Math 430 Problem Set \#12 Due 12/1/21

1. Let d be any squarefree integer with $|d|>1$ that is congruent to $3(\bmod 4)$. Show that $L=\mathbb{Q}(\sqrt{d})$ admits a nontrivial extension that is unramified over all primes in \mathcal{O}_{L}. [Hint: Try adjoining i or $\sqrt{-d}$, both of which gave the same extension of L.]
2. Let L be a number field and let $y \in L$ have the property that $|\sigma(y)|=1$ for all embeddings $\sigma: L \longrightarrow \mathbb{C}$. Show that y is a root of unity, i.e. that $y^{n}=1$ for some $n>1$. [Hint: Use the embedding $h: \mathcal{O}_{L} \longrightarrow \mathbb{R}^{n}$ used in the proof of the finitness of the class number and use the fact that $h\left(\mathcal{O}_{L}\right)$ is a full lattice, which thus contains at most finitely many elements in any bounded subset of \mathbb{R}^{n}.]
3. Compute the class group of $\mathbb{Z}\left[\frac{1+\sqrt{-31}}{2}\right]$.
4. Compute the class group of $\mathbb{Z}\left[\frac{1+\sqrt{-163}}{2}\right]$.

Recall that the p-adics \mathbb{Q}_{p} are defined to be the completion of \mathbb{Q} under the absolute value $|a|_{p}=e^{-v_{p}(a)}$ for $a \neq 0$ and v_{p} the discrete valuation corresponding to $\mathbb{Z}_{(p)}$ and $|0|_{p}=0$. The set \mathbb{Z}_{p} is the closure of \mathbb{Z} in \mathbb{Q}_{p} or alternately the set of $a \in \mathbb{Q}_{p}$ such that $|a|_{p} \leq 1$.
5. Show that there is no element $\alpha \in \mathbb{Q}_{5}$ such that $\alpha^{2}=5$. [Hint: What would $|\alpha|_{5}$ be? Use your answer to show there is no sequence of elements in \mathbb{Q}_{5} that could converge to such an α.]

Recall that Hensel's lemma over the p-adics states that if $f \in \mathbb{Z}_{p}[x]$ is monic and $|f(\alpha)|_{p}<1$ while $\left|f^{\prime}(\alpha)\right|_{p} \geq 1$, then there is a $\gamma \in \mathbb{Q}_{p}$ such that $f(\gamma)=0$ and $|\gamma-\alpha|_{p}<1$. 6. Which of the following polynomials have roots in \mathbb{Q}_{3} ? (Explain you answers):
(a) $x^{2}+2$;
(b) $x^{3}+x+1$;
(c) $x^{2}+2 x-2$.

