Math 430 Tom Tucker
NOTES FROM CLASS 10/27

Before we continue with generalities about cyclotomic fields, a quick
example with norms in the Gaussian integers.

An easy application. Which positive numbers m can be written as
a® + b? for integers a and b?

Theorem 16.1. A positive integer m can be written as a*> + b* for
integers a and b if and only if every prime p | m such that p = 3
(mod 4) appears to an even power in the factorization of m.

Proof. Let B = Zli]. Then N(a + bi) = a® + V?, for a,b € Z. Since B
is a principal ideal domain, a positive integer m = N(a + bi) for some
a+ bi € B if and only if (m) = N(I) for some ideal I of B. Every
ideal of B factors into prime ideals q. For each q with q N Z = p, we
have N(q) = (p) if p is not congruent to 3 (mod 4) and N(q) = p? if
p is congruent to 3 (mod 4). Thus the possible norms of ideals of B
are simply the integers m such that every prime p | m such that p =3
(mod 4) appears to an even power in the factorization of m. O

Now, back to cyclotomic fields. Let ¢ = p* > 2. Let
(I)q<X) — Xpa—l(P—l) + Xpa—l(p_2) bt Xpa—l ey

Then
X1—-1
Xt — 1
Let &, be a primitive ¢-th root of unity. Then
0,X)= ] (x—éb.

1<k<q
(k,q)=1

More generally we define the m-th cyclotomic polynomial as
¢(X)= [ x—=¢)}

1<k<m
(k,m)=1

(I)q(X) =

Recall the Euler ¢-function given by
¢(m) = #{k | 1 <k < m such that (k,m) = 1.
(Here (k,m) is the greatest divisor of m and k.)
Recall the usual properties of ¢, e.g. ¢(ab) = ¢(a)p(b) if a and b are
coprime and @(p®) = p* — p*~!
Theorem 16.2. The polynomial ®,(X) is irreducible and is therefore

the minimal monic for &,.
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Proof. Note that ®,(1) = 1+ 1>+ - + 177! = p. Note also that if
ged(k,q) =1, then (1 =& /(1—=&) = 1+&+---+&7" sois in Z[¢],
and since §, = ff;j for 7 the inverse of k£ modulo ¢, we also have that

(1-¢,)/(1— f(’;) is in Z[¢,]. Thus, (1 — 55)/(1 —¢,) is a unit in Z[§,].
Thus, we have

o) = J] 0=¢)= ] w1 —¢&)=u(l—£)",
1<k<gq 1<k<gq
(k,q)=1 (k,q)=1

where wu;, and w are units (in Z[¢,]). Similarly, for any k& such that
(k,q) = 1, we have v(1 — 5(’;)‘;5(‘1) = p for a unit v. It follows that
(1 —&F) is not a unit for (k,q) = 1. Now, if ®,(X) = F(X)G(X) for
polynomials F' and G over Z, either F(1) = £1 or G(1) = £1. But
since each is a product of (1 — 5(’;) for various k, neither can be a unit,
so ®, must be irreducible. O

The following is obvious now.
Corollary 16.3.
[Q(&) : Q] = d(g) =p*'(p — 1).
Theorem 16.4. The integral closure of Z in Q(&,) is Z[¢,]. Furthe-
more, p ramifies completely in Q(&,).

Proof. Since A(Z[&,]/Z) is a power of p, the only primes in Z[¢,] that
could fail to be invertible are those lying over p. On the other hand, by
the Kummer theorem, the only prime lying over p in Z[¢,] is (p,&, — 1)
since ®,(X) divides (X9 —1) = (X —1)? (mod p). We know that

G- ] &-1=p
(ot

and of course (£F — 1) is in Z[,] for any k, so

(&g —1)=(&—1)
and is therefore principle and hence invertible. Since (§,—1) has residue

field Z/pZ is the only prime that lies over p it follows that p ramifies
completley in Z[,]. O

Theorem 16.5. Let m be any positive integer. Then Z[E,,] is Dedekind
and the field Q(&,,) is Galois of degree of ¢p(m) over Q. Thus, ®,,(X)

15 irreducible over Q for all m.

