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Let OK be any domain with field of fractions K . Let F(x, y) ∈ OK [x, y]
be a homogeneous polynomial of degree n, coprime to y, and assumed to
have unit content (i.e., the coefficients of F generate the unit ideal in OK ).
Assume that gcd(n, char(K )) = 1. Let h ∈ OK and assume that the poly-
nomial hzn − F(x, y) is irreducible in K[x, y, z]. We denote by XF,h/K the
nonsingular complete model of the projective plane curve CF,h/K defined
by the equation hzn − F(x, y) = 0. We shall assume in this article that
g(XF,h) ≥ 2.
When K is a number field, Mordell’s Conjecture (now Faltings’ Theo-

rem) implies that |XF,h(K )| < ∞. Caporaso, Harris, and Mazur ([CHM,
1.1]) have shown that if Lang’s conjecture for varieties of general type is
true, then for any number field K , the size |X(K )| of the set of K -rational
points of any curve X/K of genus g(X) ≥ 2 can be bounded by a constant
depending only on g(X). Prior to the paper [CHM], Mazur and others had
asked whether |X(K )| can be bounded by a constant depending only on
g(X) and the Mordell-Weil rank of X/K over K (that is, the rank of the
group J(K ) of K -rational points of the jacobian J/K of X/K ). These far-
reaching questions are totally open. As we shall recall in Sect. 1, the method
of Chabauty-Coleman sometimes yields a bound for |XF,h(K )| depending
only on g(XF,h) when it is known in advance that the Mordell-Weil rank of
XF,h/K is small. Unfortunately, the Chabauty-Coleman method does not
yield a bound for |XF,h(K )| independent of the coefficients of hzn− F(x, y)
for all curves of the form XF,h . It does, however, produce such a nice bound
for the number of primitive integral solutions of F(x, y) = h, as we now
explain.
Let K = Q and OK = Z. A classical Thue equation is an equation

F(x, y) = h where F(x, 1) does not have repeated roots. Thue showed in
1909 that such an equation has finitely many solutions (x, y) ∈ Z2 if n ≥ 3.
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Let us say that (x, y) is a primitive solution if gcd(x, y) = 1. In this work, we
are interested in the following open question raised for instance by Erdös,
Stewart, and Tijdeman ([Ste, p. 816]). Let N(F, h) denote the cardinality
of the set

{(x, y) ∈ Z2 | F(x, y) = h and gcd(x, y) = 1}.
Is there a bound for N(F, h) in terms of n only whenever n ≥ 3? Two known
results on N(F, h) are as follows:

Theorem (Bombieri-Schmidt, [B-S]). Assume that F(x, 1) is irreducible.
There exists a constant B1 , which canbe taken to be 215when n is sufficiently
large, such that N(F, h) ≤ B1nw(h)+1, where w(h) equals the number of
prime factors of h.

This bound depends on n and h. A generalization to the case where
F(x, 1) has distinct roots is given in [Ste, Theorem 1]. Let r(XF,h) denote
the Mordell-Weil rank over Q of the jacobian of XF,h/Q.

Theorem (Silverman, [Si1]). Assume that F(x, 1) has distinct roots inQ.
There exists an ineffective constant h(F) such that for all nth power-free
h > h(F), the bound N(F, h) ≤ n2n2(8n3)r(XF,h ) holds.

For a fixed F, this bound depends only on n and r(XF,h), but only works
for h sufficiently large. For an improvement in the special casewhere F(x, 1)
has a root in Q, see [Fuj]. Our main theorem is:

Theorem 3.9. If r(XF,h) < g(XF,h), then N(F, h) ≤ 2n3 − 2n − 3.

This bound only holds when r(XF,h) is small, but when it holds, it
depends only on n. We are able to refine our method in some special cases
to obtain a bound of the form N(F, h) ≤ O(n2). There is no empirical
evidence that would indicate that N(F, h) cannot always be bounded by
O(n).
Both [B-S] and [Si1] make use of diophantine approximation methods,

and in particular make use of the Thue-Siegel-Roth theorem on approxi-
mations of algebraic numbers. The proof of Theorem 3.9, by contrast, does
not involve diophantine approximation; it relies instead on the method of
Chabauty-Coleman. In order to use this method to bound |XF,h(Q)|, one
needs to pick a prime p and compute enough of a regular model X/Zp of
XF,h/Qp to be able to bound the number N1 of components of multiplicity
1 in the special fiber X/Fp. The number N1 is not, in general, bounded
by a constant depending only on g(XF,h). Hence, this method does not al-
ways enable us to bound |XF,h(Q)| in terms of g(XF,h) only. Surprisingly,
however, it is possible to bound, in terms of n only, the number of reduc-
tion classes in the special fiber of a regular model X/Zp of the primitive
solutions of F(x, y) = h. Let F(x, 1) = c

∏s
i=1(x − αi)

ni in Q[x], and set
d∗(F) := cs(s−1)

∏

i '= j (αi − α j) ∈ Z. To obtain a bound on the number of
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reduction classes in the special fiber of the primitive solutions, the most
difficult case to be treated is when p | d∗(F) and p | h. In this case, our
main result is:

Theorem 3.5/3.8. Let XF,h/Q be such that for some prime p > n,
p | d∗(F) and p | h. Let X/Zp be the regular minimal model of XF,h/Qp.
Let N denote the set of reductions in the special fiber XFp of the solutions
of F(x, y) = h in Z2p with gcd(x, y) = 1. Then |N| ≤ snp.

In the cases where p fails to divide both h and d∗(F), similar results
are obtained in the proofs of 3.1, 3.2, and 3.3. Determining whether J(Q)
has rank less than g(XF,h) is in general very difficult. There is no known
algorithm that provably determines the Mordell-Weil rank of a jacobian,
even for elliptic curves. Upper bounds for the rank are obtainable, at least in
theory, by computing the size of a suitable Selmer group. TheMordell-Weil
rank in the case of superelliptic curves of the form yp = f(x) with p prime
is treated in [P-S] and [Sch]. A computational implementation in the case
p = 2 and deg( f ) = 6 is discussed in [St3]. There are at this time no
educated guesses regarding the proportion of isomorphism classes of non-
singular plane Thue curves of degree n whose Mordell-Weil rank over Q is
less than (n−1)(n−2)/2. Similarly, fixing F, there are no general results on
the proportion of the n-th power free integers h such that the Mordell-Weil
rank of XF,h is less than g(XF,h). To our knowledge, it is not known whether
the set of such integers is always infinite, or even non-empty. On a more
positive note, we can produce in 3.10 infinitely many explicit examples of
Thue equations where the bound given in Theorem 3.9 holds.
The method of Chabauty-Coleman, when applicable, very often also

provides bounds for |XF,h(Q)| and not just for N(F, h). In particular, we
show:

Theorem 3.1/3.2. Let p > n be a prime with p ! d∗(F). Assume that
r(XF,h) < g(XF,h). Then |XF,h(Q)| ≤ n p + p−1

p−2 (2g − 2). In particular,
there always exists such a prime p with p ≤ max(2n, 2d∗(F)), so |XF,h(Q)|
is bounded by a constant depending only on F, and not on h.

This explicit theorem is a special case of [Si2, Theorem 1], which states
that if X/K is any curve of genus g ≥ 2 over a number field, and Xh/K
is any twist of X, then |Xh(K )| can be bounded in terms of a constant
c = c(X/K ) and the Mordell-Weil rank of Xh/K .
This paper is organized as follows. In the first section, we refine the

method of Chabauty-Coleman so that it can be applied to any regular model
over Zp of a curve X/Q of genus g ≥ 1 with p2 > 2g + 1. In the second
section, we describe some regular models of the curves XF,h . We then
prove in the third section our main theorem on primitive solutions of Thue
equations using these models.
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1. The method of Chabauty-Coleman

Let K be any number field with a place v over a prime p. Let Kv denote
the completion of K at v, with uniformizer π and residue field Fq, where
q is a power of p. Let X/K be a smooth proper geometrically connected
curve of genus g ≥ 1, with Jacobian J/K . When the rank of J(K ) is less
than g, the method of Coleman-Chabauty allows one to bound |X(K )| in
terms of the number of zeros of a well-chosen p-adic analytic function
λw : X(Kv) → Kv. Coleman [Co2, 0.ii] considered the case where the
curve X has good reduction at v (that is, where X/Kv has a smooth modelX
overOKv). McCallum [McC1] applied the method of Chabauty-Coleman at
primes of bad reduction in the special case of Fermat curves. In Theorem 1.1
below, we show that the method of Chabauty-Coleman produces bounds for
|X(K )| even when X/K is not assumed to have good reduction. At the 1999
Arizona Winter School, McCallum suggested that a slight variant of [Co2,
0.ii] should hold on any regular modelX/OKv ; we prove that his suggestion
is indeed correct in 1.11.
Let A/K be any abelian variety of dimension g. We will write Γ(A,

ΩA/Kv) for the module of global sections over AKv of the sheaf of differen-
tials ΩAKv /Kv . As a p-adic Lie group, A(Kv) is endowed with a logarithm
map

log : A(Kv) → Hom(Γ(A,ΩA/Kv ), Kv) ∼= Kg
v ,

as we shall recall below, borrowing from [Wet]. The Chabauty rank of
A at v, denoted by Chab(A, K, v), is the dimension of the Kv-subvector
space of Kg

v generated by the elements of log(A(K )). Note that since log
is a homomorphism, Chab(A, K, v) is less than or equal to the Mordell-
Weil rank of A(K ). Define the Chabauty rank of a curve X/K at v to
be Chab(J, K, v), and denote it by Chab(X, K, v). LetXns(Fq) denote the
subset of non-singular Fq-points of the special fiberX of a proper flat model
X/OKv of X/Kv. Let r : X(Kv) → X(Fq) denote the reduction map. The
main theorem of this section is:

Theorem 1.1. Let X/K be a curve of genus g ≥ 1 defined over a number
field K with completion Kv unramified overQp. Assume that Chab(J, K, v)

< g. Let d be a positive integer such that p > d and pd > 2g−1+d. Then,
for any subset U ⊂ Xns(Fq) of the special fiber X of a model X/OKv of
X/Kv, we have

|r−1(U) ∩ X(K )| ≤ |U| +
(

p− 1
p− d

)

(2g − 2).

