Math 430 Tom Tucker
NOTES FROM CLASS 11/01

From now on, p and ¢ are distinct primes. Let’s also assume that ¢
is odd. Quadratic reciprocity relates (%’) with (%). It says that for p

and ¢ odd we have
P q (=D (p—=1)
N -
(Q) (P) (=1)

What has this got to do with cyclotomic fields? The first fact is that
(§> = 1 if and only if 22 — p factors mod ¢. When p =1 (mod 4), and
B = Z[,/p), this is the same thing as saying that

gB = 919,

(one prime for each factor). Why is this helpful? Because Q(&,) con-
tains a unique quadratic field.

Lemma 17.1. The field Q(&,) contains exactly one quadratic field. It
is Q(y/(—D)@D72g).

Proof. The field Q(&,) is Galois since all the conjugates of £, are powers
of ¢, and hence ®, splits completely in Q(&,). It is clear that the Galois
group is (Z/aZ)* which is cyclic of even order, so there is exactly one
subgroup of index 2, and one subfield of degree 2. Since Q(&,) only
ramifies at p, this quadratic field cannot ramify at 2, so it must have
discriminant divisible only by q. There are only two possibilities Q(,/q)
and Q(y/—q). By checking the ramification at 2, we see that if ¢ = 1
(mod 4) it is Q(y/q), if ¢ = 3 (mod 4), then —¢g = 1 (mod 4), so it
must be Q(v/—q). O

Let us denote (—1)(91/2 as ¢(q).

Proposition 17.2. Suppose that p is odd. There are an even number
of distinct primes Q of Z[&,| lying over p if and only if pZ[\/€(q)q]
factors as two distinct primes. (This is much easier to follow with a
picture which I give in class.)

Proof. Let M be a prime in Z[¢,] such that MNZ = pZ. Let G denote
the Galois group Gal(Q(&,)/Q), let E denote Q(1/€(q)q), let Gg denote
the part of G that acts identically on E, and let D be the part of G
that sends M to itself. Recall that G acts transitively on the set of
primes of Z[¢,] lying over p. Thus, the number of primes lying over p
is equal to [G': D]. The index [G : D] is even if and only if D C Gg,
since G is the unique subgroup of index 2 in G.
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Now, let’s let Q be a prime of Z[/€(q)q| for which QNZ = pZ. The
group G acts transitively on the set of primes of Z[¢,] lying over Q. If
this set is the same as the set of all primes in Z[¢,] lying over P, then

Q must be the only prime in Z[\/€(q)q] lying over p. Otherwise, there
must be two primes in Z[\/€(q)q] lying over p.

We claim that G g acts transitively on the set of all M lying over p if
and only if D is not contained in Gg. Note that if D is not contained
in Gg, then the [Gg : DNGEg| = [G : D], which means that the number
of primes in the G-orbit of M is the same as the number of primes in
G g-orbit of M, which means that G g acts transitively on the M lying
over p. If D C Gg, then [G : D] = 2[Gg : D] and Gg does not act
transitively on this set. 0

Corollary 17.3. Suppose that p is odd. Then (6(1‘%) =1 if and only

if p splits into an even number of primes in Z[£,)].

Proof. <%) = 1if and only if 22 —¢(q)q factors over p, which happens
if and only if pZ[+/€(q)q] factors as two distinct primes, since Z[+/€(q)q]
localized at an odd prime of Z is integrally closed. U

Let T}, denote the number of primes lying over p in Z[{,]. From what

we've just seen, (—1)7r = (6(54)

The next two proposition and corollary work for any p (including 2).

Proposition 17.4. The degree of the field extension F,[&,] is equal to
ord,(p) (the order of p in Fy).

Proof. This is on the midterm. Hint: F,» contains a primitive g¢-th
root of unity if and only if ¢[p™ — 1. O

Corollary 17.5. Suppose that there are T, primes in Z[,] lying above
p. Then ord,(p) is equal to (¢ — 1)/T,.

