily checked to be smooth. Hence, we
need only check points on the special fiber of A,,. We note that modulo 7,
the equation F,,(z,,, y) = u is equivalent to the equation

[T Gw — G7a0y)"” H [T (-G7my)" | -m=o.

YESm j=0 yes;

because 7" = 1 as noted earlier. Since 7t # 0 and p { n, this equation
defines a nonsingular affine curve in A2. Thus, the special fiber of A,, is
nonsingular; therefore all the points on the special fiber of A,, are regular
and A,, is a regular ring.

Lemma 2.5. Assume that p 1 n. The affine scheme Spec A, is an open
subset of Y, the normalization of C := Proj Or[x, y, z]/(hz" — F(x, y)).

Proof. Since A,, contains Ay and isregular, A,, contains the integral closure
of Ap. Thus we have a natural map v : Spec(4,) — Y, with ¥ normal
and ¥ generically an isomorphism. We are going to show below that r is
quasi-finite. It follows then from Zariski’s Main Theorem that j is an open
immersion. There is a natural ring homomorphism A;_; — Ay that sends
Zk—1 to wHSk=17, Define

Gk(zka y) — 1_[ 1_[ Sk— S,Zk _S'iy)n(y)-

j=0yes;

Let S; denote the multiplicative subset of A, generated by G(zx, y). We
claim that A; is integral over Sk__l1 (Ax_1). Indeed, it suffices to show that z
is integral over Sk__l1 (Ax_1). Recall that in Ay,

w—u - - n(y) —u
Fi(zi, ) = u ™ = Groa it 0 [ [ TT (e = v %9)"™" = pu =
j=kyes;

=0.

Thus, the image of z in Ay is the root of a monic polynomial over S, _11 (A1)
(since G,_; is of course a unit in this ring). Hence, it follows that the map
Spec(Ar) — Spec(Ax_1) is quasi-finite for any k > 1, which concludes
the proof of 2.5.

Let U(w;) := Spec(A,,). The primitive integral point P = (a, b) in
X .5 (L) corresponds to the point (77 ~"(a — «;b), b) in U(e;)(L). Since this
point is integral it has a non-trivial reduction in the special fiber of U (c;).
Denote by & the set of integral primitive solutions, so that

P ={x,y € ((QK)2 | F(x,y) =h and ged(x, y) = 1}.
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Proposition 2.6. Assume that p t n. The closure of P in the normalization
Y/0L of /Oy is contained in at most s regular affine open sets; namely,
this closure is contained in the union of the images of the sets U(«;), where
o; runs through all the roots of F(x, 1) such that there exists a primitive
integral point (a, b) with v(a — a;b) = max ;(v(a — o ;b)).

Proof. The proposition follows from our next lemma.

Lemma 2.7. Let 7w | h. Let (a, b) and (a', b') be elements of P. Suppose
that v(a —a;b) = max;(v(a—a;b)) and v(a' —a;b") = max;(v(a' —a;b")).
Then v(a — a;b) = v(d' — o;b").

Proof. Recall that v(b) = 0 when 7 | h and (a, b) is primitive. Suppose
that v(a — a;b) and v(a’ — a;b’) are not equal. We may assume without loss
of generality that v(a/b — ;) > v(d'/b’ — «;). We claim that this inequality
implies that v(a/b — «;) > v(a'/b' — «;) for all j. Indeed, v(a/b — a;) >
v(d' /b —a;)isclearifv(a' /b'—a;) < v(a/b—o ). Thus we may assume that
v(d' /b’ —a;) > v(a/b—aj ). Fromv(a/b—a;) > v(a' /b’ — ;) we find that
v(a/b—ad' /b)) = v(d /b —a;). It follows from v(a/b—a’ /b)) > v(a/b—a;)
that v(a'/b" — «j) = v(a/b — «;), and our claim is proved. This claim
contradicts the fact that v(F(a, b)) = v(F(d', b)) = v(h), and the lemma
follows.

Slightly more can be said about the closure of & in ¥ /O . Consider the
following two schemes, U(«;) attached to a primitive integral point (a, b)
with associated valuation #, and U (o) attached to a primitive integral point
(@', b') with associated valuation ¢'. We claim that if v(o; —or;) > min(z, t'),
then the images of U(w;) and U(«;) in Y are equal. Assume t' < 1. It
follows that v(a’ — o;b') > t'. Thus, v(d' — «;b’) = ¢/, and Lemma 2.7
shows that ¢+ = ¢'. We may then define an isomorphism from U(¢;) to
U(a) on the level of rings

OLlu', y1/(F,,(u', y) — u) —> Oplu, y1/(Fnu(u, y) — n)

by setting ' +— u + 7 (; — aj)y and y > y.

