Math 430 Tom Tucker NOTES FROM CLASS 11/01

From now on, p and q are distinct primes. Let's also assume that q is odd. Quadratic reciprocity relates $\begin{pmatrix} p \\ q \end{pmatrix}$ with $\begin{pmatrix} q \\ p \end{pmatrix}$. It says that for p and q odd we have

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{(q-1)(p-1)}{4}}.$$

What has this got to do with cyclotomic fields? The first fact is that $\binom{p}{q} = 1$ if and only if $x^2 - p$ factors mod q. When $p \equiv 1 \pmod{4}$, and $B = \mathbb{Z}[\sqrt{p}]$, this is the same thing as saying that

$$qB = \mathcal{Q}_1 \mathcal{Q}_2$$

(one prime for each factor). Why is this helpful? Because $\mathbb{Q}(\xi_q)$ contains a unique quadratic field.

Lemma 17.1. The field $\mathbb{Q}(\xi_q)$ contains exactly one quadratic field. It is $\mathbb{Q}(\sqrt{(-1)^{(q-1)/2}q})$.

Proof. The field $\mathbb{Q}(\xi_q)$ is Galois since all the conjugates of ξ_q are powers of ξ_q and hence Φ_q splits completely in $\mathbb{Q}(\xi_q)$. It is clear that the Galois group is $(\mathbb{Z}/a\mathbb{Z})^*$ which is cyclic of even order, so there is exactly one subgroup of index 2, and one subfield of degree 2. Since $\mathbb{Q}(\xi_q)$ only ramifies at p, this quadratic field cannot ramify at 2, so it must have discriminant divisible only by q. There are only two possibilities $\mathbb{Q}(\sqrt{q})$ and $\mathbb{Q}(\sqrt{-q})$. By checking the ramification at 2, we see that if $q \equiv 1$ (mod 4) it is $\mathbb{Q}(\sqrt{q})$, if $q \equiv 3 \pmod{4}$, then $-q \equiv 1 \pmod{4}$, so it must be $\mathbb{Q}(\sqrt{-q})$.

Let us denote $(-1)^{(q-1)/2}$ as $\epsilon(q)$.

Proposition 17.2. Suppose that p is odd. There are an even number of distinct primes Q of $\mathbb{Z}[\xi_q]$ lying over p if and only if $p\mathbb{Z}[\sqrt{\epsilon(q)q}]$ factors as two distinct primes. (This is much easier to follow with a picture which I give in class.)

Proof. Let \mathcal{M} be a prime in $\mathbb{Z}[\xi_q]$ such that $\mathcal{M} \cap \mathbb{Z} = p\mathbb{Z}$. Let G denote the Galois group $\operatorname{Gal}(\mathbb{Q}(\xi_q)/\mathbb{Q})$, let E denote $\mathbb{Q}(\sqrt{\epsilon(q)q})$, let G_E denote the part of G that acts identically on E, and let D be the part of Gthat sends \mathcal{M} to itself. Recall that G acts transitively on the set of primes of $\mathbb{Z}[\xi_q]$ lying over p. Thus, the number of primes lying over pis equal to [G:D]. The index [G:D] is even if and only if $D \subseteq G_E$, since G_E is the unique subgroup of index 2 in G. Now, let's let \mathcal{Q} be a prime of $\mathbb{Z}[\sqrt{\epsilon(q)q}]$ for which $\mathcal{Q} \cap \mathbb{Z} = p\mathbb{Z}$. The group G_E acts transitively on the set of primes of $\mathbb{Z}[\xi_q]$ lying over \mathcal{Q} . If this set is the same as the set of all primes in $\mathbb{Z}[\xi_q]$ lying over \mathcal{P} , then \mathcal{Q} must be the only prime in $\mathbb{Z}[\sqrt{\epsilon(q)q}]$ lying over p. Otherwise, there must be two primes in $\mathbb{Z}[\sqrt{\epsilon(q)q}]$ lying over p.

We claim that G_E acts transitively on the set of all \mathcal{M} lying over p if and only if D is not contained in G_E . Note that if D is not contained in G_E , then the $[G_E : D \cap G_E] = [G : D]$, which means that the number of primes in the G-orbit of \mathcal{M} is the same as the number of primes in G_E -orbit of \mathcal{M} , which means that G_E acts transitively on the \mathcal{M} lying over p. If $D \subseteq G_E$, then $[G : D] = 2[G_E : D]$ and G_E does not act transitively on this set.

Corollary 17.3. Suppose that p is odd. Then $\left(\frac{\epsilon(q)q}{p}\right) = 1$ if and only if p splits into an even number of primes in $\mathbb{Z}[\xi_q]$.