Our theorem applies whenever p is such that pp−1 − p > 2g − 2. The
only obstacle to applying the Chabauty-Coleman method to even smaller
primes is finding a suitable variant of Lemma 1.5. The key to the method
of Chabauty-Coleman is the remark that if Chab(A, K, v) < g, then there
exists a linear projection θ : Kg

v → Kv such that the composition θ ◦ log :
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A(Kv) → Kv is an analytic function λ that vanishes on A(K ). As we shall
recall, it turns out that there always exists a differential η ∈ Γ(A,ΩA/Kv )
such that d(λ) = η. Given a curve X/K and a map j : X → J defined
over K , one can consider the associated analytic function λ ◦ j : X(Kv) →
J(Kv) → Kv and the differential j∗(η). A bound for |X(K )| is obtained by
bounding the number of zeros of λ ◦ j in terms of the number of zeros of
j∗(η). The proof of 1.1 is postponed to 1.8.
We begin by fixing some notation. Let V/Kv be a proper, geometrically

integral variety of dimension e. A model V/OKv of V/K is an integral
scheme V and a flat proper morphism V → Spec(OKv) such that the
generic fiber of this morphism is the given map V → Spec(K ). Let V :=
V×Spec(OKv )Spec(OKv/(π)) denote the special fiber ofV. SinceV is proper,
we have a reduction map r : V(Kv) −→ V(Fq), which sends points in
V(Kv) to points in V(Fq). More precisely, let P be a point in V(K v). The
image of P under the map r is the intersection of V with the closure of
the image of P in VKv . This map is well-defined because the closure of the
image of P in VKv corresponds to the prime spectrum of the ring of integers
OL in some finite extension L/Kv, and such a ring OL is local when Kv is
complete. If Q ∈ V(Fq), denote by DQ(L) the set r−1(Q) ∩ V(L). When
P ∈ V(Kv), the set Dr(P)(Kv) is called the residue class of P. For simplicity,
we may denote the set DQ(Kv) simply by DQ .
Let now A be the Néron model over OKv of an abelian variety A/K .

The scheme A is not in general proper over OKv , but the natural map
A(OKv) → A(Kv) is always an isomorphism. We use this map to define
a reduction map r : A(Kv) → A(Fq).
Denote by Vns(Fq) the set of points of V(Fq) which are smooth points

of the map V → Spec(OKv). Since the field Fq is also the ground field
for V, we find that the set Vns(Fq) is in fact the set of regular points of V
with residue field Fq. Let Q ∈ Vns(Fq). Each point P ∈ V(Kv) for which
r(P) = Q gives rise to a primeP inOV,Q of height e. SinceOV,Q is a regular
local ring, P can be generated by e elements z1, . . . , ze. We will call these
zi local coordinates for P. Each zi can be evaluated at any other point
P′ ∈ DQ(Kv) by setting zi(P′) equal to the image of zi inOV,Q/P ′, where
P ′ is the prime in OV,Q corresponding to P′. A set of local coordinates
defines a bijection between DQ(Kv) and πOKv × · · · × πOKv (where the
product contains e terms). Indeed, let ÔV,Q denote the completion of the
ring OV,Q with respect to the prime ideal P . One shows that the canonical
map from HomOKv

(ÔV,Q,OKv) to HomOKv
(OV,Q,OKv) is a bijection. We

say that the formal power series
∑

i1,...,ie≥0
ai1,...,ie z

i1
1 · · · ziee ∈ Kv[[z1, . . . , ze]]

converges in DQ(Kv) if, for any P′ ∈DQ(Kv) with residue field Lw, the
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sum
∑

i1,...,ie≥0
ai1,...,ie z1(P

′)i1 · · · ze(P′)ie

converges in Lw. This power series defines an analytic map from DQ(Kv) to
Kv.We shall use repeatedly the following important fact: Given any analytic
map λ on V(Kv) which, when restricted to DQ(Kv), is equal to an analytic
map given as above by a power series expansion converging on DQ(Kv),
then the determination of the zeros of λ on DQ(Kv) is equivalent to the
determination of the zeros of the power series on the set (πOKv)

e.

Proposition 1.2. Let A be an abelian variety of dimension g and let η ∈
Γ(A,ΩA/Kv ). Then there exists a unique map λη : A(Kv) −→ Kv such
that: a) λη is analytic, b) d(λη) = η, and c) λη is a group homomorphism.
Let A be the Néron model of A over OKv . Let P ∈ A(Kv), and choose
a set z1, . . . , zg of local coordinates for P. Then there is a nonzero t ∈ OKv

(independent of P) such that tλη restricted to Dr(P)(Kv) has a local power
series expansion

tλη = b0 +
∑

i1,...,ig≥0
bi1,...,ig z

i1
1 · · · zigg

with b0 ∈ Kv and i&bi1,...,ig ∈ OKv for & = 1, . . . , g. This power series
expansion converges on Dr(P)(Kv).

Proof. Let 0 denote the identity in A(Kv). The multiplication law
A ×Spec(OKv ) A → A gives a map OA,r(0) −→ OA,r(0) ⊗OKv

OA,r(0). Since
OA,r(0) is a smooth local ring, we can choose a set of local coordinates at 0,
and obtain by completion the formal group law F :

OKv[[z1, . . . , zg]] −→ OKv[[z1, . . . , zg]] ⊗OKv
OKv[[z1, . . . , zg]].

Let η ∈ Γ(A,ΩA/Kv ). Thus η is an invariant differential on A (see, e.g.,
[Sha], page 168). There is a nonzero t ∈ OKv such that tη ∈ Γ(A,ΩA/OKv

).
The invariant differential tη induces an invariant differential for the formal
group law, in the sense of [Hon], page 216, and can be written as

tη =
g

∑

&=1

∑

i1,...,ig≥0
ai1,...,ig,&z

i1
1 · · · zigg dz&

with ai1,...,ig,& ∈ OKv . It is shown in [Hon], 1.3, that a formal integral Gtη ∈
Kv[[z1, . . . , zg]] of tη exists. We choose Gtη such that Gtη(0) = 0. Such
a formal integral converges on the kernel of the reduction Dr(0), because
limn→∞ xn/|n|v = 0 for any 0 ≤ x < 1. Taking a basis η1, . . . , ηg of
the invariant differentials, Honda describes in [Hon], Theorem 1, a strict
isomorphism f of formal groups over Kv between F and the additive
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formal group of dimension g. Evaluating on points, we obtain a group
homomorphism

f : Dr(0)(Kv) = F (πOKv) −→ Kg
v ,

given by P 0→ (Gη1(P), . . . ,Gηg(P)). Since tη can be written in terms of
η1, . . . , ηg, it follows that there exists a projection ρ : Kg

v → Kv such that
the composition ρ ◦ f : Dr(0)(Kv) → Kv is a group homomorphism given
by the power series Gtη.
Let H be any open subgroup of A(Kv ), such as Dr(0)(Kv). Since A(Kv) is

compact, [A(Kv) : H] is finite, so for any P ∈ A(Kv), there is some positive
integer cP such that cP P ∈ H . Thus, any homomorphism ϕ from H to a
Kv-vector space W extends uniquely to a homomorphism ϕ̃ : A(Kv) → W
by setting ϕ̃(P) := ϕ(P)/cP. In particular, the homomorphism Gtη extends
uniquely to a homomorphism λtη : A(Kv) → Kv. We let λη := 1

t λtη.
Let P ∈ A(Kv), and let tP denote the map P′ 0→ P′ + P on A(Kv).

Writing t∗Pλη for the composition λη ◦ tP , we see that d(t∗Pλη) = d(λη +
λη(P)) = dλη so the differential dλη must be translation invariant. Hence,
it must be equal to η on all of A(Kv) since η is also translation invariant.
To show that λη has the desired convergent power series expansion

at any point in A(Kv) (which implies in particular that λη is analytic),
we note that if P ∈ A(Kv), then for all P′ with r(P) = r(P′), we can
write λη(P′) = λη(P′ − P) + λη(P), with (P − P′) ∈ Dr(0)(Kv). Let
us denote as φP the map from OA,r(0) to OA,r(P) induced by tP and use
z′i := φP(zi), i = 1, . . . , g, as local coordinates on Dr(P)(Kv). Then, λη

expanded on Dr(P)(Kv) using the coordinates z′1, . . . z′g has the ‘same’ power
series expansion as its power series expansion on Dr(0) (Kv) using z1, . . . , zg,
except with a different constant term (namely, λη(P) instead of 0).
The function λη is unique because any analytic homomorphism λ :

A(Kv) −→ Kv with d(λ) = η must have the same power series expansion
as λη in some neighborhood of 0 and must therefore equal λη on this
neighborhood; since any neighborhood contains an open subgroup of finite
index in A(Kv) this means that λ = λη everywhere. This concludes the
proof of 1.2. Further information about p-adic integration can be found in
[Co1] and [Cz].

We define

log : A(Kv) −→ Hom(Γ(A,ΩA/Kv ), Kv)

by the formula log(P)(η) := λη(P). This map is well-defined since λη is
unique. It is clearly a group homomorphism since the maps λη are. Let

θη : Hom(Γ(A,ΩA/Kv ), Kv) −→ Kv

denote the evaluation at η. Then λη = θη ◦ log. It follows from the definition
of Chabauty rank that whenever Chab(A, K, v) < g, there is a nonzero
differential η ∈ Γ(A,ΩA/Kv ) such that λη(A(K )) = 0.
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Proposition 1.3. Let X/Kv be a smooth proper geometrically connected
curve of genus g ≥ 1. Given a differential ω ∈ Γ(X,ΩX/Kv), there is an
analytic map

λω : X(Kv) −→ Kv(1)

such that d(λω) = ω. Moreover, let X be any model for X over OKv and
assume that Xns(Fq) is not empty. Let P ∈ X(Kv) be any point with
r(P) ∈ Xns(Fq). Let u be a local coordinate for P. Then there is a nonzero
t ∈ OKv (independent of P) such that tλω has a local power series expansion
converging on Dr(P)(Kv) of the form

tλω = a0 +
∞

∑

m=1

am
m
um(2)

with a0 ∈ Kv and am ∈ OKv for m > 0.

Proof. Let J/Kv denote the jacobian of X/Kv .We use P ∈ X(Kv) to obtain
an embedding j : X → J defined over Kv. This embedding induces an iso-
morphism j∗ from Γ(J,ΩJ/Kv) to Γ(X,ΩX/Kv), so every ω ∈ Γ(X,ΩX/Kv)
is j∗(η) for some η ∈ Γ(J,ΩJ/Kv). The function λω := λη ◦ j is an analytic
map from X(Kv) to Kv and d(λω) = d(λη ◦ j) = j∗dλη = j∗ηω. We may
choose a non-zero t ∈ OKv for which tλη has a power series expansion
as in Proposition 1.2; we will use this expansion to derive power series
expansions of the form (2) for tλω.
Let Xsm denote the subset of X that is smooth over OKv . Denote the

Néron model of J by J. The universal property of Néron models implies
that the map j extends to an OKv-map φ : Xsm −→ J. (In particular,
φ ×OKv

Kv = j.) It follows that j(Dr(P)(Kv)) is contained in Dr( j(P))(Kv).
We also obtain a map of local rings OJ,φ(r(P)) → OX,r(P) since φ is a OKv-
morphism. Completing OJ,φ(r(P)) at the prime corresponding to j(P) and
OX,r(P) at the prime corresponding to P gives a map ψ : OKv[[z1, . . . , zg]]
−→ OKv[[u]], which yields a power series for tλω as

tλω = b0 +
∑

i1,...,ig≥0
bi1,...,igψ

(

zi11
) · · · ψ(

zigg
)

.

