Math 430 Problem Set \#5 Due 10/6/21

1. Let A be an integral domain such that (1) $A_{\mathfrak{m}}$ is Noetherian for every maximal ideal A and (2) every proper nonzero ideal of A is contained in at most finitely many maximal ideals. Show that A is Noetherian. [Hint: The beginning of Proposition 3.19 from the book provides a good model for this proof.]
2. Let $\theta=\sqrt{3}$ and let $R=\mathbb{Z}[\theta]$.
(a) Write down a dual basis for the basis $1, \theta$ for $\mathbb{Q}(\theta)$ over \mathbb{Q} with respect to the bilinear form $(x, y)=\mathrm{T}_{\mathbb{Q}(\theta) / \mathbb{Q}}(x y)$.
(b) Letting R^{\dagger} denote the \mathbb{Z}-module generated by the dual basis above, find the order of the abelian group R^{\dagger} / R.
3. Let $\theta=\frac{1+\sqrt{5}}{2}$ and let $R=\mathbb{Z}[\theta]$.
(a) Write down a dual basis for the basis $1, \theta$ for $\mathbb{Q}(\theta)$ over \mathbb{Q} with respect to the bilinear form $(x, y)=\mathrm{T}_{\mathbb{Q}(\theta) / \mathbb{Q}}(x y)$.
(b) Letting R^{\dagger} denote the \mathbb{Z}-module generated by the dual basis above, find the order of the abelian group R^{\dagger} / R.
4. Let K be a field. We define the resultant $\operatorname{Res}(f, g)$ as follows. Write

$$
f(x)=b \prod_{i=1}^{m}\left(x-\alpha_{i}\right), \quad g(x)=c \prod_{j=1}^{n}\left(x-\beta_{j}\right)
$$

with $b, c \in K^{*}$ and β_{i}, γ_{j} in some algebraic closure of K. Then

$$
\operatorname{Res}(f, g):=b^{n} c^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\alpha_{i}-\beta_{j}\right)
$$

(a) Let $h(x)=x^{2}-3$. Calculate $\operatorname{Res}\left(h(x), h^{\prime}(x)\right)$.
(b) Let $t(x)=x^{2}-x-1$. Calculate $\operatorname{Res}\left(t(x), t^{\prime}(x)\right)$.
(c) Compare your answers to 2(b) and 3(b).
5. Let f and g be as above and suppose that g is nonconstant. Show that

$$
\operatorname{Res}(f(x), g(x))=b^{n} \prod_{i=1}^{m} g\left(\alpha_{i}\right)
$$

6. Let f be as above and assume that its leading coefficient b is 1 and that the degree of f is at least 2. Show that

$$
\operatorname{Res}\left(f(x), f^{\prime}(x)\right)=\prod_{\substack{1 \leq i, j \leq m \\ i \neq j}}\left(\alpha_{i}-\alpha_{j}\right)
$$