Proof. This is also on the midterm. O

Theorem 17.6. (Quadratic reciprocity for odd primes) Let p and q be
odd primes, p # q. Then

() -



Proof. Let ord,(p) denote the order of p (mod ¢). We see that

(6(%) = (=1)" (Corollary 17.3)

= (—1)0’%;<1P> (Corollary 17.5)

_ (p) (Property (iv)).

q
Thus,
(£) = () - (222 (5) g (8,
q p p p p
Multiplying (§> by (%) then finishes the proof. O

Toricliocsildicsieiiiorellk Now, let’s move on to the class group. Recall
that for any integral domain R, we have notion of invertible ideals
(recall that it is a fractional ideal with an inverse) and that we have
an exact sequence

0 — Pri(R) — Inv(R) — Pic(R) — 0.

where Pri(R) is the set of principal ideals of R, Inv(R) is set of invertible
ideals of R, and the group law is multiplication of fractional ideals.
When R is Dedekind, we call Pic(R) the class group of R and denote it
as CI(R). When R is the integral closure Oy, of Z in some number field
L, we often write CI(L) for C1(Or). We also write A(L) for A(OL/Z).
We want to prove the following.

Theorem 17.7. Let L be a number field. Then CI(L) is finite.
We've already shown this Z[i]. We showed that Cl(Z[i]) = 1, i.e.

that it is a principal ideal domain. On the other hand, we've seen that
Pic(Z[v/19]) # 1 (this ring isn’t Dedekind, but later we’ll see Dedekind
rings with nontrivial class groups.

How did we show that CI(Z[i]) = 17 We took advantage of the fact
that Z[i] forms a sublattice of C. We'll try to do that in general.

Here is the idea... If we have a number field L of degree n over
Q, then we have n different embeddings of L into C. They can be
obtained by fixing one embedding . — C and then conjugating this
embedding by elements in the cosets of Hy, in Gal(M/Q) for M some
Galois extension of Q containing L. We'll use these to make B a full
lattice in R™. What is a full lattice?

Definition 17.8. A lattice £ C R" is a free Z-module whose rank as a
Z-module is the equal to the dimension of the R-vector space generated
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by L. A full lattice £ C R" is a free Z-module of rank n that generates
R™ as a R-vector space.

Example 17.9. (1) Z[0] where 6? = 3 is not a full lattice of R?
under the embedding 1 — 1 and 6 — /3, since it generates an
R-vector space of dimension 1.

(2) Z[i] is full lattice in R* where R? is C considered as an R-vector
space with basis 1,7 over R.

On the other hand, we can send Z[f] where §* = 3 into R? in such
a way that it is a full lattice in the following way. Let ¢ : 1 — (1,1)
and ¢ : 6 :— (v/3,—/3). In this case, we must generate R? as an R?
vector space since (1,1) and (v/3, —v/3) are linearly independent.

There are two different types of embeddings of L into C. There are
the real ones and the complex ones. An embedding o : L — Cisreal if
o(y) = o(y) for every y € L (the bar here denotes complex conjugation)
and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write L = Q[X]/f(X) for
some monic irreducible polynomial L with integer coefficients. Then by
the Chinese remainder theorem R[X]/f(X) = @, R[X]/ f:(X) where
the f; have coefficients in R, are irreducible over R, and fi...f, =g
(note that the f; are distinct since L is separable over Q). We also know
that each f; is of degree 1 or 2. When f; has degree 1, then R[X]/f;(X)
is isomorphic to R and when f; has degree 2, then R[X]/f;(X) is iso-
morphic to C. Since Q has a natural embedding into R, we obtain a
natural embedding of

i L=QX] H@R I/ fi(X

Composing j with projection onto the i-th factor of

@R 1/ fi(X

then gives a map from L — R or L — C. In fact, when deg f; =
2 and R[X]/f;(X) is C we get two embeddings by composing with
conjugation. The image of L is the same for these two embeddings, so
we will want to link these two in some way...

Let’s order the embeddings o4, ...,0, (n = [L : Q]) in the following
way. We let 01, ..., 0, be real embeddings. The remaining embeddings
come in pairs as explained above, so for i =r+ 1,7+ 3,..., we let o;
be a complex embedding and let ;.1 = 7;77. We let s be the number
of complex embeddings. We have r + 25 = n.



Now, we can embed Op into R" by letting

hy) = (1(y), .-, v (y),
R(or1(v)), S(or1(y))s - - 3%(UT+2(S*1) (y)), %<UT+2(371) ()

= (Ul(y)7 s ,O’T(y),

1
W i)+ 0raly) ovia(y) — 0ra(y)
2 ’ 21 T
0r+2(371)<y) + 01‘+2(371)(y) UT+2(871)(y) - 0r+2(371)+1(3/))
2 ’ 21 ‘

Let us also denote as h; the map h : Op — R given by composing h

with projection p; onto the i-th coordinate of R™.
We will continue to use h and h; as defined above. We will also
continue to let s and r be as above and to let n = r + 2s be the degree

L:qQ).



