Math 430 Problem Set #5 Due 10/6/21

1. Let A be an integral domain such that (1) $A_{\mathfrak{m}}$ is Noetherian for every maximal ideal A and (2) every proper nonzero ideal of A is contained in at most finitely many maximal ideals. Show that A is Noetherian. [Hint: The beginning of Proposition 3.19 from the book provides a good model for this proof.]

2. Let $\theta = \sqrt{3}$ and let $R = \mathbb{Z}[\theta]$.

- (a) Write down a dual basis for the basis 1, θ for $\mathbb{Q}(\theta)$ over \mathbb{Q} with respect to the bilinear form $(x, y) = T_{\mathbb{Q}(\theta)/\mathbb{Q}}(xy)$.
- (b) Letting R^{\dagger} denote the Z-module generated by the dual basis above, find the order of the abelian group R^{\dagger}/R .
- 3. Let $\theta = \frac{1+\sqrt{5}}{2}$ and let $R = \mathbb{Z}[\theta]$.
 - (a) Write down a dual basis for the basis 1, θ for $\mathbb{Q}(\theta)$ over \mathbb{Q} with respect to the bilinear form $(x, y) = T_{\mathbb{Q}(\theta)/\mathbb{Q}}(xy)$.
 - (b) Letting R^{\dagger} denote the Z-module generated by the dual basis above, find the order of the abelian group R^{\dagger}/R .
- 4. Let K be a field. We define the resultant $\operatorname{Res}(f,g)$ as follows. Write

$$f(x) = b \prod_{i=1}^{m} (x - \alpha_i) , \quad g(x) = c \prod_{j=1}^{n} (x - \beta_j),$$

with $b, c \in K^*$ and β_i, γ_j in some algebraic closure of K. Then

$$\operatorname{Res}(f,g) := b^n c^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j).$$

- (a) Let $h(x) = x^2 3$. Calculate $\operatorname{Res}(h(x), h'(x))$.
- (b) Let $t(x) = x^2 x 1$. Calculate $\operatorname{Res}(t(x), t'(x))$.
- (c) Compare your answers to 2(b) and 3(b).
- 5. Let f and g be as above and suppose that g is nonconstant. Show that

$$\operatorname{Res}(f(x), g(x)) = b^n \prod_{i=1}^m g(\alpha_i).$$

6. Let f be as above and assume that its leading coefficient b is 1 and that the degree of f is at least 2. Show that

$$\operatorname{Res}(f(x), f'(x)) = \prod_{\substack{1 \le i, j \le m \\ i \ne j}} (\alpha_i - \alpha_j).$$