Furthermore, since d(tλω) = j∗(tη), this power series must have a derivative
of the form

φ∗(
g

∑

&=1

∑

i1,...,ig≥0
ai1,...,ig,&z

i1
1 · · · zigg dz&

)

with ai1,...,ig,& ∈ OKv . Computing the above out (by the chain rule) gives

d(λtω) =
g

∑

&=1

∑

i1,...,ig≥0
ai1,...ig,&ψ(z1)i1 · · · ψ(zg)ig

∂z&
∂u

du
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which is in OKv[[u]]du since ∂z&
∂u ∈ OKv[[u]] (since it is simply the formal

derivative of ψ(z&) ∈ OKv[[u]]). Thus, tλω has a power series at P that is
the formal integral of a power series with OKv coefficients, as in (2).

1.4. Let us now prove a simple lemma that will allow us to bound the
number of zeros of λω in terms of information about local power series
expansions. Similar arguments can be found in [Co1], [Co2], [McC1],
[McC2], and [Wet]. For simplicity, let us assume that Kv/Qp is unrami-
fied. Let λ : X(Kv) −→ Kv be a p-adic analytic function. Let P ∈ X(Kv)
with reduction r(P) = Q inX and let u be a local coordinate at P. This local
coordinate induces a bijection DQ(Kv) → pOKv . For simplicity, we shall
denote DQ(Kv) by DQ . Suppose that λ has a power series expansion of the
form λ = a0 + ∑∞

m=1
am
m u

m , where a0 ∈ Kv, am ∈ OKv , and v(am) = 0 for
some m, convergent on DQ . We can thus consider λ as a power series λ(u)
in the variable u, converging on the disk |u| ≤ |p|. The p-adic Weierstrass
preparation theorem ([Kob, Thm. 14]) allows us to bound the number of
zeros of λ in DQ . As this result is most easily stated on the disc OKv , we
will make the substitution z := u/p. This gives us a power series expansion
for λ in z as

λ(z) = a0 +
∞

∑

m=1

am
m
pmzm,

converging for all z ∈ OKv . Let us make the definitions

I(λ, DQ) := min{m | v(am) ≤ 0},
J(λ, DQ) := min{m | v(a& p&/&) > v(am pm/m) for all & > m},

(in the above formula whenm = 0, read am pm/m to be a0). TheWeierstrass
preparation theorem then implies that the number of z ∈ OKv for which
λ(z) = 0 is at most J(λ, DQ). It also follows from this theorem that when
I(λ, DQ) > 0, the number of z ∈ OKv for which λ′(z) = 0 is at most
I(λ, DQ) − 1 (where λ′(z) denotes the formal derivative of λ(z)).

Lemma 1.5. Let p > 2. Assume that Kv/Qp is unramified. Write I(λ, DQ)

simply as I . Let d be any integer such that p ≥ d and pd > I + d.
a) Suppose that p | I+1, I+2, . . . , or I+d−1. Then J(λ, DQ) ≤ I+d−1.
b) Suppose that p ! I + 1, I + 2, . . . , and I + d − 1. Then J(λ, DQ) ≤ I .

Proof. Consider the function ρ(x) := x − logp x. It is clear that ρ(m) is
a lower bound for v(am pm/m) when am ∈ OKv , since v(x) ≤ logp x. The
derivative of ρ(x) is ρ′(x) = 1− 1/x ln p, so when p > 2, the function ρ is
increasing for x ≥ 1. Note that ρ(I + d) = I + d − logp(I + d) > I , since
I+d < pd . Similarly, for all 1 ≤ i ≤ d−1, we have ρ(I+i+d) > I+i−1.
Let us now prove a). Suppose that p | I + i for some 0 < i ≤ d − 1. We
find that

v

(

aI+i
I + i

pI+i
)

≤ I + i − 1.
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Since p | I + i, and d − 1 < p, we find that p ! I + j, for all j =
i + 1, . . . , i + d − 1. Hence, v(

aI+ j pI+ j

I+ j ) ≥ I + j > I + i − 1 for all
j = i + 1, . . . , i + d − 1. As we mentioned above,

v

(

aI+i+d pI+i+d

I + i + d

)

≥ ρ(I + i + d) > I + i − 1.

Since ρ(x) is increasing for x > 1, it follows that for all j ≥ I + i + 1, we
have v(aj p j/ j) > I + i − 1. Hence, J(λ, DQ) ≤ I(λ, DQ) + d − 1.
Part b) is clear when I = 0. To prove b) when I > 0, it is easy to see

that we need only show that v( a jj p
j ) > I for all j > I , since v( aI p

I

I ) ≤ I
for I > 0. Now, since p ! I + i for i = 1, . . . , d − 1, we find that

v

(

aI+i
I + i

pI+i
)

≥ I + i > I.

Recall that ρ(I + d) > I . Using the fact that ρ(x) is increasing for x ≥ 1,
we see that ρ( j) > I for all j > I , and Lemma 1.5 is proved.

Let us fix some notation to be used in our next proposition. LetX/OKv

be any model of X/Kv. Let Q ∈ Xns(Fq). Denote by OQ the local ring
OX,Q . Let P0 ∈ X(Kv) be a point reducing to Q. Choose a local coordinate
u for P0. Let ÔQ denote the completion of the ringOQ at the prime (u). One
easily shows that the natural map from the ring OKv[[u]] of formal power
series to the ring ÔQ (which sends u to u) is an isomorphism. It is also easy
to check that the ÔQ-module of relative differentials ΩÔQ/OKv

is generated
by du. Any differential ω ∈ ΩOQ/OKv

can thus be written as a power series
ω = ∑∞

m=0 am+1umdu with am ∈ OKv for all m ∈ Z≥0.
Since Q is a nonsingular point of X, the local ring OX,Q is a discrete

valuation ring, and we denote by vQ its valuation. For any P ∈ XKv ,
we denote by vP the valuation of the local ring OXKv ,P. A differential
ω ∈ Γ(X,ΩX/OKv

) pulls back to a differential i∗ω via the natural map
i : XKv −→ X from the generic fiberXKv ofX toX. We denote by (i∗ω)0
the divisor of zeros of i∗ω, and we shall write (i∗ω)0 = ∑

P vP(i∗ω)P.

Proposition 1.6. Let X/Kv be a smooth proper geometrically connected
curve of genus g ≥ 1. Let X/OKv be a model of X/Kv. Keep the notation
introduced above. Let ω ∈ Γ(X,ΩX/OKv

) and let Q ∈ Xns(Fq). Then there
exists an element t ∈ Kv (dependent on Q) such that tω ∈ Γ(X,ΩX/OKv

)
and has a local power series expansion (when viewed as an element of
ΩÔQ/OKv

)

tω =
∞

∑

m=0
am+1umdu,(3)
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with am+1 ∈ OKv for all m ∈ Z≥0, such that

min{m | v(am+1) = 0} =
∑

r(P)=Q
[Kv(P) : Kv]vP(i∗ω),(4)

where the sum is taken over all points P of the scheme XKv such that the
intersection of the closure of P in X with X is Q.

Proof. Since ΩX/OKv
is locally free of rank 1 at Q because Q is a smooth

point by hypothesis, the element du is a generator of the stalk ΩOQ/OKv
of

ΩX/OKv
at Q. We can write the stalk of ω at Q as s du, where s ∈ OQ .

Factor s as s = γ &1
1 · · · γ &n

n π&′ , where the γ j are generators for primes
corresponding to points Pj on the generic fiber of X. It is not hard to see
that vPj (i∗ω) = & j . Indeed, one obtains the local ring OXKv ,Pj localizing
OQ at the prime ideal generated by γ j , so we see that the ideal generated by
s in OXKv ,Pj is just M

& j
Pj , where MPj is the maximal ideal in OXKv ,Pj ; since

f pulls back to a generator for the stalk ofΩXKv /Kv at Pj , s f must pull back
to a differential with order of vanishing equal to vPj (s) = & j for all j.
After dividing s by π&′ we obtain an element s1 that is not in πOQ (thus

t = π−&′ will satisfy the statement of the proposition). Now complete OQ
at (u). We obtain a power series expansion s1du = ∑∞

m=0 am+1umdu. It is
easy to check that ÔQ/(π) is the completion of OQ/(π) at the maximal
ideal (u). Thus the valuation vQ of OQ/(π) extends to a valuation on
ÔQ/(π), again denoted by vQ , and identified with ordu . Denoting by φπ the
map taking ÔQ to ÔQ/(π), it is clear that

min{m | v(am) = 0} = vQ(φπ(s1)).

Since vQ(φπ(s1)) =
n
∑

j=1
& jvQ(φπ(γ j)), it suffices to show that vQ (φπ(γ j)) =

[Kv(Pj) : Kv]. This follows from the fact that:
vQ(φπ(γ j)) = dimFq

(

(OQ/πOQ)/(φπ(γ j))
) = rankOKv

(OQ/γ jOQ)

= [Kv(Pj) : Kv],
since OQ/γ jOQ is a free OKv-module. This concludes the proof of 1.6.

Let us now apply Lemma 1.5 and Proposition 1.6 to the sort of p-adic
analytic function that arises in the Chabauty-Coleman method.

Proposition 1.7. Let X/K bea curve of genus g ≥ 1definedover a number
field K with completion Kv unramified over Qp. Let X/OKv be any model
for X/Kv, and let U ⊂ Xns(Fq). Let d be any positive integer such that
p > d and pd > 2g − 1+ d. If λω is as in (1), then

∣

∣r−1(U) ∩ λ−1
ω (0)

∣

∣ ≤ |U| +
(

p− 1
p− d

)

(2g − 2).(5)
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Proof. Choose Q ∈ U. For any nonzero element t ∈ Kv, multiplying λω

by t will not change the zeros of λω. Furthermore, λtω = tλω (since dλtω =
d(tλω) andλtω(0) = 0 = tλω(0)), so |r−1(Q)∩λ−1

ω (0)| = |r−1(Q)∩λ−1
tω (0)|.

Thus, we may choose tQ ∈ Kv and apply Proposition 1.6 to obtain a power
series expansion of the form (3) for which equation (4) holds (since ω ∈
Γ(X,ΩX/Kv) in (1), we first choose t′ so that t′ω ∈ Γ(X,ΩX/OKv

) and apply
1.6 to t′ω). We denote by Z(ω, Q) the sum

∑

r(P)=Q[Kv(P) : Kv]vP(i∗ω)
appearing in the statement of Proposition 1.6. When I(λtQω, DQ) > 0, we
must have Z(ω, Q) = I(λtQω, DQ) − 1, since d(λtω) = tω. Since

∑

Q∈U

Z(ω, Q) ≤
∑

P∈XKv

[Kv(P) : Kv]vP(i∗ω) = 2g − 2 < pd − d − 1,

we find that I(λtQω, DQ) < pd − d, and we can apply Lemma 1.5 (note that
the hypothesis on the coefficients of λ in 1.4 is satisfied since Z(w, Q) ≥ 0).
When I(λtQω, DQ) = 0, then λω is invertible and |DQ ∩ λ−1

ω (0)| = 0. We
obtain

∣

∣r−1(U) ∩ λ−1
ω (0)

∣

∣ ≤
∑

Q∈U
|DQ∩λ−1

ω (0)|>0

∣

∣DQ ∩ λ−1
ω (0)

∣

∣

≤
∑

Q∈U

J(λtQω, DQ)

≤
∑

p|(Z(ω,Q)+2),...,
or p|(Z(ω,Q)+d)

(Z(ω, Q) + d)

+
∑

p!(Z(ω,Q)+i),
i=2,...,d

(Z(ω, Q) + 1).