Proof. 1t is obvious that Q(&,,) is Galois. Indeed, 7 = 1 implies
o(&n)™ = 1 for any conjugate o (&,,) of &,,. But every root of z™—1 = 0



3

is a power of &, so is in Q(&,,). Hence, Q(&,,) is the splitting field for
the minimal monic of &,, and is therefore Galois.

We will show that Z[¢,,] is Dedekind and that Q(¢,,,) has degree¢(m)
over Q by induction on the number 7 of distinct prime factors p of m.
We have already treated the case r = 1. Then writing m = m/q where
m’ has r—1 distinct prime factors and ¢ is a prime power (which is prime
to m’). The discriminant of Z[¢/ ] divides (m’)™ (the discriminant of
2™ —1) so is prime to the discriminant of Z[¢,] (since (m’,q) = 1). By
this week’s homework #5, it follows that Z[,, &,/] is Dedekind, since
Z[¢,] and Z[¢,] are Dedekind by the inductive hypothesis and have
coprime discriminants. Since £Z, is a primitive m’-th root of unity and
€™ is primitive g-th root of unity,

Z[gm] = Z[gqa fm’]a

s0 Z[&m] is Dedekind.
To calculate the degree of Q(&,,) it will suffice to show that Q(¢,) and
Q(&,) are disjoint over Q, since that means that the degree of Q(&,,) is

the product of the degrees of Q(¢,) and Q(&,/), and ¢(m) = ¢(q)p(m’)

since m' and ¢ are relatively prime. Now p ramifies completely in Q(¢,),
and not at all in Q(&,,,) so Q(&,) NQ (&) = Q, as desired, by a previous
homework problem.

To see that ®,,(X) is irreducible over Q for all m we simply note

that deg @ (X) = ¢(m) = [Q(&m) - Q. O

Now quadratic reciprocity.

We can use cyclotomic fields to prove the quadratic reciprocity the-
orem. Recall the definition the quadratic residue symbol for a prime
p. It is defined for an integer a coprime to p as

<g) _ { 1 : aissquare (mod p)

p —1 : aisnot asquare (mod p)

From now on, p and ¢ are distinct odd primes (there is also a form
of quadratic reciprocity when one of them is 2, but we will not treat

it). Quadratic reciprocity relates <§> with (%). It says that for p and

q odd we have
D q (g=D(p=1)
V(%) = ().
(2) () -

When p is odd and (a,p) = 1, we have
(1) (g) _ q-1)/2.
p Y

@ ()= ) C)



3) () = (~norv
(4) (%) = (—1)#7011), where ord,(a) denotes the order of @ (mod p).

Properties 2, 3, and 4 follow immediately from 1. Property 1 follows
from the fact that (Z/pZ)* has a primitive root 6 and a is square mod
p if and only if @ = 6" for some even . Now, (§")?P~1/2 = 1 if r is even
and —1 is r is odd, so we are done.

We will give a simple proof of quadratic reciprocity by factoring p in

Z[&)-
Lemma 16.6. The field Q(&,) contains exactly one quadratic field. It

is Q(1/(—1)a-D72g).

Proof. The field Q(&,) is Galois since all the conjugates of £, are powers
of ¢, and hence @, splits completely in Q(&,). It is clear that the Galois
group is (Z/aZ)* which is cyclic of even order, so there is exactly one
subgroup of index 2, and one subfield of degree 2. Since Q(&,) only
ramifies at p, this quadratic field cannot ramify at 2, so it must have
discriminant divisible only by q. There are only two possibilities Q(,/q)
and Q(v/—q). By checking the ramification at 2, we see that if ¢ = 1
(mod 4) it is Q(\/g), if ¢ = 3 (mod 4), then —¢ = 1 (mod 4), so it
must be Q(v/—q). O



