Math 430 Problem Set \#6 Due 10/13/21

1. Let A be a DVR with maximal ideal \mathcal{P}, field of fractions K. Let L be a finite separable extension of K and let B be a ring in L that is integral over A and has field of fractions L. Let \mathcal{Q} be a prime in B for which $\mathcal{Q} \cap A=\mathcal{P}$ and such that $\mathcal{Q}^{e} \supseteq \mathcal{P}$ and $[B / \mathcal{Q}: A / \mathcal{P}]=f$. Show that $\operatorname{dim}_{A / \mathcal{P}}\left(B / \mathcal{Q}^{e}\right) \geq e f$ with equality if and only if $B_{\mathcal{Q}} \mathcal{Q}$ is principal or $e=1$.
2. Let A be a DVR with maximal ideal \mathcal{P}, field of fractions K. Let L be a finite separable extension of K of degree n and let B be a ring in L that is integral over A and has field of fractions L. Suppose that $B \mathcal{P}$ factors as

$$
B \mathcal{P}=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}}
$$

Let f_{i} be the relative degree $\left[B / \mathcal{Q}_{i}: A / \mathcal{P}\right]$ of \mathcal{Q}_{i} over \mathcal{P}. Show that $\sum_{i=1}^{m} e_{i} f_{i}=n$ if and only if B is Dedekind. [Hint: Recall that $\operatorname{dim}_{A / \mathfrak{p}} \mathfrak{p} / \mathfrak{p}^{2}=1$ if and only if \mathfrak{p} is invertible.]
3. Let p be a prime number. Show that $\mathbb{Z}[i] p$ factors as

$$
\begin{array}{rll}
\mathcal{Q}^{2} & ; & \text { if } p=2 \\
\mathcal{Q}_{1} \mathcal{Q}_{2} & ; & \text { if } p \equiv 1 \quad(\bmod 4) \\
\mathcal{Q} & ; & \text { if } p \equiv 3 \quad(\bmod 4),
\end{array}
$$

where $\mathcal{Q}, \mathcal{Q}_{1}, \mathcal{Q}_{2}$ are primes of $\mathbb{Z}[i]$ and $\mathcal{Q}_{1} \neq \mathcal{Q}_{2}$.
Also do the following problems from the book. You may assume that L is separable over K in all of them. (The notation with e and f is explained in the book.)
4. p. 29, Ex. 4
5. p. 30, Ex. 5
6. p. 32 Ex. 7

