
Math 430 Tom Tucker
NOTES FROM CLASS 11/01

From now on, p and q are distinct primes. Let’s also assume that q

is odd. Quadratic reciprocity relates
(
p
q

)
with

(
q
p

)
. It says that for p

and q odd we have (
p

q

)(
q

p

)
= (−1)

(q−1)(p−1)
4 .

What has this got to do with cyclotomic fields? The first fact is that(
p
q

)
= 1 if and only if x2−p factors mod q. When p ≡ 1 (mod 4), and

B = Z[
√
p], this is the same thing as saying that

qB = Q1Q2

(one prime for each factor). Why is this helpful? Because Q(ξq) con-
tains a unique quadratic field.

Lemma 17.1. The field Q(ξq) contains exactly one quadratic field. It

is Q(
√

(−1)(q−1)/2q).

Proof. The field Q(ξq) is Galois since all the conjugates of ξq are powers
of ξq and hence Φq splits completely in Q(ξq). It is clear that the Galois
group is (Z/aZ)∗ which is cyclic of even order, so there is exactly one
subgroup of index 2, and one subfield of degree 2. Since Q(ξq) only
ramifies at p, this quadratic field cannot ramify at 2, so it must have
discriminant divisible only by q. There are only two possibilities Q(

√
q)

and Q(
√
−q). By checking the ramification at 2, we see that if q ≡ 1

(mod 4) it is Q(
√
q), if q ≡ 3 (mod 4), then −q ≡ 1 (mod 4), so it

must be Q(
√
−q). �

Let us denote (−1)(q−1)/2 as ε(q).

Proposition 17.2. Suppose that p is odd. There are an even number
of distinct primes Q of Z[ξq] lying over p if and only if pZ[

√
ε(q)q]

factors as two distinct primes. (This is much easier to follow with a
picture which I give in class.)

Proof. LetM be a prime in Z[ξq] such thatM∩Z = pZ. Let G denote

the Galois group Gal(Q(ξq)/Q), let E denote Q(
√
ε(q)q), let GE denote

the part of G that acts identically on E, and let D be the part of G
that sends M to itself. Recall that G acts transitively on the set of
primes of Z[ξq] lying over p. Thus, the number of primes lying over p
is equal to [G : D]. The index [G : D] is even if and only if D ⊆ GE,
since GE is the unique subgroup of index 2 in G.

1



2

Now, let’s let Q be a prime of Z[
√
ε(q)q] for which Q∩Z = pZ. The

group GE acts transitively on the set of primes of Z[ξq] lying over Q. If
this set is the same as the set of all primes in Z[ξq] lying over P , then

Q must be the only prime in Z[
√
ε(q)q] lying over p. Otherwise, there

must be two primes in Z[
√
ε(q)q] lying over p.

We claim that GE acts transitively on the set of allM lying over p if
and only if D is not contained in GE. Note that if D is not contained
in GE, then the [GE : D∩GE] = [G : D], which means that the number
of primes in the G-orbit of M is the same as the number of primes in
GE-orbit ofM, which means that GE acts transitively on theM lying
over p. If D ⊆ GE, then [G : D] = 2[GE : D] and GE does not act
transitively on this set. �

Corollary 17.3. Suppose that p is odd. Then
(
ε(q)q
p

)
= 1 if and only

if p splits into an even number of primes in Z[ξq].

Proof.
(
ε(q)q
p

)
= 1 if and only if x2−ε(q)q factors over p, which happens

if and only if pZ[
√
ε(q)q] factors as two distinct primes, since Z[

√
ε(q)q]

localized at an odd prime of Z is integrally closed. �

Let Tp denote the number of primes lying over p in Z[ξq]. From what

we’ve just seen, (−1)TP =
(
ε(q)q
p

)
.

The next two proposition and corollary work for any p (including 2).

Proposition 17.4. The degree of the field extension Fp[ξq] is equal to
ordq(p) (the order of p in Fq).

Proof. This is on the midterm. Hint: Fpn contains a primitive q-th
root of unity if and only if q|pn − 1. �

Corollary 17.5. Suppose that there are Tp primes in Z[ξq] lying above
p. Then ordq(p) is equal to (q − 1)/Tp.

Proof. This is also on the midterm. �

Theorem 17.6. (Quadratic reciprocity for odd primes) Let p and q be
odd primes, p 6= q. Then(

p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.
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Proof. Let ordq(p) denote the order of p (mod q). We see that(
ε(q)q

p

)
= (−1)Tp (Corollary 17.3)

= (−1)
q−1

ordq(p) (Corollary 17.5)

=

(
p

q

)
(Property (iv)).

Thus,(
p

q

)
=

(
ε(q)q

p

)
=

(
−1(q−1)/2

p

)(
q

p

)
= (−1)(p−1)(q−1)/4

(
q

p

)
.

