Math 430 Tom Tucker
 NOTES FROM CLASS 11/01

From now on, p and q are distinct primes. Let's also assume that q is odd. Quadratic reciprocity relates $\left(\frac{p}{q}\right)$ with $\left(\frac{q}{p}\right)$. It says that for p and q odd we have

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(q-1)(p-1)}{4}} .
$$

What has this got to do with cyclotomic fields? The first fact is that $\left(\frac{p}{q}\right)=1$ if and only if $x^{2}-p$ factors $\bmod q$. When $p \equiv 1(\bmod 4)$, and $B=\mathbb{Z}[\sqrt{p}]$, this is the same thing as saying that

$$
q B=\mathcal{Q}_{1} \mathcal{Q}_{2}
$$

(one prime for each factor). Why is this helpful? Because $\mathbb{Q}\left(\xi_{q}\right)$ contains a unique quadratic field.

Lemma 17.1. The field $\mathbb{Q}\left(\xi_{q}\right)$ contains exactly one quadratic field. It is $\mathbb{Q}\left(\sqrt{\left.(-1)^{(q-1) / 2} q\right)}\right.$.

Proof. The field $\mathbb{Q}\left(\xi_{q}\right)$ is Galois since all the conjugates of ξ_{q} are powers of ξ_{q} and hence Φ_{q} splits completely in $\mathbb{Q}\left(\xi_{q}\right)$. It is clear that the Galois group is $(\mathbb{Z} / a \mathbb{Z})^{*}$ which is cyclic of even order, so there is exactly one subgroup of index 2 , and one subfield of degree 2 . Since $\mathbb{Q}\left(\xi_{q}\right)$ only ramifies at p, this quadratic field cannot ramify at 2 , so it must have discriminant divisible only by q. There are only two possibilities $\mathbb{Q}(\sqrt{q})$ and $\mathbb{Q}(\sqrt{-q})$. By checking the ramification at 2 , we see that if $q \equiv 1$ $(\bmod 4)$ it is $\mathbb{Q}(\sqrt{q})$, if $q \equiv 3(\bmod 4)$, then $-q \equiv 1(\bmod 4)$, so it must be $\mathbb{Q}(\sqrt{-q})$.

Let us denote $(-1)^{(q-1) / 2}$ as $\epsilon(q)$.
Proposition 17.2. Suppose that p is odd. There are an even number of distinct primes \mathcal{Q} of $\mathbb{Z}\left[\xi_{q}\right]$ lying over p if and only if $p \mathbb{Z}[\sqrt{\epsilon(q) q}]$ factors as two distinct primes. (This is much easier to follow with a picture which I give in class.)

Proof. Let \mathcal{M} be a prime in $\mathbb{Z}\left[\xi_{q}\right]$ such that $\mathcal{M} \cap \mathbb{Z}=p \mathbb{Z}$. Let G denote the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\xi_{q}\right) / \mathbb{Q}\right)$, let E denote $\mathbb{Q}(\sqrt{\epsilon(q) q})$, let G_{E} denote the part of G that acts identically on E, and let D be the part of G that sends \mathcal{M} to itself. Recall that G acts transitively on the set of primes of $\mathbb{Z}\left[\xi_{q}\right]$ lying over p. Thus, the number of primes lying over p is equal to $[G: D]$. The index $[G: D]$ is even if and only if $D \subseteq G_{E}$, since G_{E} is the unique subgroup of index 2 in G.

Now, let's let \mathcal{Q} be a prime of $\mathbb{Z}[\sqrt{\epsilon(q) q}]$ for which $\mathcal{Q} \cap \mathbb{Z}=p \mathbb{Z}$. The group G_{E} acts transitively on the set of primes of $\mathbb{Z}\left[\xi_{q}\right]$ lying over \mathcal{Q}. If this set is the same as the set of all primes in $\mathbb{Z}\left[\xi_{q}\right]$ lying over \mathcal{P}, then \mathcal{Q} must be the only prime in $\mathbb{Z}[\sqrt{\epsilon(q) q}]$ lying over p. Otherwise, there must be two primes in $\mathbb{Z}[\sqrt{\epsilon(q) q}]$ lying over p.

We claim that G_{E} acts transitively on the set of all \mathcal{M} lying over p if and only if D is not contained in G_{E}. Note that if D is not contained in G_{E}, then the $\left[G_{E}: D \cap G_{E}\right]=[G: D]$, which means that the number of primes in the G-orbit of \mathcal{M} is the same as the number of primes in G_{E}-orbit of \mathcal{M}, which means that G_{E} acts transitively on the \mathcal{M} lying over p. If $D \subseteq G_{E}$, then $[G: D]=2\left[G_{E}: D\right]$ and G_{E} does not act transitively on this set.

Corollary 17.3. Suppose that p is odd. Then $\left(\frac{\epsilon(q) q}{p}\right)=1$ if and only if p splits into an even number of primes in $\mathbb{Z}\left[\xi_{q}\right]$.

