
Math 430 Tom Tucker
NOTES FROM CLASS 11/03

Recall from last time... From now on, we’ll stick to L a finite field
extension of Q of degree n with ring of integers oL. Some of what we
do applies to other orders in L, too.

Let’s order the embeddings σ1, . . . , σn (n = [L : Q]) in the following
way. We let σ1, . . . , σs be real embeddings. The remaining embeddings
come in pairs as explained above, so for i = r + 1, r + 3, . . . , we let σi
be a complex embedding and let σi+1 = σi. We let s be the number of
complex embeddings. We have r + 2s = n.

Now, we can embed oL into Rn by letting

h(y) = (σ1(y), . . . , σr(y),

<(σr+1(y)),=(σr+1(y)), . . . ,<(σr+2(s−1)(y)),=(σr+2(s−1)(y)))

=
(
σ1(y), . . . , σr(y),

σr+1(y) + σr+2(y)

2
,
σr+1(y)− σr+2(y)

2i
, . . . ,

σr+2(s−1)(y) + σr+2(s−1)(y)

2
,
σr+2(s−1)(y)− σr+2(s−1)+1(y)

2i

)
.

(1)

Let us also denote as hi the map h : oL −→ R given by composing h
with projection pi onto the i-th coordinate of Rn.

We will continue to use h and hi as defined above. We will also
continue to let s and r be as above and to let n = r+ 2s be the degree
[L : Q].

Proposition 18.1. Let B be an integral extension of Z with field of
fractions L. Let w1, . . . , wn be a basis for a B over Z. Then

(det[hi(wj)])
2 =

1

(2i)2s
|∆(B/Z)|.

Proof. From the HW just assigned (problem #2), we know that

(det[σi(wj)])
2 = |∆(B/Z)|.

We also know from (1) that hi differs from σi (when the σ’s are ordered
as in that equation) only for σi complex and we can obtain hi for even
i > r by adding up two σi and dividing by 2. We can then get the odd
i-th rows by subtracting the i− 1 row from the i-th row and diving by
2i. I will put this on the board. �

Corollary 18.2. The image h(oL) in Rn is a full lattice.

Proof. Since ∆(oL/Z) 6= 0, the determinant det[hi(wj)] 6= 0, so the
hi(wj) are linearly independent over R. Hence they generate Rn as an
R-vector space and oL is a full lattice. �
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In the book the following characterization of a lattice is proven. We
will not use it, so I will not give the proof in class.

Theorem 18.3. (Thm. 12.2) An additive subgroup L ⊂ Rn is a lattice
if and only if every sphere in Rn contains only finitely many elements
of L.

We will not need this characterization.
****** Fundamental parallelepipeds. Let L be a full lattice in Rn

and let w1, . . . , wn be a basis for L over Z. We call the set

T = {r1w1 + · · ·+ rnwn | 0 ≤ ri < 1, ri ∈ R}
the fundamental parallelepiped for the basis w1, . . . , wn.

Lemma 18.4. Let L be a full lattice in Rn and let w1, . . . , wn be a basis
for L over Z with fundamental parallelepipeds T . Then every element
v ∈ Rn can be written as t + λ for a unique t ∈ T and λ ∈ L. In
particular, the sets λ+ T are disjoint and cover all of Rn.

Proof. Let v ∈ V . Write v =
m∑
i=1

siwi (uniquely). Then each si can be

written uniquely as an integer plus a real number less than 1, that is
as

si = [si] + ri
where the brackets are the greatest integer function and ri < 1. �

Now, we want to work with volumes. A volume on Rn comes from a
choice of orthonormal basis x1, . . . , xn. Let V be the vector space Rn

equipped with the orthonormal basis x1, . . . , xn. For a lattice L with
basis w1, . . . , wn, we can write

wi =
n∑

j=1

sijxj.

It follows from multivariable calculus that the volume of the paral-
lelepipeds T for the wi is∫
· · ·
∫
T
dx1 . . . dxn =

∫
· · ·
∫
0≤xi<1

| det[sij]|dx1 . . . dxn = | det[sij]|.

We call the quantity | det[sij]| the volume of L. It does not depend on
our choice of basis since any two choice of bases differ by a change of
basis matrix with determinant ±1.

