
Math 430 Tom Tucker
NOTES FROM CLASS 10/27

Before we continue with generalities about cyclotomic fields, a quick
example with norms in the Gaussian integers.

An easy application. Which positive numbers m can be written as
a2 + b2 for integers a and b?

Theorem 16.1. A positive integer m can be written as a2 + b2 for
integers a and b if and only if every prime p | m such that p ≡ 3
(mod 4) appears to an even power in the factorization of m.

Proof. Let B = Z[i]. Then N(a + bi) = a2 + b2, for a, b ∈ Z. Since B
is a principal ideal domain, a positive integer m = N(a + bi) for some
a + bi ∈ B if and only if (m) = N(I) for some ideal I of B. Every
ideal of B factors into prime ideals q. For each q with q ∩ Z = p, we
have N(q) = (p) if p is not congruent to 3 (mod 4) and N(q) = p2 if
p is congruent to 3 (mod 4). Thus the possible norms of ideals of B
are simply the integers m such that every prime p | m such that p ≡ 3
(mod 4) appears to an even power in the factorization of m. �

Now, back to cyclotomic fields. Let q = pa > 2. Let

Φq(X) = Xpa−1(p−1) +Xpa−1(p−2) + · · ·+Xpa−1

+ 1.

Then

Φq(X) =
Xq − 1

Xpa−1 − 1
.

Let ξq be a primitive q-th root of unity. Then

Φq(X) =
∏

1≤k<q
(k,q)=1

(X − ξkq ).

More generally we define the m-th cyclotomic polynomial as

Φm(X) =
∏

1≤k<m
(k,m)=1

(X − ξkq ).}

Recall the Euler φ-function given by

φ(m) = #{k | 1 ≤ k < m such that (k,m) = 1.

(Here (k,m) is the greatest divisor of m and k.)
Recall the usual properties of φ, e.g. φ(ab) = φ(a)φ(b) if a and b are

coprime and φ(pa) = pa − pa−1.

Theorem 16.2. The polynomial Φq(X) is irreducible and is therefore
the minimal monic for ξq.
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Proof. Note that Φq(1) = 1 + 12 + · · · + 1p−1 = p. Note also that if
gcd(k, q) = 1, then (1− ξkq )/(1− ξq) = 1 + ξq + · · ·+ ξk−1q , so is in Z[ξq],

and since ξq = ξkjq for j the inverse of k modulo q, we also have that

(1− ξq)/(1− ξkq ) is in Z[ξq]. Thus, (1− ξkq )/(1− ξq) is a unit in Z[ξq].
Thus, we have

Φq(1) =
∏

1≤k<q
(k,q)=1

(1− ξkq ) =
∏

1≤k<q
(k,q)=1

uk(1− ξkq ) = u(1− ξq)φ(q),

where uk and u are units (in Z[ξq]). Similarly, for any k such that
(k, q) = 1, we have v(1 − ξkq )φ(q) = p for a unit v. It follows that

(1 − ξkq ) is not a unit for (k, q) = 1. Now, if Φq(X) = F (X)G(X) for
polynomials F and G over Z, either F (1) = ±1 or G(1) = ±1. But
since each is a product of (1− ξkq ) for various k, neither can be a unit,
so Φq must be irreducible. �

The following is obvious now.

Corollary 16.3.

[Q(ξq) : Q] = φ(q) = pa−1(p− 1).

Theorem 16.4. The integral closure of Z in Q(ξq) is Z[ξq]. Furthe-
more, p ramifies completely in Q(ξq).

Proof. Since ∆(Z[ξq]/Z) is a power of p, the only primes in Z[ξq] that
could fail to be invertible are those lying over p. On the other hand, by
the Kummer theorem, the only prime lying over p in Z[ξq] is (p, ξq− 1)
since Φq(X) divides (Xq − 1) ≡ (X − 1)q (mod p). We know that

(ξq − 1) ·
∏

1<k<q
(k,q)=1

(ξkq − 1) = p,

and of course (ξkq − 1) is in Z[ξq] for any k, so

(p, ξq − 1) = (ξq − 1)

and is therefore principle and hence invertible. Since (ξq−1) has residue
field Z/pZ is the only prime that lies over p it follows that p ramifies
completley in Z[ξq]. �

Theorem 16.5. Let m be any positive integer. Then Z[ξm] is Dedekind
and the field Q(ξm) is Galois of degree of φ(m) over Q. Thus, Φm(X)
is irreducible over Q for all m.