We have thus shown that there exist at most s disjoint disks in @, each
centered at a root of F(x, 1), such that if o; and «; belong to the same disk
(and have primitive solutions attached to them), then the images of U («;)
and U(«;) in Y are equal.

2.8. The quotient construction. Let X/K be a smooth proper geometri-
cally connected curve of genus g. Let L/K be a cyclic Galois extension
with Galois group Gal(L/K) =< o >. Let ¥/0, be a normal model of
X /L such that Gal(L/K) acts on Y, lifting its natural action on Spec(Op).
An example of such a model Y is the normalization in L(X) of a normal
model over Ok of X/K. Another example is the minimal regular model
Y/Op of X /L. Indeed, the following is well-known.
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2.9. Let %¥/0O be the minimal regular model of X; /L. The map o induces
a canonical morphism X; — X over the map o : Spec(L) — Spec(L).
Since X, is the generic fiber of Y, the map o induces a birational proper map
Y — Y Xspec(or) Spec (@) over Spec(Oy). By the universal property of
a minimal model ([C-S, page 310]), this map extends to a morphism from Y
t0 Y Xspec(o,) Spec (@) over Spec(O1). Since Y is reduced and separated,
this extension is unique. Hence, there exists then a unique automorphism
7 : Y — Y over the automorphism o : Spec(@;) — Spec(Op).

2.10. Let G =<t>,witht: Y — Y lifting o : Spec(@;) — Spec(Op).
The following fact is standard: Since Y/ is projective, the quotient Z =
Y /G can be constructed in the usual way by gluing together the rings of
invariants of G-invariant affine open sets of Y. The scheme Z /@ is normal
and, hence, its singular points are closed points of its special fiber. We let
f Y — Z denote the quotient map.

The normal scheme Z has quotient singularities. A desingularization
v : X — Z leads to a regular model X/Ok of X/K. Let K™ denote
the maximal unramified extension of K, and assume now that K = K.
When L/K is a tamely ramified field extension, the quotient singularities of
Z are well-understood. We recall their properties below, closely following
Viehweg’s article [Vie]. We refer the reader to his work for more details.
Though he states at the beginning of his paper that he considers only the
equicharacteristic case, his proofs of the facts listed below are also correct
in the mixed characteristic case.

ed

2.11. ([Vie, page 303]) Let7T: Y — Jand 7 : T — T be the
natural morphisms induced by t. Then the natural map

—red | _ —red  ————ed
Y <l 5 Z =Y <>

is an isomorphism of schemes over the residue field.
For any irreducible component Y¥; C Y, let
DY) = {n € G| u¥) =Y}and [(Y;) == {u € G | wpy, = id)}.
2.12. ([ Vie, page 303]) Letm; be the multiplicity of ¥; in % and let Z; :=
f(Y;). The multiplicity of Z; in Z is equal to m; - [L : K/[1(Y;)].

Recall the following terminology. Let (C - D) denote the intersection
number on a regular model X of two divisors C and D. Let us call chain of
rational curves on X a divisor D such that

(1) D =J., E;, E; smooth and rational curve fori =1, ..., q.

(2) (Ei - Eiyy) =1foralli =1,...,g —1and (E; - E;) = 0 for all
J # i+ 1. Moreover, (E; - E;) < —2foralli. Letus call E; and E, the
end-components of the chain.
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Consider again a normal model ¥/@,; with an action of Gal(L/K)
lifting the action on Spec(©,). Assume that U /@ is a smooth open subset
of ¥ /0O, such that U is invariant under the action of G. Let Z := U/G.

2.13. ([Vie, Sect. 6]) There exists a regular scheme X /O and a proper
birational morphism v : X — Z such that v induces an isomorphism
between X — {v~! (Zsing)} and Z — {Z,,} and such that, for any z € Z;,,g,
v~!(z) is a connected chain of rational curves. The point z belongs to an
end-component of the chain. Since U is smooth, we find that if z is a singular
point of Z, then v~!(z) intersects the rest of the special fiber X with normal
crossings in exactly one point, say on E;. (Viehweg states in 8.1.d) on page
306 of [Vie] that the model X, obtained by taking the quotient of U and then
resolving the singularities, has normal crossings.) Let us call the component
E, the terminal component of the chain v='(z). The other end-component

of the chain v~!(z) is attached to an irreducible component of X \ v=!(z).

2.14. ([Vie, Sect. 6]) Let f : U — Z denote the quotient map. Let
Z1,...,2q be the closed points of Z that are ramification points of the
morphism f : U — Z"“ . Then {z1, ..., zq4} 1s the set of singular points
of Z. Moreover, if v : X — Z is the desingularization of Z described in
2.13, then the multiplicity of the terminal component on the chain v=!(z;)

is equal to the number of closed points in the fiber ?_1 (zi)-

2.15. We now apply the quotient construction to the case where the model
Y /O is smooth. The scheme Z = Y/ < 7 > has an irreducible special fiber.
The reduced special fiber 7" is obtained as the quotient of Y by the > action
of <T> and is theE a smooth and proper curve. The multiplicity of Z in Z
equals [L : K]/I(Y). The singular points of Z are the ramification points
21, ..., 2q of the morphism f : Y — 2’“’, and the singularity at each of
these points is resolved by a chain of rational curves. The terminal curve on
the chain resolving z; has multiplicity equal to the number of closed points

in the fiber 7_1(zi). The regular model X /@ obtained as the minimal
desingularization of Z is thus very simple.

3. Applications of the method of Chabauty-Coleman

We may now apply the method of Chabauty-Coleman to the case of Thue
equations. Let g := g(Xr ;). We distinguish four cases, according to the
divisibility of d*(F) and & by p. Our main result is stated in 3.9 below.

Proposition 3.1. Let Xf;,/Q be such that for some prime p, p 1 d*(F),
pin, p* > 2g+1,andeither p t horn | ord,(h). Let K be any number field
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having an unramified prime 3 of norm p. Assume that Chab (X, K,'B) < g.
Then

—1
Xra(K)| < 28 — 22" 4+ |Xx, (F)).
p—2

where X/, is the minimal regular model of X .

Proof. Whenn | ord,(h), an obvious change of variable over Q shows that
XFn 18 isomorphic to X . oy, We are thus reduced to the case where

p 1 h. In this case, as noted in 2.1, Xr,;,/Q,, has good reduction over Z,,.
Thus, we can apply 1.1.

Proposition 3.2. Let Xf;,/Q be such that for some prime p, p 1 d*(F),
ptn, p*>2g+1, p|handn {ord,(h).Let K be any number field having
an unramified prime B3 of norm p. Assume that Chab(Xg;, K,B) < g.
Then

—1
Xpa(K)| < 28— 22— 4 np.
p—2

Let s denote the number of distinct roots of F(x, 1) in Q. If ged(n,
ord,(h)) = 1, then |Xps(K)| < 2g —2)0= Lt sp.

Proof. Let X := Xpg;. As noted in 2.1, X has good reduction over the
extension Q p((’/ﬁ), which is tame. Thus, we may apply the quotient con-
struction to describe a regular model of X/ Q"’ overZ).Let L := (@”’ ().

The extension L/(@”’ is Galois of order m := n/ gcd(n ord (h)) with
cyclic Galois group. Let &, be a primitive m-th root of unity, and denote

by o : L — L, with o(Vh) = &,Vh, a generator of Gal(L/Q"’) The
morphlsm o lifts to a morphism o : X; — X by setting

o : Llu,v, w]/(F(u,v) — hw") —> L[u, v, w](F(u, v) — hw")

with o(#) = u, o(v) = v and o(w) = w. Let Y denote the normalization of
Proj(O.[x, y, z]/(F(x, y) — 2")). Then Y /O, is the smooth minimal model
of X /L (see 2.1). The morphism o : X; — X extends to a morphism
o : Y — Y by setting

o :OLlx,y, zl/(F(x, y) = 2") —> OLlx, y, zl/(F(x, y) — 2")

with o(x) = x, o(y) = y, and o(z) = &,z. When restricted to the spe-
cial fiber Y of Y, the morphism o becomes an automorphism & over Fp
of Y, of exact order m, which lifts the standard automorphism of order m
of Proj(k[x, y, z1/(F — z")). This automorphism has s fixed points. Pulling
back these fixed points on Y produces at most Y i, ged(n, n;) fixed points
for the automorphism o of Y. Bounding Y ;_, gcd(n, ;) by n, we find that

the quotient map Y — Y/(c) is totally ramified over at most n points. It
follows from 2.14 that the desingularization X of % /(o) has a special fiber
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containing at most n (smooth rational) components of multiplicity one. Note
that when m = n, the fixed points of the automorphism o correspond to
the totally ramified points of the map from Y to P! obtained by composing
the map from Y to Proj(k[x, y, z]/(F — z")) with the projection map from
Proj(k[x, y, z]/(F —z")) onto its [x : y] coordinates. This composition map
has at most s totally ramified points. Thus, in this case the desingulariza-
tion X of ¥ /(o) has a special fiber containing at most s components of
multiplicity one.

Consider now the minimal regular model X/Z, of X/Q,. A point in
X(Q),) specializes in the special fiber X/F, to a smooth point, belonging
to a geometrically integral irreducible component C/IF,, of multiplicity one.
Let X := Xo ¥ Z, Z’;’. Since the self-intersection of C in Xy equals the self-
intersection of C X, FI, in X, (see, e.g., [B-L, 1.4]), we find that C XF, Fp
cannot be contracted in X, and, thus, corresponds to a component in the
minimal regular model o, of X/ Q). Since there is a natural morphism
X — X0, our description above of the special fiber of X implies that there
are at most n components of X that can contain the reduction of a Q,-
point, and that each such component is a smooth rational curve. Moreover,
each such component C meets the divisor Xy — C in exactly one F p-point.
Hence, the number of points in X, that can be reductions of Q p-rational
points is at most np. This concludes the proof of 3.2.

Let K be any number field, and let 3 be a maximal ideal of Q. Let
N(F,h, K, 3) denote the number of solutions (x, y) € ((9’()‘213 of F(x,y)=h

with ged(x, y) = 1.

Proposition 3.3. Let X5, /Q be such that for some prime p, p ¥ h and
p | d*(F), with p Y n and p* > 2g + 1. Let K be any number field hav-
ing an unramified prime *B of norm p. Assume that Chab(Xr,,K,'P) <g.
Let a(p) denote the number of I ,-rational points of the affine curve
F(x,y) —h =0mod p. Then

—1
N(F, h, K, ) < (2g — 2)% +a(p).

Proof. Consider the model C/Z, given by C = Proj(Z,[x, y, z]/(F —
hz")). The special fiber @/FI, is a plane projective curve with possible
singularities only at points (x : y : z) with z = 0. None of the singular
points of € can be the reduction of a primitive integral point (a, b). Resolve
the singularities of C to obtain a regular model X/Z, of Xr,;,/Q,. The only
points in X/ IF,, that can be reductions of primitive points in Xr;(Q,) are

the points in X (F,) that correspond to F ,-rational points of C with z # 0.
Applying 1.1 finishes the proof.
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Remark 3.4. When p is not too large compared to 7, a bound for a(p) better
than the Weil bound can be obtained as follows. Project an irreducible
component of degree d of the curve @/IE‘I, that is not a line onto an I ,-
rational projective line. Then the projection map has degree at most d. It
follows that a(p) < np.

Proposition 3.5. Let Xr;/Q be such that for some prime p, p | h and
p | d*(F), with p{ n and p* > 2g + 1. Let K be any number field having
an unramified prime B3 of norm p. Assume that Chab(Xg;, K,B) < g.
Assume also that the splitting field L/Q)) of F(x, 1) is a tame extension
(this happens for instance if p > s). When p < s, assume that F(x, 1) is
monic. Then N(F, h, K,*B}) < 2g — 2)2—:; + snp.

Proof. Let X := Xpyj. When p > s, we use 2.2 and change variables
so that F(x, 1) is monic. We may now use Proposition 2.6, which de-
scribes smooth open sets in a regular model of X over ;. Since the
extension L/Q7" is tame, it is cyclic, and we can thus use the quotient
construction to obtain information on a regular model of X over Z,. Let
Y /O be the normalization of €/, := Proj(O.[x, y, z]/(F — hz")). Let
(o) = Gal(L /Q;’). The morphism o induces obvious automorphisms
oc:Y—Y and o : € — C over o : Spec(Qy) — Spec(O.), compat-
ible with the natural map Y — C. We shall denote by G := (o) the
group of automorphisms of Y, resp. C, generated by o. Fix a root «; of
F(x, 1) such that there exists a primitive solution P = (a, b) € (Z’;,’)2 with
t :=vr(a—ba;) = max;(vy(a— ba;)). Recall the notation introduced just
before 2.6: Let U(e;) = Spec(Or[u, yl/(F(u, y) — ). Let

Y Oclx, yI/(F(x, ) —h) —> Oplu, y1/(Fu(u, y) — 1)

be given by x +— mju + «;y, and y — y. The induced morphism ¢ :
U(a;) — C was shown to induce an open immersion ¥ : U(x;) — Y in
2.5. The following lemma, whose proof is omitted, describes the possible
components of the special fiber U (¢;).

Lemma 3.6. Let k be any algebraically closed field. Let n € N with
char(k) 1 n. Let &, denote a primitive n-th root of unity in k. Let f(x, y) be
homogeneous of degree n in klx, y], and let © € k*. Then f(x,y) — uz"

factors in kl[x, y, z] if and only if there exist d | n and g € k[x, y] with
d

f=8" Then f — uz" = [TiL5 (g — & "/mz).
We will also need the following lemma describing the action of G on
the components of U («;). Recall the definitions of D(Y;) and I(Y;) in 2.11.

Lemma 3.7. Let Yy, ...,Y,q denote the irreducible components of y
whose generic points belong to U(a;). Then D(Y,) = D(Y;) = G and
I(Yy) = I(Y;) forall £, j € {1,...,n/d}.
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Proof. Since p t n, the group of n-th roots of unity is contained in Q.
and acts on C/@ as follows. A generator &, induces an automorphism
¢ : C — C given by:

OLlx, y, 21/ (F(x, y) — h?") == Oylx, y, 2)/(F(x, y) — hz"),

where x — x, y — y, and z — §&,z. The automorphism ¢ induces an
automorphism ¢ : ¥ — Y. The generator &, also induces an automorphism
¢ U(e;) - U(w;) given by

Oulit, Y1/ (F (. ) — )~ Op [, y1/(Fy (1, y) — 1),

where u + £ 'u and y — & 'y. The reader will easily verify that ¥ o ¢ =
@ o Y. Lemma 3.6 shows that ¢ acts transitively on {Y, ..., Y,/4}. Since
the morphisms o : ¥ — Y% and ¢ commute, and since ¢ acts transitively
on {Yy,...,Y,q}, we find that D(Y,) = D(Y;) and I(Y,) = I(Y;) for all
t,jefl,...,n/d}. Welet D := D(Y;) and I := I(Y;). Note now that
D = G.Indeed, if P = (a, b) reduces to Y; for some j, then o(P) reduces to
o(Y;). Since (a, b) € (Z;’)Z, we find that P reduces to a pointin ¥; No(Y;).
Since P reduces to a non-singular point of U(«;), we find that ¥; = o(¥).
This concludes the proof of Lemma 3.7.

The following subset of Y, V(«;) := [, T(¥(U(;))), is G-invariant.
Let P denote the closure of P in Y. Then P e Y (U(w;)) by construction.
Since P is fixed by 7, t(¥(U(¢;))) contains P and, thus, P € V(«;).

LetD := Proj(Z’;’[x, v, zl/(F—hz"))and D' := Proj(Z,[x, y, z]/(F —
hz")).Let Z'/Z, and Z /7" denote the normalization of D’ and D, respec-
tively. Clearly Z = Y/G. We have the following commutative diagram:

Y, ¢ Yy —“L-s e Spec(O})
I |
Zh ¢ Z —— D Spec(Z}))
I |
Z, ¢ Z s o Spec(Z,).

where Y is one of the n/d irreducible components of the special fiber of

V(«v;), corresponding to a factor G j(u, y) of degree d of F,, (u, y) — . The
map p induces a morphism p; : ¥; — p(Y;), given in coordinates by the
bottom horizontal map below:

Oulx, I/ (Fx, y) — h) —Ls Oy, y1/(Fy(u, y) — 12)

| l

Orlx, yl/(wr, x —ojy) ——> Olu, yl/ (7L, Gj(u, ).
This morphism is clearly of degree at most d.
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Consider now the case where I = G. (This case happens for instance
if o; € Q}.) Then V(a;) — V(e;)/G is an isomorphism. The morphism
g, : Z, — €,(Z,) induced by p; is also of degree at most d. The curve
€,(Z})/F, is a smooth projective line. The primitive integral point (a, b)
cannot reduce to the intersection point Q of all the components of the special
fiber of D’. The morphism ¢, is defined over IF,, and there are at most dp
IF ,-rational points in the preimage in Z, of &,(Z)) \ {Q}. Since there are
at most n/d such components, we conclude that at most np points in the
image of V(w;) in Z’ can be residue classes of primitive integral points.

Let us now consider the case where I C D. Then the image Z, of Y;
in Z = Y /G has multiplicity |D|/|I| > 1, and 2.14 indicates that to count
the components of multiplicity one (in a desingularization of Z’) which
contain the reduction of primitive integral points, one first needs to count
the number of totally ramified points in the branch locus of ¥Y; — Z,.
Consider the diagram

[v v
Y (V) —— v (V).
where o : ' (V(a;)) — ¥ '(V(a;)) is defined so that the diagram
commutes. Consider an open set U of ¥ ~'(V(x;)) that is dense in each

fiber and is a special open set of U (x;). We find that on the level of rings,
o : U — U(e;) induces the top horizontal map below

OrLlu, 1/ (Fu(u, y) — ) —— S~ OL[u, y1/(Fu(u, y) — 1))

al al
OLlx, YI/(FGxy) —=h) ——  OL[x, YI/(F(x, ) = h).

The bottom map o satisfies o(x) = x and o(y) = y. Since the diagram
commutes, the top map satisfies o(7) u +o;y) = 7ju+a;y. Since o(wju +
a;y) = o(})o(u) + o(e;)y, we find that

Ty a; —o(a;)

o(m}) o(m})

o(u) =

(Note that both 7} /o(r}) and (o; — o(«t;)) /o(7} ) belong to @.) By hypo-
thesis, @ := o}y, does not act trivially on Y,. The points where the morphism
Y, — Y/ < @ > is totally ramified is the set of fixed points of the map &.
Note also that the reduction of any primitive integral point must be a fixed
point of &. On the plane curve G (u, y) = 0, the automorphism & is given
by u — cu +c’yand y — y, for some ¢, ¢’ € k. Thus the fixed points of &
lie on the line (¢ — 1)u + ¢’y = 0, and we find that there are at most d such
points. Let now v : X — Z denote the minimal desingularization of Z. As
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we recalled in 2.14, the subset v~!(Z;) of the special fiber of X contains
then at most d components of multiplicity one, each smooth and rational,
and each meeting the rest of the special fiber in a single point.