Note that there is a choice of basis implicit in our map h : oL −→ Rn.
This basis comes from the coordinates with which we have described
our map. Draw picture on board. We will call this basis xi and call Rn

equipped with this volume form V .
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Theorem 18.5. The volume of h(oL) in V is

1

2s

√
|∆(oL/Z)|.

Proof. This follows immediately from Proposition 18.1, since the ma-
trix we have written is with respect to the basis xi above. �

Now, let I be a fractional ideal in L. The ideal I is torsion-free as
Z-module. We can calculate the volume of h(I) in terms of the degree
of L, the discriminant |∆(oL/Z)|, and |NL/K(I)|.

We’ll want to define the discriminant of fractional ideal I first. We
haven’t yet defined the norm of a fractional ideal. Since a fractional
ideal I of a Dedekind domain factors as

Qe1
1 · · · Qem

m

we can simply define the norm of I to be

NL/Q(I) = NL/Q(Qe1
1 ) · · ·NL/Q(Qem

m ).

Definition 18.6. Let I be an fractional ideal of oL. Let σ1, . . . , σn be
the n distinct embeddings of L −→ C and let w1, . . . , wn generate I
over Z. We define the discriminant of ∆(I/Z) to be

∆(I/Z) := det[σi(wj)]
2.

This definition does not depend on our choice of the basis, since two
different bases differ by a linear transformation with determinant ±1.

Definition 18.7. Let p be a prime in Z. Let S = Z \ pZ. Let J be a
fractional ideal of S−1oL. We define

∆(J/Z(p)) = Z(p) det[σi(wj)]
2,

where w1, . . . , wn is a basis for J over Z(p)

Lemma 18.8. Let I be a fractional ideal of oL. Then

Z(p)∆(I/Z) = ∆(S−1I/Z).

Proof. This follows immediately from the fact that any basis for I over
Z is a basis for S−1I over Z(p). �

Theorem 18.9. We have Z∆(I/Z) = NL/K(I)2∆(oL/Z).

Proof. Both the norm and the discriminant can be calculated locally,
so it suffices to prove that for p a prime of Z and S = Z \ pZ we have

∆(S−1oLI/Z(p)) = NL/K(S−1oLI)∆(oL/Z(p)).

Since S−1oL is a principal ideal domain, we can write S−1I = S−1oLy
for some y ∈ L. Now, if w1, . . . , wn is a basis for S−1oL over Z(p),
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then yw1, . . . , ywn is basis for S−1I over Z(p). The matrix [σi(ywj)] is
equal to the matrix [σi(y)σi(wj)] which is equal to [detσi(wj)] times
the matrix 

σ1(y) 0 · · · 0
0 σ2(y) · · · 0
· · · · · · · · · · · ·
0 0 · · · σn(y)


which has determinant equal to NL/Q(y). Thus,

∆(S−1oLI/Z(p)) =
(
NL/K(y) det[σi(wj)]

)2
= NL/K(y)2∆(S−1oL/Z(p)).

�

Corollary 18.10. Let I ⊂ oL be an fractional ideal. Then h(I) is a
lattice with volume

(1/2)s|NL/Q(I)|
√
|∆(oL/Z)|.

Proof. Since h is a Z-homomorphism, the same matrix that represents
the generators for I in terms of a basis for oL represents generators for
h(I) in terms of a basis for h(oL). �

We want to show that there is an element of small norm in I. To
make the proof of the finiteness of the class number as clear as possible,
we’ll first give simple versions of it and then prove more quantitative
versions later.

Theorem 18.11. (Imprecise small element of fractional ideal) There
exists a constant C(L) depending only on L such that for any fractional
ideal I of oL there is an element y ∈ I

NL/K(y) ≤ C(L) NL/K(I).

Theorem 18.12. Assume Theorem 18.11 above. For any fractional
ideal I of oL, there is an ideal J ⊂ oL in the same ideal class as I such
that

|NL/Q(J)| ≤ C(L).

Proof. By Theorem 18.11 above, there exists a ∈ I−1 such that

|NL/Q(a)| ≤ |NL/Q(I−1)|C(L).

Then J = Ia ⊆ oL and

|NL/Q(J)| ≤ C(L).

�


