
Math 430 Tom Tucker
NOTES FROM CLASS 11/15

Throughout, L is as usual degree n over Q, h : L −→ V is the usual
embedding, r is the number of real places of L and s = (n−r)/2. Also,
N is NL/Q.

Question: Are there any nontrivial extensions of Q that don’t ramify
anywhere? Since |∆(L/Q)| is a positive integer and the only positive
integer that isn’t divisible by any primes is 1, this is the same as asking
whether or not there are any extensions with |∆(L/Q)| = 1. Now, recall
that we know that every nonzero ideal I ⊆ OL has norm equal to at
least 1. Looking at the Minkowski bound, we know that any ideal class
contains an ideal with norm at most
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Since 2s+r = n for some integer r ≥ 0, we know that s ≤ [n/2] (where
[·] is the greatest integer function). Now, we can write
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(3/4)[n/2] > 2[n/2](3/4)[n/2] > 1,

for n ≥ 2, so for L 6= Q, we have√
∆(L/Q) > 1

so there is some p dividing
√

∆(L/Q), so L ramifies at some prime. On
the other hand, many quadratic fields do have unramified extensions.
In fact, Q[

√
d] for square-free d has an unramified extension whenever

d is composite (see homework).
In general, here is what we’ll do:

As usual, let n be the degree of L over Q and let σ1, . . . , σr be the real
embeddings of L into C with σr+1, σr+2, σn−1, σn the complex embed-
dings. Let’s reorder the complex embeddings so that σr+i+s = σr+i for
odd r < i ≤ s. For b ∈ OL \ 0, we define

`(b) = (log |σ1(b)|, . . . , log |σr(b)|, log |σr+1(b)|2, log |σr+2(b)|2,
. . . , |σr+s(b)|2)

= (log |σ1(b)|, . . . , log |σ1(b)|, 2 log |σr+1(b)|, 2 log |σr+2(b)|, . . . , 2|σr+s(b)|)
Since

log |N(b)| = log |σ1(b)|+ · · ·+ log |σ1(b)|
+ 2 log |σr+1(b)|+ 2 log |σr+2(b)|+ · · ·+ 2|σr+s(b)|
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and log |N(b)| = 0 if and only if b is a unit, we see that ` sends OL

into the hyperplane in Rs+r consisting of elements with coordinates
(x1, . . . , xr+1) for which

x1 + · · ·+ xn = 0.

The kernel of ` turns out to be roots of unity.
It turns out that `(O∗

L) is a sublattice in Rr+s that is a full lattice
in the subspace H of Rr+s consisting of all (x1, . . . , xr+s) such that
x1 + · · ·+ xr+s = 0. This gives the Dirichlet unit theorem.

Theorem 21.1 (Dirichlet Unit Theorem). Let µL be the roots of unity
in L. There exist elements v1, . . . , vr+s−1 ∈ O∗

L such that every unit
u ∈ O∗

L can be written uniquely as

u = vvm1
1 · · · v

mr+s−1

r+s−1

for v ∈ µL and mi ∈ Z.

Here’s a link to a nice discussion of Hensel’s Lemma. Note that
this is only done over Qp not over general closed fields with respect to
ultrametrics. Also note that Zp means the set of all z in Qp such that
|z|p ≤ 1. Alternatively it can be thought of as the closure of Z in Qp.
https://kconrad.math.uconn.edu/blurbs/gradnumthy/hensel.pdf
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