Consider now the minimal regular model X/Z, of X/Q,. A point in
X(Q)) specializes in the special fiber Xo/F » to a smooth point, belonging
to a geometrically integral irreducible component C /I, of multiplicity one.
Let Xo 1= X X7, Z'I’,’. Since the self-intersection of such a component C
in X equals the self-intersection of C XF, FI, in X, (see, e.g., [B-L, 1.4]),
we find that C xp, Fp cannot be contracted in 950 and, thus, corresponds
to a component in the minimal regular model X oo of X/ Q). Since there is

a natural morphism X — X, our description above of the special fiber of
X implies that there are at most n components of X, that can contain the
reduction of a Q,-point, and that each such component is a smooth rational
curve (recall that there are n/d irreducible components Y ;). Moreover, each

such component C meets the divisor X, — C in exactly one F ,-point. Hence,

the number of points in X, that can be reductions of Q,-rational points is
at most np.

Since the contribution of an open set of the form V(«;) to the number
of reductions of primitive integral points in the special fiber of the model
X is bounded by np, and since the primitive integral points are contained
in at most s such open sets (2.6), we find that the reduction of the primitive
integral points in the special fiber of the model X consists in at most snp
points. Thus 3.5 follows from 1.1.

3.8. The statement of Theorem 3.5/3.8 in the introduction follows im-
mediately from the proof of 3.5. Let us now state our main theorem. Let
N(F, h) denote the number of solutions (x, y) € Z? of F(x,y) = h with
ged(x, y) = 1.

Theorem 3.9. Let p be a prime' with n < p < 2n. Assume that the

Chabauty rank with respect to (p) of Xp,/Q is less than g := g(Xpp).
Then
N(F,h) <2n —2n - 3.

More precisely,

a) Ifpthorn|ord,(h), andif p t d*(F), then |Xr,(Q)| <2¢+s—4+
2n(n —1).

b) If p| h,ntord,(h), and p { d*(F), then | Xp,(Q)| <2¢+s—5+
n(2n —1).

¢) If pthand p|d*(F), then N(F,h,Q, p) <2g¢+s—5+n2n—1).

d) If plhand p | d*(F), then N(F, h,Q, p) <2g+s—5+sn2n —1).

I As C. Pomerance pointed out to us, when n > 2, 010, 760, the existence of a prime p
withn < p < (14 1/16597)n is proven in [Scho]. We leave it to the reader to sharpen the
bounds presented in Theorem 3.9 using refinements of Bertrand’s Postulate.
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In particular, if the Mordell-Weil rank of Xp,/Q is less than g, then
N(F,h) <2n® —2n —3.

Proof. We apply our previous results using the estimates p < 2n — 1 and
s < n.Theterm (2g —2)(p—1)/(p—?2) is bounded by 2g + s — 5. To prove
a), apply 3.1, and bound | X, (F )| as follows. Let YF’ ,, denote the reduction
of the plane curve X ;. We can bound |Yp’h(]F »)| using a projection from
apoint P of Xr, (Fp,) to aF,-line. If P is not on the line z = 0, we find that

Xea@E)l < (n=D(p—s+D+Y (n—n)+1.

i=1

We then consider the normalization map X, — X £ and find that

1%, (Fp)| < X () + Y (ged(n, n;) — 1).

i=1

Bounding } }_, ged(n, n;) by n, we find that | Xr, Fpl < (n—1(p+1)+1.
We leave it to the reader to check that the above bound also holds when P
is on the line z = 0. To prove c), apply 3.3, and bound a(p) using 3.4 to
find that a(p) < np. To prove b) and d), use 3.2 and 3.5.

Note now that by Bertrand’s postulate, there exists a prime p with
n < p < 2n. If the Mordell-Weil rank of X ,/Q is less than g, then the
Chabauty rank with respect to (p) of Xz, /Q is also less than g, and we find
that N(F, h) < 2n®> —2n — 3.

Example 3.10. Letususe known results on the Mordell-Weil rank of certain
curves to obtain examples of Thue equations to which Theorem 3.9 applies.
First, recall that for any integers a, b, ¢, d, and e such that ad — bc # 0, the
curve X, is isomorphic over Q to X¢ ., Where G(x, y) = F(ax + by,
cx + dy). It follows that the Chabauty rank of X s.»/Q is equal to the
Chabauty rank of Xpg,/Q (at any prime). Thus, when the method of
Chabauty-Coleman can be applied to bound N(F, h, Q, p), it can also be
used to bound the number of primitive solutions to any equation of the form
G(x,y) = he". Note that while such a change of variables does not change
the Q-isomorphism class of the underlying curve, it does change the notion
of a primitive integral solution.