Multiplying
(
p
q

)
by
(
q
p

)
then finishes the proof. �

******************** Now, let’s move on to the class group. Recall
that for any integral domain R, we have notion of invertible ideals
(recall that it is a fractional ideal with an inverse) and that we have
an exact sequence

0 −→ Pri(R) −→ Inv(R) −→ Pic(R) −→ 0.

where Pri(R) is the set of principal ideals ofR, Inv(R) is set of invertible
ideals of R, and the group law is multiplication of fractional ideals.
When R is Dedekind, we call Pic(R) the class group of R and denote it
as Cl(R). When R is the integral closure OL of Z in some number field
L, we often write Cl(L) for Cl(OL). We also write ∆(L) for ∆(OL/Z).
We want to prove the following.

Theorem 17.7. Let L be a number field. Then Cl(L) is finite.

We’ve already shown this Z[i]. We showed that Cl(Z[i]) = 1, i.e.
that it is a principal ideal domain. On the other hand, we’ve seen that
Pic(Z[

√
19]) 6= 1 (this ring isn’t Dedekind, but later we’ll see Dedekind

rings with nontrivial class groups.
How did we show that Cl(Z[i]) = 1? We took advantage of the fact

that Z[i] forms a sublattice of C. We’ll try to do that in general.
Here is the idea... If we have a number field L of degree n over

Q, then we have n different embeddings of L into C. They can be
obtained by fixing one embedding L −→ C and then conjugating this
embedding by elements in the cosets of HL in Gal(M/Q) for M some
Galois extension of Q containing L. We’ll use these to make B a full
lattice in Rn. What is a full lattice?

Definition 17.8. A lattice L ⊂ Rn is a free Z-module whose rank as a
Z-module is the equal to the dimension of the R-vector space generated
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by L. A full lattice L ⊂ Rn is a free Z-module of rank n that generates
Rn as a R-vector space.

Example 17.9. (1) Z[θ] where θ2 = 3 is not a full lattice of R2

under the embedding 1 7→ 1 and θ 7→
√

3, since it generates an
R-vector space of dimension 1.

(2) Z[i] is full lattice in R2 where R2 is C considered as an R-vector
space with basis 1, i over R.

On the other hand, we can send Z[θ] where θ2 = 3 into R2 in such
a way that it is a full lattice in the following way. Let φ : 1 7→ (1, 1)
and φ : θ :−→ (

√
3,−
√

3). In this case, we must generate R2 as an R2

vector space since (1, 1) and (
√

3,−
√

3) are linearly independent.
There are two different types of embeddings of L into C. There are

the real ones and the complex ones. An embedding σ : L −→ C is real if
σ(y) = σ(y) for every y ∈ L (the bar here denotes complex conjugation)
and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write L ∼= Q[X]/f(X) for
some monic irreducible polynomial L with integer coefficients. Then by
the Chinese remainder theorem R[X]/f(X) ∼=

⊕m
i=1R[X]/fi(X) where

the fi have coefficients in R, are irreducible over R, and f1 . . . fm = g
(note that the fi are distinct since L is separable over Q). We also know
that each fi is of degree 1 or 2. When fi has degree 1, then R[X]/fi(X)
is isomorphic to R and when fi has degree 2, then R[X]/fi(X) is iso-
morphic to C. Since Q has a natural embedding into R, we obtain a
natural embedding of

j : L ∼= Q[X]/f(X) −→
m⊕
i=1

R[X]/fi(X).

Composing j with projection onto the i-th factor of
m⊕
i=1

R[X]/fi(X)

then gives a map from L −→ R or L −→ C. In fact, when deg fi =
2 and R[X]/fi(X) is C we get two embeddings by composing with
conjugation. The image of L is the same for these two embeddings, so
we will want to link these two in some way...

Let’s order the embeddings σ1, . . . , σn (n = [L : Q]) in the following
way. We let σ1, . . . , σr be real embeddings. The remaining embeddings
come in pairs as explained above, so for i = r + 1, r + 3, . . . , we let σi
be a complex embedding and let σi+1 = σi+1. We let s be the number
of complex embeddings. We have r + 2s = n.
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Now, we can embed OL into Rn by letting

h(y) = (σ1(y), . . . , σr(y),

<(σr+1(y)),=(σr+1(y)), . . . ,<(σr+2(s−1)(y)),=(σr+2(s−1)(y)))

=
(
σ1(y), . . . , σr(y),

σr+1(y) + σr+2(y)

2
,
σr+1(y)− σr+2(y)

2i
, . . . ,

σr+2(s−1)(y) + σr+2(s−1)(y)

2
,
σr+2(s−1)(y)− σr+2(s−1)+1(y)

2i

)
.

(1)

Let us also denote as hi the map h : OL −→ R given by composing h
with projection pi onto the i-th coordinate of Rn.

We will continue to use h and hi as defined above. We will also
continue to let s and r be as above and to let n = r+ 2s be the degree
[L : Q].