Proof. $\left(\frac{\epsilon(q) q}{p}\right)=1$ if and only if $x^{2}-\epsilon(q) q$ factors over p, which happens if and only if $p \mathbb{Z}[\sqrt{\epsilon(q) q}]$ factors as two distinct primes, since $\mathbb{Z}[\sqrt{\epsilon(q) q}]$ localized at an odd prime of \mathbb{Z} is integrally closed.

Let T_{p} denote the number of primes lying over p in $\mathbb{Z}\left[\xi_{q}\right]$. From what we've just seen, $(-1)^{T_{P}}=\left(\frac{\epsilon(q) q}{p}\right)$.

The next two proposition and corollary work for any p (including 2).
Proposition 17.4. The degree of the field extension $\mathbf{F}_{p}\left[\xi_{q}\right]$ is equal to $\operatorname{ord}_{q}(p)$ (the order of p in \mathbf{F}_{q}).

Proof. This is on the midterm. Hint: $\mathbf{F}_{p^{n}}$ contains a primitive q-th root of unity if and only if $q \mid p^{n}-1$.

Corollary 17.5. Suppose that there are T_{p} primes in $\mathbb{Z}\left[\xi_{q}\right]$ lying above p. Then $\operatorname{ord}_{q}(p)$ is equal to $(q-1) / T_{p}$.

Proof. This is also on the midterm.
Theorem 17.6. (Quadratic reciprocity for odd primes) Let p and q be odd primes, $p \neq q$. Then

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4} .
$$

Proof. Let $\operatorname{ord}_{q}(p)$ denote the order of $p(\bmod q)$. We see that

$$
\begin{aligned}
\left(\frac{\epsilon(q) q}{p}\right) & =(-1)^{T_{p}} \quad(\text { Corollary 17.3) } \\
& =(-1)^{\frac{q-1}{\operatorname{crdq} q(p)}} \quad(\text { Corollary 17.5) } \\
& =\left(\frac{p}{q}\right) \quad(\text { Property (iv) }) .
\end{aligned}
$$

Thus,

$$
\left(\frac{p}{q}\right)=\left(\frac{\epsilon(q) q}{p}\right)=\left(\frac{-1^{(q-1) / 2}}{p}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}\left(\frac{q}{p}\right) .
$$

Multiplying $\left(\frac{p}{q}\right)$ by $\left(\frac{q}{p}\right)$ then finishes the proof.
********************* Now, let's move on to the class group. Recall that for any integral domain R, we have notion of invertible ideals (recall that it is a fractional ideal with an inverse) and that we have an exact sequence

$$
0 \longrightarrow \operatorname{Pri}(R) \longrightarrow \operatorname{Inv}(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0 .
$$

where $\operatorname{Pri}(R)$ is the set of principal ideals of $R, \operatorname{Inv}(R)$ is set of invertible ideals of R, and the group law is multiplication of fractional ideals. When R is Dedekind, we call $\operatorname{Pic}(R)$ the class group of R and denote it as $\mathrm{Cl}(R)$. When R is the integral closure \mathcal{O}_{L} of \mathbb{Z} in some number field L, we often write $\mathrm{Cl}(L)$ for $\mathrm{Cl}\left(\mathcal{O}_{L}\right)$. We also write $\Delta(L)$ for $\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)$. We want to prove the following.

Theorem 17.7. Let L be a number field. Then $\mathrm{Cl}(L)$ is finite.
We've already shown this $\mathbb{Z}[i]$. We showed that $\mathrm{Cl}(\mathbb{Z}[i])=1$, i.e. that it is a principal ideal domain. On the other hand, we've seen that $\operatorname{Pic}(\mathbb{Z}[\sqrt{19}]) \neq 1$ (this ring isn't Dedekind, but later we'll see Dedekind rings with nontrivial class groups.

How did we show that $\mathrm{Cl}(\mathbb{Z}[i])=1$? We took advantage of the fact that $\mathbb{Z}[i]$ forms a sublattice of \mathbb{C}. We'll try to do that in general.

Here is the idea... If we have a number field L of degree n over \mathbb{Q}, then we have n different embeddings of L into \mathbb{C}. They can be obtained by fixing one embedding $L \longrightarrow \mathbb{C}$ and then conjugating this embedding by elements in the cosets of H_{L} in $\operatorname{Gal}(M / \mathbb{Q})$ for M some Galois extension of \mathbb{Q} containing L. We'll use these to make B a full lattice in \mathbb{R}^{n}. What is a full lattice?

Definition 17.8. A lattice $\mathcal{L} \subset \mathbb{R}^{n}$ is a free \mathbb{Z}-module whose rank as a \mathbb{Z}-module is the equal to the dimension of the \mathbb{R}-vector space generated
by \mathcal{L}. A full lattice $\mathcal{L} \subset \mathbb{R}^{n}$ is a free \mathbb{Z}-module of rank n that generates \mathbb{R}^{n} as a \mathbb{R}-vector space.