A Thue curve X, always covers the superelliptic curve hy? = F(x, 1)
for any prime divisor ¢ of n, so it is always possible to attempt to bound
the Chabauty rank of such a Thue curve X ¢ by applying the ideas of [P-S]
to compute the rank of some quotient of X j;. One finds in the literature
a few explicit computations of Mordell-Weil ranks for superelliptic curves
D/Q of the form y? = F(x, 1), with n = deg(F) and ¢ | n, g prime. For
instance,

(7 V=02 —x+6)2( +3x+3)
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is considered in [P-S, 14.2], with Mordell-Weil rank 2 over Q (see Sect. 5
of [Sch] for further examples). Let Dyq denote the superelliptic curve as-
sociated with d?y? = F(x, 1). Clearly, D,q is isomorphic to D over Q, so
the jacobians of these curves have the same rank. We may thus apply the
Chabauty-Coleman method to X g 4 as soon as it is known that the rank of
D/Q is less than the genus of D, as is the case with (7).

Let £ be a prime. Bounds for the Mordell-Weil rank over Q of the
normalization C,, of the curve Y?> = X* + h are given in [Stl], with an
‘added in proof” proven in [St2]. Using these results, one finds for instance
that when £ = 5 and # is as follows, the rank of the genus 2 curves Cj,, Cjs,
and Cjp, is equal to 1:

h=11,h=11-13-17-19-23, h = -3-11-13-17-19-23-20.

Consider now ¢, e € Z*, and the equation gx** — y?* = he?*. This Thue
curve maps onto Cj,, with Y > g(x/ez)’ and X — (y/ze)?. In addition to
the above Thue curve, we also find that the curves given by hx?* — y*¢ =
ht*1e?t and hx'*! +xy* = h?e*" have C), as quotients. When the rank of C),
can be computed using [St1] and [St2], Theorem 3.9 applies to the above
three examples of Thue curves having C), as quotient.

It is quite possible that the bounds obtained in Theorem 3.9 are too
large. Indeed, there are no known examples in the literature of a fam-
ily of Thue equations (F;(x, y) = h;)32, with lim;_, o deg F; = oo and
lim;_, o N(F;j, h;)/deg F; = oo. The following simple examples of Thue
equations with N(G, h) > n are well-known. Take G(x, y) = [[_,(x —
a;y) + hy", with ]_[i#j(ai —a;) #0,a; € Z. Then {(a;, 1),i =1,...,n}
are primitive solutions.

It is known that N(F, h) < O(n) when disc(F) is large compared to A
(see [Ste2, page 378]). We use below the fact that any subfield of Q(&,—;)
has an unramified prime of norm p to obtain, in some cases where the
Mordell-Weil rank of X is at most g(Xr)/n, bounds for N(F, h, Q, p)
of the form O(n) and O(n?).

Theorem 3.11. Let p > 5 be prime and let n := p — 1. Let X := Xp .
Assume that Chab(X, Q(§,-1), (p)) < g(X). This is the case, for instance,
if the Mordell-Weil rank of X /Q is less than (s — 2)/2. Then

a) If ptd*(F), then | X(Q)| < 5n — 3.
b) If p | d*(F), then N(F, h,Q, p) <2n*>+4n — 5.

Proof.  Our hypothesis allows us to apply the results of the previous section.
We bound (2g—2)(p—1)/(p—2) by n>—2n—3, and s by n. Let u denote the
number of points in X(Q) with z = 0. Clearly, u < n.Letv := | X(Q)| —u.
Then, since n is even (and —1 is in Q), we have | X(Q(&,))| > u + nv/2.
For part a) when p 1 h, we use the bound 3.1:

IXQE)| <n*—2n—34+@n—D(p+1).
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(To bound |Y(]Fp)|, use a projection from a point in Y(IF‘I,).). It follows
that u + nv/2 < 2n* —n — 5. Hence, v < 4n — 2 — 10/n — 2u/n. Thus,
v < 4n — 3. We find that | X(Q)| = u + v < n 4+ 4n — 3. To prove part a)
when p | h, we use 3.2,

IX( Q)| < n* —2n—3+np.

Thus, u +nv/2 < 2n®> —n — 3. Hence, v < 4n — 3, and | X(Q)| < 5n — 3.
In part b), we do not consider points with z = 0 (since such points are
not primitive integral solutions). To prove part b), we use 3.3:

nN(F, h,Q, p)/2 < N(F,h,Q(&,), p) <n* =2n =34+ (n — D(p+1).

as well as 3.5:
nN(F, h,Q, p)/2 < N(F, h,Q(&,), p) <n*—2n—3+n’p.