(6)

If p | (Z(ω, Q) + i) for some i = 2, . . . , d, then Z(ω, Q) ≥ p − d.
Since

∑

Q∈U Z(ω, Q) ≤ 2g− 2, there are at most (2g− 2)/(p− d) points
Q ∈ Xns(Fq) for which p | (Z(ω, Q)+ i) for some i = 2, . . . , d. Plugging
this information into (6) shows that |r−1(U)∩λ−1

ω (0)| is bounded as desired
by
∑

Q∈U

Z(ω, Q) + |U| + (d − 1)
2g − 2
p− d

≤ |U| +
(

1+ d − 1
p− d

)

(2g − 2).

We are now ready prove Theorem 1.1.

1.8. Proof of 1.1. Each differential η ∈ Γ(J,ΩJ/Kv) gives rise to a homo-
morphism λη : J(Kv) −→ Kv. Since Chab(J, K, v) < g, there is a nonzero
η for which λη(J(K )) = 0. We may assume that X(K ) contains a point Q,
as otherwise our assertion is trivial. Hence, we may embed X(Kv) into J
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via the mapping j : X → J , which sends P ∈ X(Kv) to the class of P−Q.
Now, η pulls back to a differential ω on X, and λη restricts to a function λω

that vanishes on X(K ) (because j sends points in X(K ) to points in J(K )).
Applying Proposition 1.7 then gives the desired result.

1.9. Note that if an abelian variety A/K is K -isogenous to a product
∏

Ai ,
then Chab(A, K, v) = ∑

Chab(Ai , K, v). Thus, the method of Chabauty-
Coleman can be applied to A if and only if Chab(Ai, K, v) < dim(Ai) for
some i. We will use this fact later.

Note that the Chabauty rank Chab(A, K, v) is zero if and only if the
Mordell-Weil rank of A/K is zero. When this is the case, we can strengthen
Theorem 1.1 as follows.

Proposition 1.10. Let X/K be a curve of genus g ≥ 1 defined over a num-
ber field K with completion Kv/Qp such that v(p) < p− 1. Let X/OKv be
any regular model for X/Kv. If the Mordell-Weil rank of X/K is zero, then
|X(K )| ≤ |Xns(Fq)|.

Proof. We claim that for each Q ∈ Xns(Fq), the set r−1(Q) contains at
most one K -rational point of X. Indeed, suppose that P and P′ belong to
r−1(Q) ∩ X(K ). Then P′ − P belongs to the kernel of reduction of J(K ),
which does not contain any torsion point other than 0 (see for instance [Ser,
LG 4.25–4.26]). Thus, P′ = P.

The following statement, suggested by McCallum at the 1999 Arizona
Winter School, is obtained from Theorem 1.1 by considering d = 1 and
U = Xns(Fq).

Corollary 1.11. Let X/K be a curve of genus g ≥ 1 defined over a num-
ber field K with completion Kv unramified over Qp. Let X/OKv be any
regular model for X/Kv. If p > 2g and Chab(J, K, v) < g, then |X(K )| ≤
|Xns(Fq)| + 2g − 2.

In view of 1.10 and 1.11, it is natural to wonder, under the hypotheses
of 1.11, whether the bound for |X(K )| can be made to depend on the
precise value of Chab(J, K, v), such as a bound of the form |X(K )| ≤
|Xns(Fq)| + 2Chab(J, K, v).

2. Constructing regular models of curves

Let K be a field with a discrete valuation vK . Let OK denote the ring of
integers of K , withmaximal ideal (πK ) and residue field k. Let p := char(k).
Let X/K be the nonsingular proper model of the plane curve C/K given
by a homogeneous equation f(x, y, z) ∈ OK [x, y, z] with unit content.
Explicitly resolving the singularities of Proj(OK [x, y, z]/( f )) to produce
a regular model X/OK of X/K is very difficult in general; in this article,



60 D. Lorenzini, T.J. Tucker

we use instead a quotient construction to obtain information on a regular
model of X/K . This construction can be summarized as follows. It may
happen that over a Galois extension L/K , a normal model Y/OL of XL/L
can be described. If the Galois group Gal(L/K ) acts on Y, lifting its action
on Spec(OL), then we may consider the quotient Y/Gal(L/K ) as a scheme
over Spec(OK ). The scheme Y/Gal(L/K ) is a normal model of X/K and,
thus, a desingularization ρ : X → Y/Gal(L/K ) leads to a regular model
X/OK of X/K . A key feature of this method is the fact that when Y is
regular, the singularities of Y/Gal(L/K ) are quotient singularities and that
when L/K is tame, such singularities are well-understood and, thus, amodel
for X/K can be described.
To apply the Chabauty-Coleman method to the case of the curves

XF,h/Q, we need a description of a regular model for XF,h over Zunrp .
These models are obtained in two steps, first by describing a model of XF,h
over a well-chosen extension L/Qunrp , and then by using the quotient con-
struction to obtain a model over Zunrp . The second step is done in the next
section, in Propositions 3.1, 3.2, 3.3, and 3.5. In this section, we first con-
struct regular models of the curves XF,h over the appropriate extensions L ,
and then we review for the convenience of the reader the details of the quo-
tient construction. To deal with the cases where F(x, 1) does not have simple
roots, we introduce the following notation. Let F(x, 1) = c

∏s
i=1(x − αi)

ni

in K [x]. Let
d∗(F) := cs(s−1)

∏

i '= j

(αi − α j) ∈ OK .

When a curve has potentially good reduction after a tame extension L/K ,
such as the superelliptic curves X := XF,h with πK ! d∗(F) and p > n
(see 2.1 below), the quotient construction is applied to the smooth minimal
model Y/OL of XL/L , where L/K is chosen large enough to ensure that
XL/L has good reduction. In this case, the resulting model for X/K is not
hard to describe and this description is reviewed in 2.15.
The core of this section is the study of the difficult casewhereπK | d∗(F)

and πK | h. In this case, we are not able to describe a proper regular model
for XF,h over Zunrp , but we will construct in 3.5 just enough of a regular
model to be able to bound the number of residue classes of primitive integral
solutions to the Thue equation F(x, y) = h. Let L/K be the splitting field
over K of the polynomial F(x, 1), and let Y/OL be the normalization of the
model

C := Proj OL[x, y, z]/(hzn − F(x, y)).

The quotient construction is applied to Y/OL in 3.5. In this section, we
describe some smooth open affine subsets of the model Y and prove in
2.6 the crucial result that the reductions of the primitive integral solutions
are contained in at most n such open subsets. Let us start with a couple of
preliminary lemmas.
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Lemma 2.1. Assume that char(k) ! n. Let X := XF,h/K.
a) If πK ! d∗(F) and πK ! h, then X/K has good reduction.
b) If πK ! d∗(F) and πK | h, then X/K achieves good reduction over

L := K( n√h).
Proof. Consider themodelC/OK given byProj(OK [x, y, z]/(hzn−F(x, y))
and its normalization Cnor/OK . The generic fiber of Cnor , that is, the curve
XF,h , has genus equal to 2g(X) − 2 = n(s − 2) − ∑s

i=1 gcd(n, ni). If
g(X) = 0, then X/K has obviously good reduction over OK . Assume then
that g(X) > 0. Recall that deg(F)F = x ∂F

∂x + y ∂F
∂y . Thus, at a singular point

(x0, y0) of the reduction F − h = 0, we find that deg(F)F(x0, y0) = 0.
Since h '= 0, p | deg(F) when the reduction has a singular point. When
πK ! h and πK ! d∗(F), we find that the geometric genus of Cnor

k is equal
to g(X). Thus, Cnor

k is non-singular since its arithmetical genus is equal to
the genus of X. It follows that Cnor/OK is the (minimal) regular model of
X/K .
If πK | h, consider the change of variables z′ = n√hz, x ′ = x and y′ = y.

Then Proj(OL[x ′, y′, z′]/(z′n − F(x ′, y′))) is a model for XL/L . Hence, we
may apply a) to find that XL/L has good reduction. This concludes the
proof of 2.1.
For most of the applications that we have in mind, the residue field

OK/(πK ) will be Fp, and we will assume that p > n. The following lemma
shows that we may assume, under these hypotheses, that F(x, 1) is monic.
Lemma 2.2. Assume that |OK/(πK )| > s. Then, up to a change of vari-
able, we may assume that F(x, 1) is monic in OK [x].
Proof. Let L/K be an extension such that F(x, y) = ∏s

i=1(βi x − ρi y)ni ,
with βi, ρi inOL . The substitution y′ = y+ux yields F(x, y′) = ∏s

i=1((βi+
ρiu)x−ρi y)ni . Since the coefficients of F have no common factor, we must
have min(vL(βi), vL(ρi)) = 0 for each i. Thus, for each i, we will have
ρiu + βi ∈ O∗

L for all but one choice of residue class for u. We have s
expressions ρiu + βi and more than s residue classes in OK/(πK ), so we
can choose u ∈ OK with ρiu+ βi ∈ O∗

L for all i. Then, the coefficient of xn
in F(x, y′) = ∏s

i=1((βi + ρiu)x − ρi y)ni will be in O∗
L ∩ OK = O∗

K .
2.3. Some regular affine subsets of the normalization of C
In what follows, we assume that F(x, 1) is monic, that πK | h and that
πK | d∗(F). Assume also that K is complete, so that for any finite extension
L/K , the integral closure OL of OK in L is a local ring.
Let L/K be the splitting field over K of the polynomial F(x, 1). We

denote by v the valuation ofOL , and let π be a uniformizer ofOL . We write
our original equation F(x, y) = h as

s
∏

i=1
(x − αi y)ni = µπw,
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where µ is unit in OL and w = v(h). Let us say that P = (a, b) is
a primitive integral solution to F(x, y) = h if a, b ∈ OK and gcd(a, b) = 1.
We will sometimes also refer to such an (a, b) as a primitive integral point.
We describe below an affine regular scheme U/OL such that U ×Spec(OL )

Spec(L) is open in XF,h,L and P ∈ U(L) has a non-trivial reduction
modulo (π). In other words, the closure of P in U includes a point on
the special fiber ofU.
Consider any root αi of F(x, 1) such that v(a−αib) = max j(v(a−α jb)).