Example 17.9. (1) $\mathbb{Z}[\theta]$ where $\theta^{2}=3$ is not a full lattice of \mathbb{R}^{2} under the embedding $1 \mapsto 1$ and $\theta \mapsto \sqrt{3}$, since it generates an \mathbb{R}-vector space of dimension 1 .
(2) $\mathbb{Z}[i]$ is full lattice in \mathbb{R}^{2} where \mathbb{R}^{2} is \mathbb{C} considered as an \mathbb{R}-vector space with basis $1, i$ over \mathbb{R}.

On the other hand, we can send $\mathbb{Z}[\theta]$ where $\theta^{2}=3$ into \mathbb{R}^{2} in such a way that it is a full lattice in the following way. Let $\phi: 1 \mapsto(1,1)$ and $\phi: \theta: \longrightarrow(\sqrt{3},-\sqrt{3})$. In this case, we must generate \mathbb{R}^{2} as an \mathbb{R}^{2} vector space since $(1,1)$ and $(\sqrt{3},-\sqrt{3})$ are linearly independent.

There are two different types of embeddings of L into \mathbb{C}. There are the real ones and the complex ones. An embedding $\sigma: L \longrightarrow \mathbb{C}$ is real if $\overline{\sigma(y)}=\sigma(y)$ for every $y \in L$ (the bar here denotes complex conjugation) and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write $L \cong \mathbb{Q}[X] / f(X)$ for some monic irreducible polynomial L with integer coefficients. Then by the Chinese remainder theorem $\mathbb{R}[X] / f(X) \cong \bigoplus_{i=1}^{m} \mathbb{R}[X] / f_{i}(X)$ where the f_{i} have coefficients in \mathbb{R}, are irreducible over \mathbb{R}, and $f_{1} \ldots f_{m}=g$ (note that the f_{i} are distinct since L is separable over \mathbb{Q}). We also know that each f_{i} is of degree 1 or 2 . When f_{i} has degree 1 , then $\mathbb{R}[X] / f_{i}(X)$ is isomorphic to \mathbb{R} and when f_{i} has degree 2 , then $\mathbb{R}[X] / f_{i}(X)$ is isomorphic to \mathbb{C}. Since \mathbb{Q} has a natural embedding into \mathbb{R}, we obtain a natural embedding of

$$
j: L \cong \mathbb{Q}[X] / f(X) \longrightarrow \bigoplus_{i=1}^{m} \mathbb{R}[X] / f_{i}(X)
$$

Composing j with projection onto the i-th factor of

$$
\bigoplus_{i=1}^{m} \mathbb{R}[X] / f_{i}(X)
$$

then gives a map from $L \longrightarrow \mathbb{R}$ or $L \longrightarrow \mathbb{C}$. In fact, when $\operatorname{deg} f_{i}=$ 2 and $\mathbb{R}[X] / f_{i}(X)$ is \mathbb{C} we get two embeddings by composing with conjugation. The image of L is the same for these two embeddings, so we will want to link these two in some way...

Let's order the embeddings $\sigma_{1}, \ldots, \sigma_{n}(n=[L: \mathbb{Q}])$ in the following way. We let $\sigma_{1}, \ldots, \sigma_{r}$ be real embeddings. The remaining embeddings come in pairs as explained above, so for $i=r+1, r+3, \ldots$, we let σ_{i} be a complex embedding and let $\sigma_{i+1}=\overline{\sigma_{i+1}}$. We let s be the number of complex embeddings. We have $r+2 s=n$.

Now, we can embed \mathcal{O}_{L} into \mathbb{R}^{n} by letting

$$
\begin{align*}
& h(y)=\left(\sigma_{1}(y), \ldots, \sigma_{r}(y),\right. \\
& \left.\quad \Re\left(\sigma_{r+1}(y)\right), \Im\left(\sigma_{r+1}(y)\right), \ldots, \Re\left(\sigma_{r+2(s-1)}(y)\right), \Im\left(\sigma_{r+2(s-1)}(y)\right)\right) \\
& \quad=\left(\sigma_{1}(y), \ldots, \sigma_{r}(y),\right. \\
& \quad \frac{\sigma_{r+1}(y)+\sigma_{r+2}(y)}{2}, \frac{\sigma_{r+1}(y)-\sigma_{r+2}(y)}{2 i}, \ldots, \tag{1}\\
& \left.\quad \frac{\sigma_{r+2(s-1)}(y)+\sigma_{r+2(s-1)}(y)}{2}, \frac{\sigma_{r+2(s-1)}(y)-\sigma_{r+2(s-1)+1}(y)}{2 i}\right) .
\end{align*}
$$

Let us also denote as h_{i} the map $h: \mathcal{O}_{L} \longrightarrow \mathbb{R}$ given by composing h with projection p_{i} onto the i-th coordinate of \mathbb{R}^{n}.

We will continue to use h and h_{i} as defined above. We will also continue to let s and r be as above and to let $n=r+2 s$ be the degree $[L: \mathbb{Q}]$.

