Math 430 Tom Tucker NOTES FROM CLASS 11/15

Throughout, L is as usual degree n over \mathbb{Q} , $h: L \longrightarrow V$ is the usual embedding, r is the number of real places of L and s = (n-r)/2. Also, N is $N_{L/\mathbb{Q}}$.

Question: Are there any nontrivial extensions of \mathbb{Q} that don't ramify anywhere? Since $|\Delta(L/\mathbb{Q})|$ is a positive integer and the only positive integer that isn't divisible by any primes is 1, this is the same as asking whether or not there are any extensions with $|\Delta(L/\mathbb{Q})| = 1$. Now, recall that we know that every nonzero ideal $I \subseteq \mathcal{O}_L$ has norm equal to at least 1. Looking at the Minkowski bound, we know that any ideal class contains an ideal with norm at most

$$\frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(L/\mathbb{Q})} > 1,$$

which means that

$$\sqrt{\Delta(L/\mathbb{Q})} > \frac{n^n}{n!} \left(\frac{\pi}{4}\right)^s.$$

Since 2s + r = n for some integer $r \ge 0$, we know that $s \le \lfloor n/2 \rfloor$ (where $\lfloor \cdot \rfloor$ is the greatest integer function). Now, we can write

$$\frac{n^n}{n!} \left(\frac{\pi}{4}\right)^s > \frac{n^{[n/2]}}{[n/2]!} (3/4)^{[n/2]} > 2^{[n/2]} (3/4)^{[n/2]} > 1,$$

for $n \geq 2$, so for $L \neq \mathbb{Q}$, we have

$$\sqrt{\Delta(L/\mathbb{Q})} > 1$$

so there is some p dividing $\sqrt{\Delta(L/\mathbb{Q})}$, so L ramifies at some prime. On the other hand, many quadratic fields do have unramified extensions. In fact, $\mathbb{Q}[\sqrt{d}]$ for square-free d has an unramified extension whenever d is composite (see homework).

In general, here is what we'll do:

As usual, let *n* be the degree of *L* over \mathbb{Q} and let $\sigma_1, \ldots, \sigma_r$ be the real embeddings of *L* into \mathbb{C} with $\sigma_{r+1}, \sigma_{r+2}, \sigma_{n-1}, \sigma_n$ the complex embeddings. Let's reorder the complex embeddings so that $\sigma_{r+i+s} = \overline{\sigma_{r+i}}$ for odd $r < i \leq s$. For $b \in \mathcal{O}_L \setminus 0$, we define

$$\ell(b) = (\log |\sigma_1(b)|, \dots, \log |\sigma_r(b)|, \log |\sigma_{r+1}(b)|^2, \log |\sigma_{r+2}(b)|^2, \dots, |\sigma_{r+s}(b)|^2)$$

= $(\log |\sigma_r(b)| - \log |\sigma_r(b)| - 2\log |\sigma$

= $(\log |\sigma_1(b)|, \dots, \log |\sigma_1(b)|, 2 \log |\sigma_{r+1}(b)|, 2 \log |\sigma_{r+2}(b)|, \dots, 2 |\sigma_{r+s}(b)|)$ Since

$$\log |N(b)| = \log |\sigma_1(b)| + \dots + \log |\sigma_1(b)| + 2\log |\sigma_{r+1}(b)| + 2\log |\sigma_{r+2}(b)| + \dots + 2|\sigma_{r+s}(b)|$$

and $\log |\mathcal{N}(b)| = 0$ if and only if b is a unit, we see that ℓ sends \mathcal{O}_L into the hyperplane in \mathbb{R}^{s+r} consisting of elements with coordinates (x_1, \ldots, x_{r+1}) for which

$$x_1 + \dots + x_n = 0.$$

The kernel of ℓ turns out to be roots of unity.

It turns out that $\ell(\mathcal{O}_L^*)$ is a sublattice in \mathbb{R}^{r+s} that is a full lattice in the subspace H of \mathbb{R}^{r+s} consisting of all (x_1, \ldots, x_{r+s}) such that $x_1 + \cdots + x_{r+s} = 0$. This gives the Dirichlet unit theorem.

Theorem 21.1 (Dirichlet Unit Theorem). Let μ_L be the roots of unity in L. There exist elements $v_1, \ldots, v_{r+s-1} \in \mathcal{O}_L^*$ such that every unit $u \in \mathcal{O}_L^*$ can be written uniquely as

$$u = vv_1^{m_1} \cdots v_{r+s-1}^{m_{r+s-1}}$$

for $v \in \mu_L$ and $m_i \in \mathbb{Z}$.

Here's a link to a nice discussion of Hensel's Lemma. Note that this is only done over \mathbb{Q}_p not over general closed fields with respect to ultrametrics. Also note that \mathbb{Z}_p means the set of all z in \mathbb{Q}_p such that $|z|_p \leq 1$. Alternatively it can be thought of as the closure of \mathbb{Z} in \mathbb{Q}_p .

https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf