Math 430 Problem Set \#1 Due September 1, 2021

1. For an element $u+v i$ of $\mathbb{Z}[i]$, define $N(u+v i):=u^{2}+v^{2}$.
(a) Show that for any $c, d \in \mathbb{Z}[i]$, we have $N(c) N(d)=N(c d)$.
(b) Show that for any elements $a, b \in \mathbb{Z}[i]$, it is possible to write

$$
a=q b+r
$$

where $q, r \in \mathbb{Z}[i]$ and $N(r)<N(b)$.
(c) Conclude that $\mathbb{Z}[i]$ is a principal ideal domain. [Hint: Show that any ideal I is generated by a nonzero element of I having minimal norm.]
2. Use the Euclidean algorithm to show that $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is a principal ideal domain.
3. Answer each of the following yes or no and explain your answer.
(a) Is $11 \sqrt{7}$ integral over \mathbb{Z} ?
(b) Is $\frac{1+\sqrt{3}}{2}$ integral over \mathbb{Z} ?
(c) Is $\frac{1+\sqrt{5}}{2}$ integral over \mathbb{Z} ?
(d) Is $\mathbb{Z}[\sqrt{-19}]$ integrally closed in $\mathbb{Q}[\sqrt{-19}]$?
4. Show that ± 1 are the only units in the ring $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$.
5. It turns out that $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a unique factorization domain (we will prove this later). Given this fact, find all integer pairs (x, y) such that $x^{2}+19=y^{3}$ and justify your answers with a proof.