To conclude the proof of the theorem, we only need to prove that, if the
Mordell-Weil rank of X/Q is less than (s — 2)/2, then the Chabauty rank
of Jac(X/Q(&,-1)) is less than g(X). This assertion is a consequence of the
following general fact.

Proposition 3.12. Ler X/Q denote the smooth proper model of the affine
curve given by an equation hy" = f(x), with n | deg(f). Write f(x) =
[Ti2; (x —a)" with ]_[#j (a; —aj) # 0, and assume that ged(n, n;) < n for
all i. Fix &,, a primitive n-th root of unity. Denote by o the automorphism
of X/Q(§,) induced by (x, y) — (x, &,y). Assume that the Chabauty rank
(with respect to any prime) of X/Q(§,) is equal to g(X). Then the factor
A, /Q of the jacobian of X introduced below has Mordell-Weil rank over Q
at least equal to (s — 2)/2.

Proof. Let ®(f) = (" — 1)/(t — 1). Let ®,(¢) denote the d-th cyclotomic
polynomial, so that (1) = []an Pu(r). Let Wy(r) := O(1)/Dy(r). Let
d#1

d | n, and consider the abelian variety

Ay = Im(Vy(0)) C Jac(X)/Q(En).

(Note that when d < gcd(n, n;) for some #, it may happen that A, is
trivial.) It is clear that A; C Ker(®,(0)). If d # d’, then ®,(¢) and ® 4 (¢)
are coprime in @ and, thus, generate in Z[t] a principal ideal gZ[t] for
some g € Z. We conclude that A; N Ay is a finite set of points, killed
by g. Since the polynomials {W,(f)}4, are coprime in QQ, we can find
{ay(1) € Z[t],d | n,d # 1} such that ) a,(t)V,(r) = z € Z. Hence, given
P € Jac(X),

P = Z‘Pd(ﬁ)(ad(G)P) € ({Aq | dln,d#1}) S Jac(X)

and, thus, Jac(X) is isogenous to @ 4. Ag.
d#1
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We claim now that A, is an abelian variety defined over Q. Indeed, let
P = (a, b), where a, b € Q, be a solution of y" = f(x).Letu € Gal(@/@).
Then n(§,) = &S for some ¢ € Z with (c,n) = 1. It follows that on
X(Q), we have 6o = p oo for some ¢ € Z. If an element Z of
Jac(X)(Q) is of the form Z = W,(0)(3)_, a; P;) with P; € X(Q), then
p(Wa(0) (i aiP) = Wa(0*) (X, aipt(Py). Now, since (c,n) = 1,
there is a positive integer ¢’ such that c¢’ = 1 (mod n). The polynomial
W,(¢) is a product of cyclotomic polynomials ®,(¢) with e | n, and for any
root &, of ®,(r), it is clear that éec/ is aroot of ®,(z¢). Since multiplication by
¢ permutes (Z/eZ)*, it follows that ®,(r) divides ®,(¢¢) for any e | n, and
that W, (r) divides W, (). Hence, u(Z) € Aq(Q), for all u € Gal(Q/Q). It
follows that A, is defined over Q. We determine the dimension of A, below.

Lemma 3.13. Suppose that d | n and that d > gcd(n, n;) for all i =
1,...,s. Let o(d) denote the Euler ¢-function. Then dim(A;) = ¢(d)-
(s —2)/2.

Proof. By construction, o4, is such that ®,(o4,) = 0. The characteristic
polynomial char(o)(#) of o acting on H;(X(C), C) is computed in [Lor,
4.1]:

xgcd(n,n,-) _ 1)‘1

x—1

char(o)(f) = ®(r)* 2 ]_[ (
i=1

Hence, rankz (Ker(¢4(0) 1, x(c).c)) = (s — 2)¢(d). Using the duality be-
tween H,(X(C), C) and H'(X(C), C) as well as the fact that

0 > H°(X(C),Qx) - H'(X(C),C) > H' (X, 9x) —> 0

is exact, with H(X(C), Qx) and H'(X, Ox) related by Serre duality, we
find that dim A; = ¢(d)(s —2) /2. This concludes the proof of Lemma 3.13.

When n is prime, rankz (Jac(X/Q(&,))) = rankz(Jac(X/Q))(n — 1), as
shown in Lemma 13.4 of [P-S]. The reader will easily check that the proof
of 13.4 can be used, mutatis mutandis, to show that, for any d | n,

rankz (A4 (Q))p(d) = rankz(A4(Q(a))).
In particular, if the Chabauty rank of Jac(X)/Q(&,) equals g(X), then

rankz (A, (Q(&,))) > dim(A,),
so that rankz (A, (Q)) > (s — 2)/2. This concludes the proof of 3.12.
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