Let t := v(a − αib). Change variables from x to z0 := x − αi y, so that
F(z0, y) = z0

∏s−1
j=1(z0 − γ j y)ni , where γ j := α j − αi for j < i and

γ j := α j+1 − αi for j ≥ i. Define s0 := 0, and then recursively define

sk := min{v(γ j) | t ≥ v(γ j) > sk−1},
for k ≥ 1. We obtain in this way a finite increasing sequence of integers. If
t is not the largest integer of this sequence, add t to the sequence. Denote
the elements of the new sequence by s0 < s1 < · · · < sm = t. Define, for
k < m,

Sk := {γ j | v(γ j) = sk}.
The set Sm is defined to be {γ j | v(γ j) ≥ sm}. If γ is a root of F(z0, 1), let
n(γ) denote its multiplicity. Then, for k ≤ m, define zk to be z0/πsk , and let
Fk be the polynomial

Fk(zk, y) :=
k

∏

j=0

∏

γ∈S j

(

πsk−s j zk − γπ−s j y
)n(γ)

∏

γ /∈∪kj=0S j

(

zk − γπ−sk y
)n(γ)

.

Set

uk :=
k

∑

j=0
(
∑

γ∈S j

n(γ))s j +
m

∑

j=k+1
(
∑

γ∈S j

n(γ))sk.

Then Fk(zk, y) = F0(z0, y)π−uk . Finally, let

Ak := OL[zk, y]/
(

Fk(zk, y) − µπw−uk),

for k ≤ m (recall that h = µπw). Note now that when (a, b) is primitive
and π | h, then v(b) = 0. Indeed, if v(b) > 0 and (a, b) is primitive,
then v(a) = 0. Thus, v(a − α jb) = 0 for all j, contradicting the fact that
v(F(a, b)) = v(h) > 0. Hence, v(b) = 0. If follows that for j '= i, the
inequality

v(a − bα j) ≥ min(v(a − bαi), v(bαi − bα j))

implies that either v(a−bα j) = t and v(αi −α j) ≥ t, or v(a−bα j) < t and
v(a−bα j) = v(αi −α j). In particular, we find that when (a, b) is primitive,
w = um .
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Lemma 2.4. Assume that p ! n. The ring Am is regular and Spec(Am)/
Spec(OL) is smooth.

Proof. The generic fiber of Am is easily checked to be smooth. Hence, we
need only check points on the special fiber of Am . We note that modulo π,
the equation Fm(zm, y) = µ is equivalent to the equation





∏

γ∈Sm

(

zm − (γ/π t)y
)n(γ)









m−1
∏

j=0

∏

γ∈S j

(

−(γ/πs j )y
)n(γ)



 − µ = 0,

because πw−um = 1 as noted earlier. Since µ '= 0 and p ! n, this equation
defines a nonsingular affine curve in A2. Thus, the special fiber of Am is
nonsingular; therefore all the points on the special fiber of Am are regular
and Am is a regular ring.
Lemma 2.5. Assume that p ! n. The affine scheme Spec Am is an open
subset of Y, the normalization of C := Proj OL[x, y, z]/(hzn − F(x, y)).

Proof. Since Am contains A0 and is regular, Am contains the integral closure
of A0. Thus we have a natural map ψ : Spec(Am) → Y, with Y normal
and ψ generically an isomorphism. We are going to show below that ψ is
quasi-finite. It follows then from Zariski’s Main Theorem that j is an open
immersion. There is a natural ring homomorphism Ak−1 → Ak that sends
zk−1 to πsk−sk−1 zk. Define

Gk(zk, y) :=
k

∏

j=0

∏

γ∈S j

(

πsk−s j zk − γπ−s j y
)n(γ)

.

Let Sk denote the multiplicative subset of Ak generated by Gk(zk, y). We
claim that Ak is integral over S−1

k−1(Ak−1). Indeed, it suffices to show that zk
is integral over S−1

k−1(Ak−1). Recall that in Ak ,

Fk(zk, y) − µπw−uk = Gk−1(zk−1, y)
m

∏

j=k

∏

γ∈S j

(

zk − γπ−sk y
)n(γ) − µπw−uk

= 0.

Thus, the image of zk in Ak is the root of amonic polynomial over S−1
k−1 (Ak−1)

(since Gk−1 is of course a unit in this ring). Hence, it follows that the map
Spec(Ak) → Spec(Ak−1) is quasi-finite for any k ≥ 1, which concludes
the proof of 2.5.
Let U(αi) := Spec(Am). The primitive integral point P = (a, b) in

XF,h(L) corresponds to the point (π−t(a− αib), b) inU(αi)(L). Since this
point is integral, it has a non-trivial reduction in the special fiber ofU(αi).
Denote by P the set of integral primitive solutions, so that

P := {(x, y) ∈ (OK )2 | F(x, y) = h and gcd(x, y) = 1}.
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Proposition 2.6. Assume that p ! n. The closure ofP in the normalization
Y/OL of C/OL is contained in at most s regular affine open sets; namely,
this closure is contained in the union of the images of the sets U(αi), where
αi runs through all the roots of F(x, 1) such that there exists a primitive
integral point (a, b) with v(a − αib) = max j(v(a − α jb)).

Proof. The proposition follows from our next lemma.

Lemma 2.7. Let π | h. Let (a, b) and (a′, b′) be elements of P . Suppose
that v(a−αib) = max j(v(a−α jb)) and v(a′ −αib′) = max j(v(a′ −α jb′)).
Then v(a − αib) = v(a′ − αib′).

Proof. Recall that v(b) = 0 when π | h and (a, b) is primitive. Suppose
that v(a−αib) and v(a′ −αib′) are not equal. We may assume without loss
of generality that v(a/b−αi) > v(a′/b′ −αi). We claim that this inequality
implies that v(a/b − α j) ≥ v(a′/b′ − α j) for all j. Indeed, v(a/b − α j) ≥
v(a′/b′−α j) is clear if v(a′/b′−αi) ≤ v(a/b−α j). Thuswemay assume that
v(a′/b′ −αi) > v(a/b−α j). From v(a/b−αi) > v(a′/b′ −αi)we find that
v(a/b−a′/b′) = v(a′/b′−αi). It follows from v(a/b−a′/b′) > v(a/b−α j )
that v(a′/b′ − α j) = v(a/b − α j), and our claim is proved. This claim
contradicts the fact that v(F(a, b)) = v(F(a′, b′)) = v(h), and the lemma
follows.
Slightly more can be said about the closure of P in Y/OL . Consider the

following two schemes, U(αi) attached to a primitive integral point (a, b)
with associated valuation t, andU(α j) attached to a primitive integral point
(a′, b′)with associated valuation t′. We claim that if v(αi −α j) ≥ min(t, t′),
then the images of U(αi) and U(α j) in Y are equal. Assume t′ ≤ t. It
follows that v(a′ − αib′) ≥ t′. Thus, v(a′ − αib′) = t′, and Lemma 2.7
shows that t = t′. We may then define an isomorphism from U(αi) to
U(α j) on the level of rings

OL[u′, y]/(F ′
m′(u′, y) − µ) −→ OL[u, y]/(Fm(u, y) − µ)

by setting u′ 0→ u + π−t(αi − α j)y and y 0→ y.
We have thus shown that there exist at most s disjoint disks in OL , each

centered at a root of F(x, 1), such that if αi and α j belong to the same disk
(and have primitive solutions attached to them), then the images of U(αi)
andU(α j) in Y are equal.

2.8. The quotient construction. Let X/K be a smooth proper geometri-
cally connected curve of genus g. Let L/K be a cyclic Galois extension
with Galois group Gal(L/K ) =< σ >. Let Y/OL be a normal model of
XL/L such that Gal(L/K ) acts onY, lifting its natural action on Spec(OL).
An example of such a model Y is the normalization in L(X) of a normal
model over OK of X/K . Another example is the minimal regular model
Y/OL of XL/L . Indeed, the following is well-known.
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2.9. LetY/OL be the minimal regular model of XL/L . The map σ induces
a canonical morphism XL → XL over the map σ : Spec(L) → Spec(L).
Since XL is the generic fiber ofY, the map σ induces a birational proper map
Y → Y ×Spec(OL ) Spec(OL) over Spec(OL). By the universal property of
a minimal model ([C-S, page 310]), this map extends to a morphism fromY
to Y×Spec(OL ) Spec(OL) over Spec(OL). Since Y is reduced and separated,
this extension is unique. Hence, there exists then a unique automorphism
τ : Y → Y over the automorphism σ : Spec(OL) → Spec(OL).

2.10. Let G =<τ >, with τ : Y → Y lifting σ : Spec(OL) → Spec(OL).
The following fact is standard: Since Y/OL is projective, the quotient Z =
Y/G can be constructed in the usual way by gluing together the rings of
invariants of G-invariant affine open sets ofY. The schemeZ/OK is normal
and, hence, its singular points are closed points of its special fiber. We let
f : Y −→ Z denote the quotient map.

The normal scheme Z has quotient singularities. A desingularization
ν : X → Z leads to a regular model X/OK of X/K . Let Knr denote
the maximal unramified extension of K , and assume now that K = Knr .
When L/K is a tamely ramified field extension, the quotient singularities of
Z are well-understood. We recall their properties below, closely following
Viehweg’s article [Vie]. We refer the reader to his work for more details.
Though he states at the beginning of his paper that he considers only the
equicharacteristic case, his proofs of the facts listed below are also correct
in the mixed characteristic case.

2.11. ([Vie, page 303]) Let τ : Y → Y and τ red : Y
red → Y

red be the
natural morphisms induced by τ . Then the natural map

Y
red

/< τ red >−→ Z
red = Y/< τ >

red

is an isomorphism of schemes over the residue field.

For any irreducible component Yi ⊂ Y, let

D(Yi) := {µ ∈ G | µ(Yi) = Yi} and I(Yi) := {µ ∈ G | µ|Yi = id}.

2.12. ([Vie, page 303]) Let mi be the multiplicity of Yi in Y and let Z j :=
f(Yi). The multiplicity of Z j in Z is equal to mi · [L : K ]/|I(Yi)|.
Recall the following terminology. Let (C · D) denote the intersection

number on a regular modelX of two divisors C and D. Let us call chain of
rational curves on X a divisor D such that

(1) D = ⋃q
i=1 Ei , Ei smooth and rational curve for i = 1, . . . , q.

(2) (Ei · Ei+1) = 1 for all i = 1, . . . , q − 1 and (Ei · E j) = 0 for all
j '= i + 1. Moreover, (Ei · Ei) ≤ −2 for all i. Let us call E1 and Eq the
end-components of the chain.
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Consider again a normal model Y/OL with an action of Gal(L/K )
lifting the action on Spec(OL). Assume thatU/OL is a smooth open subset
of Y/OL such thatU is invariant under the action of G. Let Z := U/G.