Proof. $\left(\frac{\epsilon(q)q}{p}\right) = 1$ if and only if $x^2 - \epsilon(q)q$ factors over p, which happens if and only if $p\mathbb{Z}[\sqrt{\epsilon(q)q}]$ factors as two distinct primes, since $\mathbb{Z}[\sqrt{\epsilon(q)q}]$ localized at an odd prime of \mathbb{Z} is integrally closed.

Let T_p denote the number of primes lying over p in $\mathbb{Z}[\xi_q]$. From what we've just seen, $(-1)^{T_P} = \left(\frac{\epsilon(q)q}{p}\right)$.

The next two proposition and corollary work for any p (including 2).

Proposition 17.4. The degree of the field extension $\mathbf{F}_p[\xi_q]$ is equal to $\operatorname{ord}_q(p)$ (the order of p in \mathbf{F}_q).

Proof. This is on the midterm. Hint: \mathbf{F}_{p^n} contains a primitive q-th root of unity if and only if $q|p^n - 1$.

Corollary 17.5. Suppose that there are T_p primes in $\mathbb{Z}[\xi_q]$ lying above p. Then $\operatorname{ord}_q(p)$ is equal to $(q-1)/T_p$.

Proof. This is also on the midterm.

Theorem 17.6. (Quadratic reciprocity for odd primes) Let p and q be odd primes, $p \neq q$. Then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}.$$

Proof. Let $\operatorname{ord}_q(p)$ denote the order of $p \pmod{q}$. We see that

$$\begin{pmatrix} \epsilon(q)q\\ p \end{pmatrix} = (-1)^{T_p} \quad \text{(Corollary 17.3)} \\ = (-1)^{\frac{q-1}{\operatorname{ord}_q(p)}} \quad \text{(Corollary 17.5)} \\ = \left(\frac{p}{q}\right) \quad \text{(Property (iv)).}$$

Thus,

$$\left(\frac{p}{q}\right) = \left(\frac{\epsilon(q)q}{p}\right) = \left(\frac{-1^{(q-1)/2}}{p}\right) \left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4} \left(\frac{q}{p}\right).$$

Multiplying $\left(\frac{p}{q}\right)$ by $\left(\frac{q}{p}\right)$ then finishes the proof.

***************** Now, let's move on to the class group. Recall that for any integral domain R, we have notion of invertible ideals (recall that it is a fractional ideal with an inverse) and that we have an exact sequence

$$0 \longrightarrow \operatorname{Pri}(R) \longrightarrow \operatorname{Inv}(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0.$$

where $\operatorname{Pri}(R)$ is the set of principal ideals of R, $\operatorname{Inv}(R)$ is set of invertible ideals of R, and the group law is multiplication of fractional ideals. When R is Dedekind, we call $\operatorname{Pic}(R)$ the class group of R and denote it as $\operatorname{Cl}(R)$. When R is the integral closure \mathcal{O}_L of \mathbb{Z} in some number field L, we often write $\operatorname{Cl}(L)$ for $\operatorname{Cl}(\mathcal{O}_L)$. We also write $\Delta(L)$ for $\Delta(\mathcal{O}_L/\mathbb{Z})$. We want to prove the following.

Theorem 17.7. Let L be a number field. Then Cl(L) is finite.

We've already shown this $\mathbb{Z}[i]$. We showed that $\operatorname{Cl}(\mathbb{Z}[i]) = 1$, i.e. that it is a principal ideal domain. On the other hand, we've seen that $\operatorname{Pic}(\mathbb{Z}[\sqrt{19}]) \neq 1$ (this ring isn't Dedekind, but later we'll see Dedekind rings with nontrivial class groups.

How did we show that $\operatorname{Cl}(\mathbb{Z}[i]) = 1$? We took advantage of the fact that $\mathbb{Z}[i]$ forms a sublattice of \mathbb{C} . We'll try to do that in general.

Here is the idea... If we have a number field L of degree n over \mathbb{Q} , then we have n different embeddings of L into \mathbb{C} . They can be obtained by fixing one embedding $L \longrightarrow \mathbb{C}$ and then conjugating this embedding by elements in the cosets of H_L in $\operatorname{Gal}(M/\mathbb{Q})$ for M some Galois extension of \mathbb{Q} containing L. We'll use these to make B a full lattice in \mathbb{R}^n . What is a full lattice?

Definition 17.8. A lattice $\mathcal{L} \subset \mathbb{R}^n$ is a free \mathbb{Z} -module whose rank as a \mathbb{Z} -module is the equal to the dimension of the \mathbb{R} -vector space generated

by \mathcal{L} . A full lattice $\mathcal{L} \subset \mathbb{R}^n$ is a free \mathbb{Z} -module of rank n that generates \mathbb{R}^n as a \mathbb{R} -vector space.

