Math 430 Problem Set \#3 Due 9/22/21

1. The definition of a Noetherian R-module for a ring R is very similar to that of a Noetherian ring. We say that M is a Noetherian R-module if it satisfies the ascending module property, which says that given any ascending chain R-submodules of R as below

$$
M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{j} \subseteq \ldots
$$

there is some N such that $M_{n}=M_{n+1}$ for all $n \geq N$. As with rings, this is equivalent to saying that all of the R-submodules of M are finitely generated.

Let M be a Noetherian R-module and let

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

be an exact sequence of R-modules. Show that
(a) M^{\prime} is a Noetherian R-module; and
(b) $M^{\prime \prime}$ is a Noetherian R-module.
2. Let R be a Noetherian integral domain, let I be an ideal of R, and let $S \subset R$ be a nonempty multiplicative set with $0 \notin S$. Let φ be the usual map from R to $S^{-1} R$. Show that if $S \cap I$ is empty, then $R_{S} \phi(I)$ is not all of R_{S}.
3. Let R be a ring and let $\phi: R \longrightarrow R / I$ be the natural quotient map.
(a) Show that the map

$$
\phi^{-1}: J \longrightarrow \phi^{-1}(J)
$$

from ideals in R / I to ideals in R gives a bijection between the set of ideals in R / I and the set set of ideals in R that contain I.
(b) Show that the map ϕ^{-1} from prime ideals in R / I to prime ideals in R gives a bijection between the set of prime ideals in R / I and the set set of prime ideals in R that contain I.
4. Find a ring R and an ideal I for which there is an element $c \in I^{2}$ that cannot be written as $a b$ where $a, b \in I$.
5. (p. 6, Ex.3) Show that if $\left\{R_{i}\right\}$ is a family of integrally closed subrings of a field K, then the intersection

$$
\bigcap_{i} R_{i}
$$

is also integrally closed.
6. (p.14, Ex. 2) Let R be a Noetherian integral domain with field of fractions K and let M be an R-submodule of a finite dimensional
R-vector space. Prove that

$$
M=\bigcap_{\mathfrak{m} \text { maximal }} R_{\mathfrak{m}} M
$$

[Hint: First show that $R_{\mathfrak{m}} M$ is simply the set of all elements of in K that are equal to m / s for some $m \in M$ and some $s \in R$ that is not in \mathfrak{m}. The for any x in the intersection of the $R_{\mathfrak{m}} M$, let I_{x} be the ideal consisting of all $r \in R$ such that $r x \in M$. Show that I_{x} is not contained in any maximal ideal of R.]