Proof. It is obvious that Q(ξm) is Galois. Indeed, ξmm = 1 implies
σ(ξm)m = 1 for any conjugate σ(ξm) of ξm. But every root of xm−1 = 0
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is a power of ξm so is in Q(ξm). Hence, Q(ξm) is the splitting field for
the minimal monic of ξm and is therefore Galois.

We will show that Z[ξm] is Dedekind and that Q(ξm) has degreeφ(m)
over Q by induction on the number r of distinct prime factors p of m.
We have already treated the case r = 1. Then writing m = m′q where
m′ has r−1 distinct prime factors and q is a prime power (which is prime
to m′). The discriminant of Z[ξ′m] divides (m′)m

′
(the discriminant of

xm
′ − 1) so is prime to the discriminant of Z[ξq] (since (m′, q) = 1). By

this week’s homework #5, it follows that Z[ξq, ξm′ ] is Dedekind, since
Z[ξ′m] and Z[ξq] are Dedekind by the inductive hypothesis and have
coprime discriminants. Since ξqm is a primitive m′-th root of unity and
ξm
′

m is primitive q-th root of unity,

Z[ξm] = Z[ξq, ξm′ ],

so Z[ξm] is Dedekind.
To calculate the degree of Q(ξm) it will suffice to show that Q(ξq) and

Q(ξm′) are disjoint over Q, since that means that the degree of Q(ξm) is
the product of the degrees of Q(ξq) and Q(ξm′), and φ(m) = φ(q)φ(m′)
since m′ and q are relatively prime. Now p ramifies completely in Q(ξq),
and not at all in Q(ξm) so Q(ξq)∩Q(ξm′) = Q, as desired, by a previous
homework problem.

To see that Φm(X) is irreducible over Q for all m we simply note
that deg Φm(X) = φ(m) = [Q(ξm) : Q]. �

Now quadratic reciprocity.
We can use cyclotomic fields to prove the quadratic reciprocity the-

orem. Recall the definition the quadratic residue symbol for a prime
p. It is defined for an integer a coprime to p as(

a

p

)
=

{
1 : a is square (mod p)
−1 : a is not a square (mod p)

From now on, p and q are distinct odd primes (there is also a form
of quadratic reciprocity when one of them is 2, but we will not treat

it). Quadratic reciprocity relates
(
p
q

)
with

(
q
p

)
. It says that for p and

q odd we have (
p

q

)(
q

p

)
= (−1)

(q−1)(p−1)
4 .

When p is odd and (a, p) = 1, we have

(1)
(
a
p

)
= a(p−1)/2;

(2)
(
ab
p

)
=
(
a
p

)(
b
p

)
;
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(3)
(
−1
p

)
= (−1)(p−1)/2;

(4)
(
a
p

)
= (−1)

p−1
ord(a) , where ordp(a) denotes the order of a (mod p).

Properties 2, 3, and 4 follow immediately from 1. Property 1 follows
from the fact that (Z/pZ)∗ has a primitive root θ and a is square mod
p if and only if a = θr for some even r. Now, (θr)(p−1)/2 = 1 if r is even
and −1 is r is odd, so we are done.

We will give a simple proof of quadratic reciprocity by factoring p in
Z[ξq].

Lemma 16.6. The field Q(ξq) contains exactly one quadratic field. It

is Q(
√

(−1)(q−1)/2q).

Proof. The field Q(ξq) is Galois since all the conjugates of ξq are powers
of ξq and hence Φq splits completely in Q(ξq). It is clear that the Galois
group is (Z/aZ)∗ which is cyclic of even order, so there is exactly one
subgroup of index 2, and one subfield of degree 2. Since Q(ξq) only
ramifies at p, this quadratic field cannot ramify at 2, so it must have
discriminant divisible only by q. There are only two possibilities Q(

√
q)

and Q(
√
−q). By checking the ramification at 2, we see that if q ≡ 1

(mod 4) it is Q(
√
q), if q ≡ 3 (mod 4), then −q ≡ 1 (mod 4), so it

must be Q(
√
−q). �


