
Math 430 Tom Tucker
NOTES FROM CLASS 11/08

First a quick preview of what we are going to do.
We want to show that there is an element of small norm in I. To

make the proof of the finiteness of the class number as clear as possible,
we’ll first give simple versions of it and then prove more quantitative
versions later.

Theorem 19.1. (Imprecise small element of fractional ideal) There
exists a constant C(L) depending only on L such that for any fractional
ideal I of OL there is an element y ∈ I

NL/K(y) ≤ C(L) NL/K(I).

Theorem 19.2. Assume Theorem 19.1 above. For any fractional ideal
I of OL, there is an ideal J ⊂ OL in the same ideal class as I such
that

|NL/Q(J)| ≤ C(L).

Proof. By Theorem 19.1 above, there exists a ∈ I−1 such that

|NL/Q(a)| ≤ |NL/Q(I−1)|C(L).

Then J = Ia ⊆ OL and

|NL/Q(J)| ≤ C(L).

�

We’ll need Minkowski’s theorem, which guarantees the existence of
certain elements of a lattice. We’ll recall a a lemma from last time.

Lemma 19.3. Let L be a lattice in V (Rn with a volume form) and
let U be a measurable subset of V such that the translates U +λ, where
λ ∈ L are disjoint. Then Vol(U) ≤ Vol(L).

Proof. Let T be a fundamental parallelepiped for some basis of L. For
each λ ∈ L, let

Uλ = T ∩ (U − λ).

We then have

U =
⋃
λ∈L

(Uλ + λ).

Since the volume form is translate invariant, we see that∑
λ∈L

Vol(Uλ) =
∑
λ∈L

Vol(Uλ + λ) = Vol(U).
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Since all the Uλ are disjoint and contained in T , we see that

Vol(L) = Vol(T ) ≥ Vol(
⋃
λ∈L

(Uλ)) =
∑
λ∈L

Vol(Uλ) = Vol(U).

�

Theorem 19.4. (Minkowsi) Let L be a full lattice in the volumed vec-
tor space V of dimension n and let U be a bounded, centrally symmetric,
convex subset of V . If Vol(U) > 2n Vol(L), then U contains a nonzero
element λ ∈ L

Proof. By the way, centrally symmetric means that for x ∈ U , we have
−x ∈ U . Convex means that for x, y ∈ U and t ∈ [0, 1], we have
tx+ (1− t)y ∈ U .

Now, let W = 1
2
U . Then Vol(W ) = 1

2n
Vol(U), so Vol(W ) > Vol(L),

so it follows from the Lemma, we just proved that not all of the trans-
lates W+λ are disjoint. Taking y ∈ (W+λ)∩(W+λ′), with λ 6= λ′, we
can write y = a+ λ = b+ λ′, which gives us a, b ∈ W with (a− b) ∈ L
and (a− b) 6= 0. Since a, b ∈ W = 1

2
U , we can write a = 1

2
x and b = 1

2
y

for x, y ∈ U . Since y is convex and centrally symmetric the element
a− b = 1

2
x− 1

2
y = 1

2
x+ 1

2
(−y) ∈ U and we are done. �

We will want to apply this to a lattice h(I) for I a fractional ideal of
OL. The region U that we use should consist of elements of bounded
norm. Recall though, that the most natural sort of region is something
like a sphere

√
x21 + · · ·+ x2n ≤M and we are going to be interested in

something like the product x1 · · ·xn, so we will need something relating
these two. Also, we have messed around a bit at the complex places, to
we’ll have to tinker with that a bit. Let’s label our coordinate system
for V in the following way. We call the first r-coordinates corresponding
to the real embeddings x1, . . . , xr. The remaining 2s coordinates we
label as y1, z1, . . . , ys, zs.

Let

Xt = {x1, . . . , xr, y1, z1, . . . , ys, zs |
r∑
i=1

|xi|+
s∑
j=1

2
√
y2j + z2j ≤ t}

from now on. It is easy to see that Xt is convex, bounded, and centrally
symmetric, so we will be able to apply Minkowski’s theorem to it.

Proposition 19.5. Let y ∈ L. If h(y) ∈ Xt, then NL/Q(y) ≤ (t/n)n.

Proof. Let bi = σi(y) for 1 ≤ i ≤ r and let

br+1 = br+2 =
√
y21 + z21 , . . . , bn−1 = bn =

√
y2s + z2s .
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Then

N(y) = |σ1(y)| · · · |σn(y)||σr+1(y)|2|σr+3(y)|2 · · · |σn−1(y)|2 = |b1| · · · |bn|.
By the arithmetic/geometric mean inequality

t/n =
n∑
i=1

|bi|
n
≥ n
√
|b1| · · · |bn|.

Taking n-th powers finishes the proof. �

Lemma 19.6. Let b1, . . . , bn be positive numbers. Then

(1)
m∑
i=1

bi
n
≥ n
√
b1 · · · bn.

(I will explain an easier proof using Jensen’s inequality on the board.)

Proof. Since the right and left-hand sides of (1) scale, we can assume
that

m∑
i=1

bi
n

= 1.

Thus, we need only show that

b1 · · · bn ≤ 1.

We can write bi = (1 + ai) with a1 + · · ·+ an = 0. To show that

(1 + a1) · · · (1 + an) ≤ 1

it will suffice to show that that the function

F (t) = (1 + a1t) · · · (1 + ant)

is decreasing on the interval [0, 1]. This can be checked by simply taking
the derivative of F . We find that

F ′(t) =
n∑
i=1

ai
∏
j 6=i

(1 + ait).

If all of the ai are 0, this is clearly 0. Otherwise, we can write

F ′(t) =
∑
ai>0

|ai|
∏
j 6=i

(1 + ait)−
∑
ai<0

|ai|
∏
j 6=i

(1 + ait)

≤ (
∑
ai>0

|ai|) max
ak>0

(∏
j 6=k

(1 + ajt)

)
− (
∑
ai<0

|ai|) min
ak<0

(∏
j 6=k

(1 + ajt)

)
.

Since ∑
ai>0

|ai| =
∑
ai<0

|ai|
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and

max
ak>0

(∏
j 6=k

(1 + ajt)

)
< min

ak<0

(∏
j 6=k

(1 + ajt)

)
we must have F ′(t) < 0 on the desired interval, so F must be decreasing
on this interval. �

Proposition 19.7.

Vol(Xt) =
2r−sπstn

n!
.

Proof. The proof of this is in the book on p. 66. The last step in the
calculation is integration by parts, which the book neglects to mention.

�

Lemma 19.8. Let U be any bounded region of V and let L be a full
lattice in V . Then L ∩ U is finite.

Proof. Let w1, . . . , wn be a basis for L and let x1, . . . , xn be the basis for
V that gives the volume form. If M is the matrix given by Mxi = wi,
then for any integers mi we have

|
n∑
i=1

miwi|2 = |M(
n∑
i=1

mixi)|2 ≥
n∑
i=1

m2
i ‖M‖2inf

where ‖M‖inf is the minimum value of |M(y)| for y on the unit sphere
centered at the origin (which is nonzero). For any constant C there are
finitely many integers mi such that

n∑
i=1

m2
i ‖M‖2inf ≤ C2

so there are finitely many elements of λ in the sphere of radius C
centered at the origin. Any bounded region is contained in such a
sphere, so we are done. �

Theorem 19.9. Let I be a nonzero fractional ideal of OL. Then there
exists a 6= 0 such that

|NL/Q(a)| ≤ n!

nn

(
4

π

)s√
∆(OL/Z) NL/Q(I).