2.13. ([Vie, Sect. 6]) There exists a regular scheme X/OK and a proper
birational morphism ν : X → Z such that ν induces an isomorphism
betweenX−{ν−1(Zsing)} andZ−{Zsing} and such that, for any z ∈ Zsing,
ν−1(z) is a connected chain of rational curves. The point z belongs to an
end-component of the chain. SinceU is smooth, we find that if z is a singular
point ofZ, then ν−1(z) intersects the rest of the special fiberXwith normal
crossings in exactly one point, say on E1. (Viehweg states in 8.1.d) on page
306 of [Vie] that the modelX, obtained by taking the quotient ofU and then
resolving the singularities, has normal crossings.) Let us call the component
Eq the terminal component of the chain ν−1(z). The other end-component
of the chain ν−1(z) is attached to an irreducible component ofX \ ν−1(z).

2.14. ([Vie, Sect. 6]) Let f : U → Z denote the quotient map. Let
z1, . . . , zd be the closed points of Z that are ramification points of the
morphism f : U → Z

red . Then {z1, . . . , zd} is the set of singular points
of Z. Moreover, if ν : X → Z is the desingularization of Z described in
2.13, then the multiplicity of the terminal component on the chain ν−1(zi)
is equal to the number of closed points in the fiber f −1(zi).

2.15. We now apply the quotient construction to the case where the model
Y/OL is smooth. The schemeZ = Y/<τ > has an irreducible special fiber.
The reduced special fiberZred is obtained as the quotient of Y by the action
of <τ > and is then a smooth and proper curve. The multiplicity of Z in Z
equals [L : K ]/I(Y). The singular points of Z are the ramification points
z1, . . . , zd of the morphism f : Y → Z

red , and the singularity at each of
these points is resolved by a chain of rational curves. The terminal curve on
the chain resolving zi has multiplicity equal to the number of closed points
in the fiber f −1(zi). The regular model X/OK obtained as the minimal
desingularization of Z is thus very simple.

3. Applications of the method of Chabauty-Coleman

We may now apply the method of Chabauty-Coleman to the case of Thue
equations. Let g := g(XF,h). We distinguish four cases, according to the
divisibility of d∗(F) and h by p. Our main result is stated in 3.9 below.

Proposition 3.1. Let XF,h/Q be such that for some prime p, p ! d∗(F),
p ! n, p2 > 2g+1, and either p ! h or n | ordp(h). Let K be any number field
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having anunramifiedprimeP of norm p. Assume thatChab(XF,h,K,P)<g.
Then

|XF,h(K )| ≤ (2g − 2)
p − 1
p − 2

+ |XFp(Fp)|,

where X/Zp is the minimal regular model of XF,h .

Proof. When n | ordp(h), an obvious change of variable overQ shows that
XF,h is isomorphic to XF,p−ordp(h)h . We are thus reduced to the case where
p ! h. In this case, as noted in 2.1, XF,h/Qp has good reduction over Zp.
Thus, we can apply 1.1.

Proposition 3.2. Let XF,h/Q be such that for some prime p, p ! d∗(F),
p ! n, p2 > 2g+1, p | h and n ! ordp(h). Let K be any number field having
an unramified prime P of norm p. Assume that Chab(XF,h, K,P) < g.
Then

|XF,h(K )| ≤ (2g − 2)
p − 1
p − 2

+ n p.

Let s denote the number of distinct roots of F(x, 1) in Q. If gcd(n,
ordp(h)) = 1, then |XF,h(K )| ≤ (2g− 2) p−1p−2 + sp.

Proof. Let X := XF,h . As noted in 2.1, X has good reduction over the
extension Qp(

n√h), which is tame. Thus, we may apply the quotient con-
struction to describe a regular model of X/Qnrp overZnrp . Let L := Qnrp ( n√h).
The extension L/Qnrp is Galois of order m := n/ gcd(n, ordp(h)), with
cyclic Galois group. Let ξm be a primitive m-th root of unity, and denote
by σ : L → L , with σ( n√h) = ξm

n√h, a generator of Gal(L/Qnrp ). The
morphism σ lifts to a morphism σ : XL → XL by setting

σ : L[u, v,w]/(F(u, v) − hwn) −→ L[u, v,w](F(u, v) − hwn)

with σ(u) = u, σ(v) = v and σ(w) = w. Let Y denote the normalization of
Proj(OL[x, y, z]/(F(x, y)− zn)). ThenY/OL is the smooth minimal model
of XL/L (see 2.1). The morphism σ : XL → XL extends to a morphism
σ : Y → Y by setting

σ : OL[x, y, z]/(F(x, y) − zn) −→ OL[x, y, z]/(F(x, y) − zn)

with σ(x) = x, σ(y) = y, and σ(z) = ξmz. When restricted to the spe-
cial fiber Y of Y, the morphism σ becomes an automorphism σ over Fp
of Y, of exact order m, which lifts the standard automorphism of order m
of Proj(k[x, y, z]/(F − zn)). This automorphism has s fixed points. Pulling
back these fixed points on Y produces at most

∑s
i=1 gcd(n, ni) fixed points

for the automorphism σ of Y. Bounding
∑s

i=1 gcd(n, ni) by n, we find that
the quotient map Y → Y/〈σ〉 is totally ramified over at most n points. It
follows from 2.14 that the desingularization X of Y/〈σ〉 has a special fiber
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containing at most n (smooth rational) components of multiplicity one. Note
that when m = n, the fixed points of the automorphism σ correspond to
the totally ramified points of the map from Y to P1 obtained by composing
the map from Y to Proj(k[x, y, z]/(F − zn)) with the projection map from
Proj(k[x, y, z]/(F− zn)) onto its [x : y] coordinates. This composition map
has at most s totally ramified points. Thus, in this case the desingulariza-
tion X of Y/〈σ〉 has a special fiber containing at most s components of
multiplicity one.
Consider now the minimal regular model X0/Zp of X/Qp. A point in

X(Qp) specializes in the special fiberX0/Fp to a smooth point, belonging
to a geometrically integral irreducible component C/Fp of multiplicity one.
Let X̃0 := X0×ZpZnrp . Since the self-intersection ofC inX0 equals the self-
intersection of C×Fp Fp in X̃0 (see, e.g., [B-L, 1.4]), we find that C×Fp Fp
cannot be contracted in X̃0 and, thus, corresponds to a component in the
minimal regular model X̃00 of X/Qnrp . Since there is a natural morphism
X → X̃00, our description above of the special fiber ofX implies that there
are at most n components of X0 that can contain the reduction of a Qp-
point, and that each such component is a smooth rational curve. Moreover,
each such component C meets the divisor X0 − C in exactly one Fp-point.
Hence, the number of points in X0 that can be reductions of Qp-rational
points is at most np. This concludes the proof of 3.2.

Let K be any number field, and let P be a maximal ideal of OK . Let
N(F,h,K,P) denote the number of solutions (x, y)∈(OK )2P of F(x, y) = h
with gcd(x, y) = 1.

Proposition 3.3. Let XF,h/Q be such that for some prime p, p ! h and
p | d∗(F), with p ! n and p2 > 2g + 1. Let K be any number field hav-
ing an unramified prime P of norm p. Assume that Chab(XF,h,K,P)<g.
Let a(p) denote the number of Fp-rational points of the affine curve
F(x, y) − h = 0 mod p. Then

N(F, h, K,P) ≤ (2g − 2)
p− 1
p− 2

+ a(p).

Proof. Consider the model C/Zp given by C = Proj(Zp[x, y, z]/(F −
hzn)). The special fiber C/Fp is a plane projective curve with possible
singularities only at points (x : y : z) with z = 0. None of the singular
points of C can be the reduction of a primitive integral point (a, b). Resolve
the singularities of C to obtain a regular modelX/Zp of XF,h/Qp. The only
points in X/Fp that can be reductions of primitive points in XF,h(Qp) are
the points inX(Fp) that correspond to Fp-rational points of C with z '= 0.
Applying 1.1 finishes the proof.
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Remark 3.4. When p is not too large compared to n, a bound for a(p) better
than the Weil bound can be obtained as follows. Project an irreducible
component of degree d of the curve C/Fp that is not a line onto an Fp-
rational projective line. Then the projection map has degree at most d. It
follows that a(p) ≤ np.

Proposition 3.5. Let XF,h/Q be such that for some prime p, p | h and
p | d∗(F), with p ! n and p2 > 2g + 1. Let K be any number field having
an unramified prime P of norm p. Assume that Chab(XF,h, K,P) < g.
Assume also that the splitting field L/Qnrp of F(x, 1) is a tame extension
(this happens for instance if p > s). When p ≤ s, assume that F(x, 1) is
monic. Then N(F, h, K,P) ≤ (2g− 2) p−1p−2 + snp.

Proof. Let X := XF,h . When p > s, we use 2.2 and change variables
so that F(x, 1) is monic. We may now use Proposition 2.6, which de-
scribes smooth open sets in a regular model of X over OL . Since the
extension L/Qnrp is tame, it is cyclic, and we can thus use the quotient
construction to obtain information on a regular model of X over Zp. Let
Y/OL be the normalization of C/OL := Proj(OL[x, y, z]/(F − hzn)). Let
〈σ〉 = Gal(L/Qnrp ). The morphism σ induces obvious automorphisms
σ :Y→Y and σ : C → C over σ : Spec(OL) → Spec(OL), compat-
ible with the natural map Y → C. We shall denote by G := 〈σ〉 the
group of automorphisms of Y, resp. C, generated by σ . Fix a root αi of
F(x, 1) such that there exists a primitive solution P = (a, b) ∈ (Znrp )2 with
t := vL(a− bαi) = max j(vL(a− bα j)). Recall the notation introduced just
before 2.6: LetU(αi) = Spec(OL[u, y]/(Fm(u, y) − µ)). Let

ψ∗ : OL[x, y]/(F(x, y) − h) −→ OL[u, y]/(Fm(u, y) − µ)

be given by x 0→ π t
Lu + αi y, and y 0→ y. The induced morphism ψ :

U(αi) → C was shown to induce an open immersion ψ : U(αi) → Y in
2.5. The following lemma, whose proof is omitted, describes the possible
components of the special fiberU(αi).

Lemma 3.6. Let k be any algebraically closed field. Let n ∈ N with
char(k) ! n. Let ξn denote a primitive n-th root of unity in k. Let f(x, y) be
homogeneous of degree n in k[x, y], and let µ ∈ k∗. Then f(x, y) − µzn
factors in k[x, y, z] if and only if there exist d | n and g ∈ k[x, y] with
f = gn/d. Then f − µzn = ∏n/d

i=1(g− ξ idn
n/d
√

µzd).

We will also need the following lemma describing the action of G on
the components ofU(αi). Recall the definitions of D(Yi) and I(Yi) in 2.11.

Lemma 3.7. Let Y1, . . . ,Yn/d denote the irreducible components of Y
whose generic points belong to U(αi). Then D(Y&) = D(Y j) = G and
I(Y&) = I(Y j) for all &, j ∈ {1, . . . , n/d}.
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Proof. Since p ! n, the group of n-th roots of unity is contained in Qnrp ,
and acts on C/OL as follows. A generator ξn induces an automorphism
ϕ : C → C given by:

OL[x, y, z]/(F(x, y) − hzn) ϕ∗
−→ OL[x, y, z]/(F(x, y) − hzn),

where x 0→ x, y 0→ y, and z 0→ ξnz. The automorphism ϕ induces an
automorphism ϕ : Y → Y. The generator ξn also induces an automorphism
ϕ : U(αi) → U(αi) given by

OL[u, y]/(Fm(u, y) − µ)
ϕ∗

−→ OL[u, y]/(Fm(u, y) − µ),

where u 0→ ξ−1
n u and y 0→ ξ−1

n y. The reader will easily verify that ψ ◦ϕ =
ϕ ◦ ψ. Lemma 3.6 shows that ϕ acts transitively on {Y1, . . . ,Yn/d}. Since
the morphisms σ : Y → Y and ϕ commute, and since ϕ acts transitively
on {Y1, . . . ,Yn/d}, we find that D(Y&) = D(Y j) and I(Y&) = I(Y j) for all
&, j ∈ {1, . . . , n/d}. We let D := D(Y j) and I := I(Y j). Note now that
D = G. Indeed, if P = (a, b) reduces to Y j for some j, then σ(P) reduces to
σ(Y j). Since (a, b) ∈ (Znrp )2, we find that P reduces to a point in Y j ∩σ(Y j).
Since P reduces to a non-singular point ofU(αi), we find that Y j = σ(Y j).
This concludes the proof of Lemma 3.7.

The following subset ofY,V(αi) := ⋂

τ∈G τ(ψ(U(αi))), isG-invariant.
Let P̃ denote the closure of P in Y. Then P̃ ∈ ψ(U(αi)) by construction.
Since P is fixed by τ , τ(ψ(U(αi))) contains P̃ and, thus, P̃ ∈ V(αi).
LetD := Proj(Znrp [x, y, z]/(F−hzn)) andD ′ := Proj(Zp[x, y, z]/(F−

hzn)). LetZ′/Zp andZ/Znrp denote the normalization ofD ′ andD , respec-
tively. Clearly Z = Y/G. We have the following commutative diagram:

Y j ⊂ Y
ρ−−−→ C −−−→ Spec(OL)





1





1





1





1

Z& ⊂ Z
ε−−−→ D −−−→ Spec(Znrp )





1





1





1





1

Z ′
& ⊂ Z′ ε′

−−−→ D ′ −−−→ Spec(Zp),

where Y j is one of the n/d irreducible components of the special fiber of
V(αi), corresponding to a factor G j(u, y) of degree d of Fm(u, y) − µ. The
map ρ induces a morphism ρ j : Y j → ρ(Y j), given in coordinates by the
bottom horizontal map below:

OL[x, y]/(F(x, y) − h) ψ∗
−−−→ OL[u, y]/(Fm(u, y) − µ)





1





1

OL[x, y]/(πL, x − αi y) −−−→ OL[u, y]/(πL,G j(u, y)).
This morphism is clearly of degree at most d.
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Consider now the case where I = G. (This case happens for instance
if αi ∈ Qnrp .) Then V(αi) → V(αi)/G is an isomorphism. The morphism
ε′
& : Z ′

& → ε′
&(Z ′

&) induced by ρ j is also of degree at most d. The curve
ε′
&(Z ′

&)/Fp is a smooth projective line. The primitive integral point (a, b)
cannot reduce to the intersection point Q of all the components of the special
fiber of D ′. The morphism ε′

& is defined over Fp, and there are at most dp
Fp-rational points in the preimage in Z& of ε′

&(Z ′
&) \ {Q}. Since there are

at most n/d such components, we conclude that at most np points in the
image of V(αi) in Z′ can be residue classes of primitive integral points.
Let us now consider the case where I " D. Then the image Z& of Y j

in Z = Y/G has multiplicity |D|/|I | > 1, and 2.14 indicates that to count
the components of multiplicity one (in a desingularization of Z′) which
contain the reduction of primitive integral points, one first needs to count
the number of totally ramified points in the branch locus of Y j → Z&.
Consider the diagram

Y
σ−−−→ Y

2





ψ

2





ψ

ψ−1(V(αi))
σ−−−→ ψ−1(V(αi)),

where σ : ψ−1(V(αi)) → ψ−1(V(αi)) is defined so that the diagram
commutes. Consider an open set U of ψ−1(V(αi)) that is dense in each
fiber and is a special open set of U(αi). We find that on the level of rings,
σ : U → U(αi) induces the top horizontal map below

OL[u, y]/(Fm(u, y) − µ)
σ−−−→ S−1(OL[u, y]/(Fm(u, y) − µ))

ψ∗
2





ψ∗
2





OL[x, y]/(F(x, y) − h) σ−−−→ OL[x, y]/(F(x, y) − h).

The bottom map σ satisfies σ(x) = x and σ(y) = y. Since the diagram
commutes, the top map satisfies σ(π t

Lu+αi y) = π t
Lu+αi y. Since σ(π t

Lu+
αi y) = σ(π t

L)σ(u) + σ(αi)y, we find that

σ(u) = π t
L

σ(π t
L)
u + αi − σ(αi)

σ(π t
L)

y.

(Note that both π t
L/σ(π t

L) and (αi − σ(αi))/σ(π t
L) belong toOL .) By hypo-

thesis, σ := σ|Y&
does not act trivially on Y&. The points where the morphism

Y& → Y&/ < σ > is totally ramified is the set of fixed points of the map σ .
Note also that the reduction of any primitive integral point must be a fixed
point of σ . On the plane curve G j(u, y) = 0, the automorphism σ is given
by u 0→ cu + c′y and y 0→ y, for some c, c′ ∈ k. Thus the fixed points of σ
lie on the line (c− 1)u + c′y = 0, and we find that there are at most d such
points. Let now ν : X → Z denote the minimal desingularization of Z. As
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we recalled in 2.14, the subset ν−1(Z&) of the special fiber of X contains
then at most d components of multiplicity one, each smooth and rational,
and each meeting the rest of the special fiber in a single point.
Consider now the minimal regular model X0/Zp of X/Qp. A point in

X(Qp) specializes in the special fiberX0/Fp to a smooth point, belonging
to a geometrically integral irreducible component C/Fp of multiplicity one.
Let X̃0 := X0 ×Zp Znrp . Since the self-intersection of such a component C
inX0 equals the self-intersection of C ×Fp Fp in X̃0 (see, e.g., [B-L, 1.4]),
we find that C ×Fp Fp cannot be contracted in X̃0 and, thus, corresponds
to a component in the minimal regular model X̃00 of X/Qnrp . Since there is
a natural morphismX → X̃00, our description above of the special fiber of
X implies that there are at most n components of X0 that can contain the
reduction of aQp-point, and that each such component is a smooth rational
curve (recall that there are n/d irreducible components Y j). Moreover, each
such component Cmeets the divisorX0−C in exactly one Fp-point. Hence,
the number of points in X0 that can be reductions of Qp-rational points is
at most np.
Since the contribution of an open set of the form V(αi) to the number

of reductions of primitive integral points in the special fiber of the model
X0 is bounded by np, and since the primitive integral points are contained
in at most s such open sets (2.6), we find that the reduction of the primitive
integral points in the special fiber of the model X0 consists in at most snp
points. Thus 3.5 follows from 1.1.

3.8. The statement of Theorem 3.5/3.8 in the introduction follows im-
mediately from the proof of 3.5. Let us now state our main theorem. Let
N(F, h) denote the number of solutions (x, y) ∈ Z2 of F(x, y) = h with
gcd(x, y) = 1.

Theorem 3.9. Let p be a prime1 with n < p < 2n. Assume that the
Chabauty rank with respect to (p) of XF,h/Q is less than g := g(XF,h).
Then

N(F, h) ≤ 2n3 − 2n − 3.
More precisely,

a) If p ! h or n | ordp(h), and if p ! d∗(F), then |XF,h(Q)| ≤ 2g+ s− 4+
2n(n − 1).

b) If p | h, n ! ordp(h), and p ! d∗(F), then |XF,h(Q)| ≤ 2g + s − 5 +
n(2n − 1).

c) If p ! h and p | d∗(F), then N(F, h,Q, p) ≤ 2g+ s − 5+ n(2n − 1).
d) If p | h and p | d∗(F), then N(F, h,Q, p) ≤ 2g + s − 5+ sn(2n − 1).

1 As C. Pomerance pointed out to us, when n > 2, 010, 760, the existence of a prime p
with n < p < (1+ 1/16597)n is proven in [Scho]. We leave it to the reader to sharpen the
bounds presented in Theorem 3.9 using refinements of Bertrand’s Postulate.
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In particular, if the Mordell-Weil rank of XF,h/Q is less than g, then
N(F, h) ≤ 2n3 − 2n − 3.

Proof. We apply our previous results using the estimates p ≤ 2n − 1 and
s ≤ n. The term (2g−2)(p−1)/(p−2) is bounded by 2g+ s−5. To prove
a), apply 3.1, and bound |XFp(Fp)| as follows. Let XF,h denote the reduction
of the plane curve XF,h . We can bound |XF,h(Fp)| using a projection from
a point P of XF,h(Fp) to a Fp-line. If P is not on the line z = 0, we find that

|XF,h(Fp)| ≤ (n − 1)(p− s + 1) +
s

∑

i=1
(n − ni) + 1.

We then consider the normalization mapXFp → XF,h and find that

|XFp(Fp)| ≤ |XF,h(Fp)| +
s

∑

i=1
(gcd(n, ni) − 1).

Bounding
∑s

i=1 gcd(n, ni) byn, wefind that |XFp (Fp)| ≤ (n−1)(p+1)+1.
We leave it to the reader to check that the above bound also holds when P
is on the line z = 0. To prove c), apply 3.3, and bound a(p) using 3.4 to
find that a(p) ≤ np. To prove b) and d), use 3.2 and 3.5.
Note now that by Bertrand’s postulate, there exists a prime p with

n < p < 2n. If the Mordell-Weil rank of XF,h/Q is less than g, then the
Chabauty rank with respect to (p) of XF,h/Q is also less than g, and we find
that N(F, h) ≤ 2n3 − 2n − 3.