- **Example 17.9.** (1) $\mathbb{Z}[\theta]$ where $\theta^2 = 3$ is *not* a full lattice of \mathbb{R}^2 under the embedding $1 \mapsto 1$ and $\theta \mapsto \sqrt{3}$, since it generates an \mathbb{R} -vector space of dimension 1.
 - (2) $\mathbb{Z}[i]$ is full lattice in \mathbb{R}^2 where \mathbb{R}^2 is \mathbb{C} considered as an \mathbb{R} -vector space with basis 1, i over \mathbb{R} .

On the other hand, we can send $\mathbb{Z}[\theta]$ where $\theta^2 = 3$ into \mathbb{R}^2 in such a way that it is a full lattice in the following way. Let $\phi : 1 \mapsto (1, 1)$ and $\phi : \theta :\longrightarrow (\sqrt{3}, -\sqrt{3})$. In this case, we must generate \mathbb{R}^2 as an \mathbb{R}^2 vector space since (1, 1) and $(\sqrt{3}, -\sqrt{3})$ are linearly independent.

There are two different types of embeddings of L into \mathbb{C} . There are the real ones and the complex ones. An embedding $\sigma : L \longrightarrow \mathbb{C}$ is real if $\overline{\sigma(y)} = \sigma(y)$ for every $y \in L$ (the bar here denotes complex conjugation) and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write $L \cong \mathbb{Q}[X]/f(X)$ for some monic irreducible polynomial L with integer coefficients. Then by the Chinese remainder theorem $\mathbb{R}[X]/f(X) \cong \bigoplus_{i=1}^{m} \mathbb{R}[X]/f_i(X)$ where the f_i have coefficients in \mathbb{R} , are irreducible over \mathbb{R} , and $f_1 \dots f_m = g$ (note that the f_i are distinct since L is separable over \mathbb{Q}). We also know that each f_i is of degree 1 or 2. When f_i has degree 1, then $\mathbb{R}[X]/f_i(X)$ is isomorphic to \mathbb{R} and when f_i has degree 2, then $\mathbb{R}[X]/f_i(X)$ is isomorphic to \mathbb{C} . Since \mathbb{Q} has a natural embedding into \mathbb{R} , we obtain a natural embedding of

$$j: L \cong \mathbb{Q}[X]/f(X) \longrightarrow \bigoplus_{i=1}^m \mathbb{R}[X]/f_i(X).$$

Composing j with projection onto the *i*-th factor of

$$\bigoplus_{i=1}^m \mathbb{R}[X]/f_i(X)$$

then gives a map from $L \longrightarrow \mathbb{R}$ or $L \longrightarrow \mathbb{C}$. In fact, when deg $f_i = 2$ and $\mathbb{R}[X]/f_i(X)$ is \mathbb{C} we get two embeddings by composing with conjugation. The image of L is the same for these two embeddings, so we will want to link these two in some way...

Let's order the embeddings $\sigma_1, \ldots, \sigma_n$ $(n = [L : \mathbb{Q}])$ in the following way. We let $\sigma_1, \ldots, \sigma_r$ be real embeddings. The remaining embeddings come in pairs as explained above, so for $i = r + 1, r + 3, \ldots$, we let σ_i be a complex embedding and let $\sigma_{i+1} = \overline{\sigma_{i+1}}$. We let s be the number of complex embeddings. We have r + 2s = n. Now, we can embed \mathcal{O}_L into \mathbb{R}^n by letting

$$h(y) = (\sigma_{1}(y), \dots, \sigma_{r}(y), \\ \Re(\sigma_{r+1}(y)), \Im(\sigma_{r+1}(y)), \dots, \Re(\sigma_{r+2(s-1)}(y)), \Im(\sigma_{r+2(s-1)}(y))) \\ = (\sigma_{1}(y), \dots, \sigma_{r}(y), \\ \frac{\sigma_{r+1}(y) + \sigma_{r+2}(y)}{2}, \frac{\sigma_{r+1}(y) - \sigma_{r+2}(y)}{2i}, \dots, \\ \frac{\sigma_{r+2(s-1)}(y) + \sigma_{r+2(s-1)}(y)}{2}, \frac{\sigma_{r+2(s-1)}(y) - \sigma_{r+2(s-1)+1}(y)}{2i}).$$

Let us also denote as h_i the map $h : \mathcal{O}_L \longrightarrow \mathbb{R}$ given by composing h with projection p_i onto the *i*-th coordinate of \mathbb{R}^n .

We will continue to use h and h_i as defined above. We will also continue to let s and r be as above and to let n = r + 2s be the degree $[L : \mathbb{Q}]$.