## Math 430 Problem set \#2 Due September 15

1. (a) Suppose that $\alpha$ is integral of degree 2 over $\mathbb{Z}$ and that there is a basis $m_{1}, m_{2}$ for $\mathbb{Z}[\alpha]$ over $\mathbb{Z}$ such that

$$
\begin{aligned}
& \alpha m_{1}=m_{2} \\
& \alpha m_{2}=-m_{1}+m_{2} .
\end{aligned}
$$

Find the quadratic integral equation satisfied by $\alpha$.
(b) Suppose that $\beta$ is integral of degree 2 over $\mathbb{Z}$ and that there is a basis $m_{1}, m_{2}$ for $\mathbb{Z}[\beta]$ over $\mathbb{Z}$ such that

$$
\begin{aligned}
& \beta m_{1}=m_{2} \\
& \beta m_{2}=5 m_{1} .
\end{aligned}
$$

Find the quadratic integral equation satisfied by $\beta$.
2. Let $A$ be an unique factorization domain. Show that $A$ is closed in its field of fractions. [Hint: Suppose an element $a / b$ in the field of fractions of $A$ in lowest terms (meaning that $a$ and $b$ have no common factor). Show that if $b$ has a prime factor (i.e. is not a unit), then $a / b$ cannot satisfy a monic polynomial $f$ with coefficients in $A$ by multiplying through by $b^{n}$ and using the fact that $a^{n}$ does not have this prime factor.]
3. Let $A, B$, and $C$ be rings with $A \subseteq B \subseteq C$. Show that if $B$ is integral over $A$ and $C$ is integral over $B$, then $C$ is integral over $A$. (This was mentioned in class - it's worth going through the proof carefully.)
4. (Ex. 4, p. 7) Let $d$ be a squarefree integer. Show that the integral closure of $\mathbb{Z}$ in $\mathbb{Q}[\sqrt{d}]$ is

$$
\mathbb{Z}[\sqrt{d}] \quad \text { if } \quad d \equiv 2,3 \quad(\bmod 4)
$$

and

$$
\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \quad \text { if } \quad d \equiv 1 \quad(\bmod 4) .
$$

5. (a) Let $\phi: A \longrightarrow B$ be a mapping of rings. Show that for any prime ideal $\mathcal{P}$ in $B$, the ideal $\phi^{-1}(\mathcal{P})$ is a prime ideal in $A$.
(b) Give an example of a surjective ring homomorphism $\phi: A \longrightarrow B$ for which there is a prime ideal $\mathcal{P}$ of $A$ such that $\phi(\mathcal{P})$ is not a prime ideal.
6. (a) Give an example of a mapping of rings $\phi: A \longrightarrow B$ for which there is an ideal $I$ of $A$ such that $\phi(I)$ is not an ideal.
(b) Let $\phi: A \longrightarrow B$ be a surjective mapping of rings. Show that for any ideal $I$ of $A$, the set $\phi(I)$ forms an ideal in $B$.
(c) Let $\phi: A \longrightarrow B$ be any mapping of rings. Show that for any ideal $J$ of $B$, the set $\phi^{-1}(J)$ forms an ideal in $A$.
7. (Ex. 4, p.3) Show that if $S$ is a multiplicative set not containing 0 in a Noetherian integral domain $R$, then $S^{-1} R$ is also a Noetherian integral domain.
8. (Continuation of 1 and 2 from last week.) Let $R$ be a ring contained in $\mathbb{C}$. Suppose that for every $x \in R$, we have $|x|^{2} \in \mathbb{Z}$, where $|\cdot|$ is the usual absolute value on $\mathbb{C}$. Suppose furthermore that for every $\alpha \in \mathbb{C}$, there is an $x \in R$ such that $|x-\alpha|<1$. Show that $R$ is a principal ideal domain. [Hint: Show that you have a Euclidean algorithm for the norm $N(r)=|r|^{2}$.
9. Use 8. to show that the rings $\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$ and $\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$ are both principal ideal domains.