Example 3.10. Let us use known results on theMordell-Weil rank of certain
curves to obtain examples of Thue equations to which Theorem 3.9 applies.
First, recall that for any integers a, b, c, d, and e such that ad − bc '= 0, the
curve XF,h is isomorphic over Q to XG,hen , where G(x, y) = F(ax + by,
cx + dy). It follows that the Chabauty rank of XG,hen/Q is equal to the
Chabauty rank of XF,h/Q (at any prime). Thus, when the method of
Chabauty-Coleman can be applied to bound N(F, h,Q, p), it can also be
used to bound the number of primitive solutions to any equation of the form
G(x, y) = hen. Note that while such a change of variables does not change
the Q-isomorphism class of the underlying curve, it does change the notion
of a primitive integral solution.
A Thue curve XF,h always covers the superelliptic curve hyq = F(x, 1)

for any prime divisor q of n, so it is always possible to attempt to bound
the Chabauty rank of such a Thue curve XF,h by applying the ideas of [P-S]
to compute the rank of some quotient of XF,h . One finds in the literature
a few explicit computations of Mordell-Weil ranks for superelliptic curves
D/Q of the form yq = F(x, 1), with n = deg(F) and q | n, q prime. For
instance,

y3 = (x2 − x + 6)2(x8 + 3x + 3)(7)
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is considered in [P-S, 14.2], with Mordell-Weil rank 2 over Q (see Sect. 5
of [Sch] for further examples). Let Ddq denote the superelliptic curve as-
sociated with dq yq = F(x, 1). Clearly, Ddq is isomorphic to D over Q, so
the jacobians of these curves have the same rank. We may thus apply the
Chabauty-Coleman method to XF,dq as soon as it is known that the rank of
D/Q is less than the genus of D, as is the case with (7).
Let & be a prime. Bounds for the Mordell-Weil rank over Q of the

normalization Ch of the curve Y 2 = X& + h are given in [St1], with an
‘added in proof’ proven in [St2]. Using these results, one finds for instance
that when & = 5 and h is as follows, the rank of the genus 2 curves Ch , Ch5 ,
and Ch9 , is equal to 1:

h = 11, h = 11 · 13 · 17 · 19 · 23, h = −3 · 11 · 13 · 17 · 19 · 23 · 29.
Consider now q, e ∈ Z+, and the equation q2x2& − y2& = he2&. This Thue
curve maps onto Ch , with Y 0→ q(x/ez)& and X 0→ (y/ze)2. In addition to
the above Thue curve, we also find that the curves given by hx2& − y2& =
h&+1e2& and hx&+1+xy& = h2e2& have Ch as quotients. When the rank of Ch
can be computed using [St1] and [St2], Theorem 3.9 applies to the above
three examples of Thue curves having Ch as quotient.

It is quite possible that the bounds obtained in Theorem 3.9 are too
large. Indeed, there are no known examples in the literature of a fam-
ily of Thue equations (Fj(x, y) = h j)∞j=1 with lim j→∞ deg Fj = ∞ and
lim j→∞ N(Fj , h j)/ deg Fj = ∞. The following simple examples of Thue
equations with N(G, h) ≥ n are well-known. Take G(x, y) = ∏n

i=1(x −
ai y) + hyn, with

∏

i '= j (ai − aj) '= 0, ai ∈ Z. Then {(ai, 1), i = 1, . . . , n}
are primitive solutions.
It is known that N(F, h) ≤ O(n) when disc(F) is large compared to h

(see [Ste2, page 378]). We use below the fact that any subfield of Q(ξp−1)
has an unramified prime of norm p to obtain, in some cases where the
Mordell-Weil rank of XF,h is at most g(XF,h)/n, bounds for N(F, h,Q, p)
of the form O(n) and O(n2).

Theorem 3.11. Let p ≥ 5 be prime and let n := p − 1. Let X := XF,h.
Assume that Chab(X,Q(ξp−1), (p)) < g(X). This is the case, for instance,
if the Mordell-Weil rank of X/Q is less than (s − 2)/2. Then
a) If p ! d∗(F), then |X(Q)| ≤ 5n − 3.
b) If p | d∗(F), then N(F, h,Q, p) ≤ 2n2 + 4n − 5.

Proof. Our hypothesis allows us to apply the results of the previous section.
We bound (2g−2)(p−1)/(p−2) by n2−2n−3, and s by n. Let u denote the
number of points in X(Q)with z = 0. Clearly, u ≤ n. Let v := |X(Q)|− u.
Then, since n is even (and −1 is in Q), we have |X(Q(ξn))| ≥ u + nv/2.
For part a) when p ! h, we use the bound 3.1:

|X(Q(ξn))| ≤ n2 − 2n − 3+ (n − 1)(p + 1).
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(To bound |X(Fp)|, use a projection from a point in X(Fp).). It follows
that u + nv/2 ≤ 2n2 − n − 5. Hence, v ≤ 4n − 2 − 10/n − 2u/n. Thus,
v ≤ 4n − 3. We find that |X(Q)| = u + v ≤ n + 4n − 3. To prove part a)
when p | h, we use 3.2,

|X(Q(ξn))| ≤ n2 − 2n − 3+ np.

Thus, u + nv/2 ≤ 2n2 − n − 3. Hence, v ≤ 4n − 3, and |X(Q)| ≤ 5n − 3.
In part b), we do not consider points with z = 0 (since such points are

not primitive integral solutions). To prove part b), we use 3.3:

nN(F, h,Q, p)/2 ≤ N(F, h,Q(ξn), p) ≤ n2 − 2n − 3+ (n − 1)(p + 1).

as well as 3.5:

nN(F, h,Q, p)/2 ≤ N(F, h,Q(ξn), p) ≤ n2 − 2n − 3+ n2p.

To conclude the proof of the theorem, we only need to prove that, if the
Mordell-Weil rank of X/Q is less than (s − 2)/2, then the Chabauty rank
of Jac(X/Q(ξp−1)) is less than g(X). This assertion is a consequence of the
following general fact.

Proposition 3.12. Let X/Q denote the smooth proper model of the affine
curve given by an equation hyn = f(x), with n | deg( f ). Write f(x) =
∏s

i=1(x−ai)ni with
∏

i '= j(ai −aj) '= 0, and assume that gcd(n, ni) < n for
all i. Fix ξn, a primitive n-th root of unity. Denote by σ the automorphism
of X/Q(ξn) induced by (x, y) 0→ (x, ξn y). Assume that the Chabauty rank
(with respect to any prime) of X/Q(ξn) is equal to g(X). Then the factor
An/Q of the jacobian of X introduced below has Mordell-Weil rank over Q
at least equal to (s − 2)/2.

Proof. Let Φ(t) = (tn − 1)/(t − 1). Let Φd(t) denote the d-th cyclotomic
polynomial, so that Φ(t) = ∏

d|n
d '=1

Φd(t). Let Ψd(t) := Φ(t)/Φd(t). Let
d | n, and consider the abelian variety

Ad := Im(Ψd(σ)) ⊂ Jac(X)/Q(ξn).

(Note that when d < gcd(n, ni) for some i, it may happen that Ad is
trivial.) It is clear that Ad ⊂ Ker(Φd(σ)). If d '= d′, then Φd(t) and Φd′(t)
are coprime in Q and, thus, generate in Z[t] a principal ideal qZ[t] for
some q ∈ Z. We conclude that Ad ∩ Ad′ is a finite set of points, killed
by q. Since the polynomials {Ψd(t)}d|n are coprime in Q, we can find
{ad(t) ∈ Z[t], d | n, d '= 1} such that ∑ ad(t)Ψd(t) = z ∈ Z. Hence, given
P ∈ Jac(X),

zP =
∑

Ψd(σ)(ad(σ)P) ∈ 〈{Ad | d | n, d '= 1}〉 ⊆ Jac(X)

and, thus, Jac(X) is isogenous to ⊕ d|n
d '=1

Ad .
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We claim now that Ad is an abelian variety defined over Q. Indeed, let
P = (a, b), where a, b ∈ Q, be a solution of yn = f(x). Letµ ∈ Gal(Q/Q).
Then µ(ξn) = ξcn for some c ∈ Z with (c, n) = 1. It follows that on
X(Q), we have σ c ◦ µ = µ ◦ σ for some c ∈ Z. If an element Z of
Jac(X)(Q) is of the form Z = Ψd(σ)(

∑s
i=1 ai Pi) with Pi ∈ X(Q), then

µ(Ψd(σ)(
∑s

i=1 ai P)) = Ψd(σ
c)(

∑s
i=1 aiµ(Pi)). Now, since (c, n) = 1,

there is a positive integer c′ such that cc′ ≡ 1 (mod n). The polynomial
Ψd(t) is a product of cyclotomic polynomials Φe(t) with e | n, and for any
root ξe ofΦe(t), it is clear that ξc

′
e is a root ofΦe(tc). Since multiplication by

c′ permutes (Z/eZ)∗, it follows that Φe(t) divides Φe(tc) for any e | n, and
that Ψd(t) divides Ψd(tc). Hence, µ(Z) ∈ Ad(Q), for all µ ∈ Gal(Q/Q). It
follows that Ad is defined overQ. We determine the dimension of Ad below.

Lemma 3.13. Suppose that d | n and that d > gcd(n, ni) for all i =
1, . . . , s. Let ϕ(d) denote the Euler ϕ-function. Then dim(Ad ) = ϕ(d)·
(s − 2)/2.

Proof. By construction, σ|Ad is such that Φd(σ|Ad ) = 0. The characteristic
polynomial char(σ)(t) of σ acting on H1(X(C),C) is computed in [Lor,
4.1]:

char(σ)(t) = Φ(t)s−2
s

∏

i=1

(

xgcd(n,ni ) − 1
x − 1

)−1
.

Hence, rankZ(Ker(ϕd(σ)|H1(X(C),C)) = (s − 2)ϕ(d). Using the duality be-
tween H1(X(C),C) and H1(X(C),C) as well as the fact that

0 → H0(X(C),ΩX ) → H1(X(C),C) → H1(X,OX ) → 0

is exact, with H0(X(C),ΩX ) and H1(X,OX ) related by Serre duality, we
find that dim Ad = ϕ(d)(s−2)/2. This concludes the proof of Lemma 3.13.
When n is prime, rankZ(Jac(X/Q(ξn))) = rankZ(Jac(X/Q))(n− 1), as

shown in Lemma 13.4 of [P-S]. The reader will easily check that the proof
of 13.4 can be used, mutatis mutandis, to show that, for any d | n,

rankZ(Ad(Q))ϕ(d) = rankZ(Ad(Q(ξd))).

In particular, if the Chabauty rank of Jac(X)/Q(ξn) equals g(X), then

rankZ(An(Q(ξn))) ≥ dim(An),

so that rankZ(An(Q)) ≥ (s − 2)/2. This concludes the proof of 3.12.

Acknowledgements The authors wish to thank John M. Grigsby for his support of research
in number theory. They would also like to thank W. McCallum, B. Poonen, E. Schaefer,
M. Stoll, J. Wetherell, and the referee, for helpful comments. Lorenzini thanks the Swiss
NSF for financial support, and theUniversity of Geneva and theUniversity of North Carolina
at Chapel Hill for their hospitality.



Thue equations and the method of Chabauty-Coleman 77

References

[B-S] E. Bombieri, W.M. Schmidt, On Thue’s equation, Invent. math. 88 (1987), 69–81
[B-L] S. Bosch, Q. Liu, Rational points in the group of components of a Néron model,
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