Math 430 Problem Set #6 Due 10/13/21

- 1. Let A be a DVR with maximal ideal \mathcal{P} , field of fractions K. Let L be a finite separable extension of K and let B be a ring in L that is integral over A and has field of fractions L. Let \mathcal{Q} be a prime in B for which $\mathcal{Q} \cap A = \mathcal{P}$ and such that $\mathcal{Q}^e \supseteq \mathcal{P}$ and $[B/\mathcal{Q}:A/\mathcal{P}]=f$. Show that $\dim_{A/\mathcal{P}}(B/\mathcal{Q}^e) \ge ef$ with equality if and only if $B_{\mathcal{Q}}\mathcal{Q}$ is principal or e=1.
- 2. Let A be a DVR with maximal ideal \mathcal{P} , field of fractions K. Let L be a finite separable extension of K of degree n and let B be a ring in L that is integral over A and has field of fractions L. Suppose that $B\mathcal{P}$ factors as

$$B\mathcal{P} = \mathcal{Q}_1^{e_1} \cdots \mathcal{Q}_m^{e_m}.$$

Let f_i be the relative degree $[B/\mathcal{Q}_i:A/\mathcal{P}]$ of \mathcal{Q}_i over \mathcal{P} . Show that $\sum_{i=1}^m e_i f_i = n$ if and only if B is Dedekind. [Hint: Recall that $\dim_{A/\mathfrak{p}} \mathfrak{p}/\mathfrak{p}^2 = 1$ if and only if \mathfrak{p} is invertible.]

3. Let p be a prime number. Show that $\mathbb{Z}[i]p$ factors as

$$\mathcal{Q}^2$$
 ; if $p = 2$
 $\mathcal{Q}_1 \mathcal{Q}_2$; if $p \equiv 1 \pmod{4}$
 \mathcal{Q} ; if $p \equiv 3 \pmod{4}$,

where Q, Q_1 , Q_2 are primes of $\mathbb{Z}[i]$ and $Q_1 \neq Q_2$.

Also do the following problems from the book. You may assume that L is separable over K in all of them. (The notation with e and f is explained in the book.)

- 4. p. 29, Ex. 4
- 5. p. 30, Ex. 5
- 6. p. 32 Ex. 7