Math 430 Tom Tucker
 NOTES FROM CLASS 11/15

Throughout, L is as usual degree n over $\mathbb{Q}, h: L \longrightarrow V$ is the usual embedding, r is the number of real places of L and $s=(n-r) / 2$. Also, N is $\mathrm{N}_{L / \mathbb{Q}}$.

Question: Are there any nontrivial extensions of \mathbb{Q} that don't ramify anywhere? Since $|\Delta(L / \mathbb{Q})|$ is a positive integer and the only positive integer that isn't divisible by any primes is 1 , this is the same as asking whether or not there are any extensions with $|\Delta(L / \mathbb{Q})|=1$. Now, recall that we know that every nonzero ideal $I \subseteq \mathcal{O}_{L}$ has norm equal to at least 1. Looking at the Minkowski bound, we know that any ideal class contains an ideal with norm at most

$$
\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\Delta(L / \mathbb{Q})}>1
$$

which means that

$$
\sqrt{\Delta(L / \mathbb{Q})}>\frac{n^{n}}{n!}\left(\frac{\pi}{4}\right)^{s} .
$$

Since $2 s+r=n$ for some integer $r \geq 0$, we know that $s \leq[n / 2]$ (where $[\cdot]$ is the greatest integer function). Now, we can write

$$
\frac{n^{n}}{n!}\left(\frac{\pi}{4}\right)^{s}>\frac{n^{[n / 2]}}{[n / 2]!}(3 / 4)^{[n / 2]}>2^{[n / 2]}(3 / 4)^{[n / 2]}>1
$$

for $n \geq 2$, so for $L \neq \mathbb{Q}$, we have

$$
\sqrt{\Delta(L / \mathbb{Q})}>1
$$

so there is some p dividing $\sqrt{\Delta(L / \mathbb{Q})}$, so L ramifies at some prime. On the other hand, many quadratic fields do have unramified extensions. In fact, $\mathbb{Q}[\sqrt{d}]$ for square-free d has an unramified extension whenever d is composite (see homework).

In general, here is what we'll do:
As usual, let n be the degree of L over \mathbb{Q} and let $\sigma_{1}, \ldots, \sigma_{r}$ be the real embeddings of L into \mathbb{C} with $\sigma_{r+1}, \sigma_{r+2}, \sigma_{n-1}, \sigma_{n}$ the complex embeddings. Let's reorder the complex embeddings so that $\sigma_{r+i+s}=\overline{\sigma_{r+i}}$ for odd $r<i \leq s$. For $b \in \mathcal{O}_{L} \backslash 0$, we define

$$
\begin{aligned}
& \ell(b)=\left(\log \left|\sigma_{1}(b)\right|, \ldots, \log \left|\sigma_{r}(b)\right|, \log \left|\sigma_{r+1}(b)\right|^{2}, \log \left|\sigma_{r+2}(b)\right|^{2}\right. \\
&\left.\ldots,\left|\sigma_{r+s}(b)\right|^{2}\right) \\
&=\left(\log \left|\sigma_{1}(b)\right|, \ldots, \log \left|\sigma_{1}(b)\right|, 2 \log \left|\sigma_{r+1}(b)\right|, 2 \log \left|\sigma_{r+2}(b)\right|, \ldots, 2\left|\sigma_{r+s}(b)\right|\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
\log |\mathrm{N}(b)|= & \log \left|\sigma_{1}(b)\right|+\cdots+\log \left|\sigma_{1}(b)\right| \\
& +2 \log \left|\sigma_{r+1}(b)\right|+2 \log \left|\sigma_{r+2}(b)\right|+\cdots+2\left|\sigma_{r+s}(b)\right|
\end{aligned}
$$

and $\log |\mathrm{N}(b)|=0$ if and only if b is a unit, we see that ℓ sends \mathcal{O}_{L} into the hyperplane in \mathbb{R}^{s+r} consisting of elements with coordinates $\left(x_{1}, \ldots, x_{r+1}\right)$ for which

$$
x_{1}+\cdots+x_{n}=0 .
$$

The kernel of ℓ turns out to be roots of unity.
It turns out that $\ell\left(\mathcal{O}_{L}^{*}\right)$ is a sublattice in \mathbb{R}^{r+s} that is a full lattice in the subspace H of \mathbb{R}^{r+s} consisting of all $\left(x_{1}, \ldots, x_{r+s}\right)$ such that $x_{1}+\cdots+x_{r+s}=0$. This gives the Dirichlet unit theorem.

Theorem 21.1 (Dirichlet Unit Theorem). Let μ_{L} be the roots of unity in L. There exist elements $v_{1}, \ldots, v_{r+s-1} \in \mathcal{O}_{L}^{*}$ such that every unit $u \in \mathcal{O}_{L}^{*}$ can be written uniquely as

$$
u=v v_{1}^{m_{1}} \cdots v_{r+s-1}^{m_{r+s-1}}
$$

for $v \in \mu_{L}$ and $m_{i} \in \mathbb{Z}$.
Here's a link to a nice discussion of Hensel's Lemma. Note that this is only done over \mathbb{Q}_{p} not over general closed fields with respect to ultrametrics. Also note that \mathbb{Z}_{p} means the set of all z in \mathbb{Q}_{p} such that $|z|_{p} \leq 1$. Alternatively it can be thought of as the closure of \mathbb{Z} in \mathbb{Q}_{p}.
https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf

