Math 430 Final Exam, Due December 15

1. Let \mathcal{O}_{L} be ring of integers in a quadratic number field L. Let $p \mid \Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)$. Show that

$$
\left(\frac{\mathrm{N}_{L / \mathbb{Q}}(\alpha)}{p}\right)=1
$$

for every $\alpha \in \mathcal{O}_{L}$ such that p does not divide $\left|\mathrm{N}_{L / \mathbb{Q}}(\alpha)\right|$. [Hint: Write down the norm of an element $a+b \omega$ explicitly.]
2. Let \mathcal{O}_{L} be ring of integers in a quadratic number field L. Suppose that there is some $p \mid \Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)$ such that $p \equiv 3(\bmod 4)$. Show that there does not exist any $\alpha \in \mathcal{O}_{L}$ such that $\mathrm{N}_{L / \mathbb{Q}}(\alpha)=-1$. Then give an example of a real quadratic field K (with no prime divisors that are congruent to 3 mod 4 of course) such that there is an $\alpha \in \mathcal{O}_{K}$ for which $N_{K / \mathbb{Q}}(\alpha)=-1$.
3. Show that $|x+y|=\max (|x|,|y|)$ for a non-Archimedean absolute value $|\cdot|$ on a field K when $|x| \neq|y|$. (Recall that a non-Archimedean absolute value $|\cdot|$ is an absolute value - multiplicative and satisfying the triangle inequality - with the property that $|x+y| \leq \max (|x|,|y|)$ for all $x, y \in K$.
4. Suppose that $d<-7$ is a squarefree number that is congruent to $1(\bmod 8)$. Show that $\left\lvert\, \mathrm{Cl}\left[\left.\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \right\rvert\, \neq 1\right.$. [Hint: Look at one of the primes lying over 2]. \right.

5 . Find the class group of $\mathbb{Z}[\sqrt{-22}]$. Show all of your work.
6. Find the class group of $\mathbb{Z}[\sqrt{-14}]$ (partial credit for getting its size, full credit for describing it up to isomorphism). Show all of your work.
7. Find the class group of $\mathbb{Z}\left[\frac{1+\sqrt{-23}}{2}\right]$. Show all of your work.
8. Find the class group of $\mathbb{Z}\left[\frac{1+\sqrt{-107}}{2}\right]$. Show all of your work.

