## Math 430 Tom Tucker

NOTES FROM CLASS 10/27
Before we continue with generalities about cyclotomic fields, a quick example with norms in the Gaussian integers.

An easy application. Which positive numbers $m$ can be written as $a^{2}+b^{2}$ for integers $a$ and $b$ ?

Theorem 16.1. A positive integer $m$ can be written as $a^{2}+b^{2}$ for integers $a$ and $b$ if and only if every prime $p \mid m$ such that $p \equiv 3$ $(\bmod 4)$ appears to an even power in the factorization of $m$.

Proof. Let $B=\mathbb{Z}[i]$. Then $\mathrm{N}(a+b i)=a^{2}+b^{2}$, for $a, b \in \mathbb{Z}$. Since $B$ is a principal ideal domain, a positive integer $m=\mathrm{N}(a+b i)$ for some $a+b i \in B$ if and only if $(m)=\mathrm{N}(I)$ for some ideal $I$ of $B$. Every ideal of $B$ factors into prime ideals $\mathfrak{q}$. For each $\mathfrak{q}$ with $\mathfrak{q} \cap \mathbb{Z}=p$, we have $N(\mathfrak{q})=(p)$ if $p$ is not congruent to $3(\bmod 4)$ and $N(\mathfrak{q})=p^{2}$ if $p$ is congruent to $3(\bmod 4)$. Thus the possible norms of ideals of $B$ are simply the integers $m$ such that every prime $p \mid m$ such that $p \equiv 3$ $(\bmod 4)$ appears to an even power in the factorization of $m$.

Now, back to cyclotomic fields. Let $q=p^{a}>2$. Let

$$
\Phi_{q}(X)=X^{p^{a-1}(p-1)}+X^{p^{a-1}(p-2)}+\cdots+X^{p^{a-1}}+1
$$

Then

$$
\Phi_{q}(X)=\frac{X^{q}-1}{X^{p^{a-1}}-1}
$$

Let $\xi_{q}$ be a primitive $q$-th root of unity. Then

$$
\Phi_{q}(X)=\prod_{\substack{1 \leq k<q \\(k, q)=1}}\left(X-\xi_{q}^{k}\right) .
$$

More generally we define the $m$-th cyclotomic polynomial as

$$
\left.\Phi_{m}(X)=\prod_{\substack{1 \leq k<m \\(k, m)=1}}\left(X-\xi_{q}^{k}\right) .\right\}
$$

Recall the Euler $\phi$-function given by

$$
\phi(m)=\#\{k \mid 1 \leq k<m \text { such that }(k, m)=1
$$

(Here $(k, m)$ is the greatest divisor of $m$ and $k$.)
Recall the usual properties of $\phi$, e.g. $\phi(a b)=\phi(a) \phi(b)$ if $a$ and $b$ are coprime and $\phi\left(p^{a}\right)=p^{a}-p^{a-1}$.

Theorem 16.2. The polynomial $\Phi_{q}(X)$ is irreducible and is therefore the minimal monic for $\xi_{q}$.

Proof. Note that $\Phi_{q}(1)=1+1^{2}+\cdots+1^{p-1}=p$. Note also that if $\operatorname{gcd}(k, q)=1$, then $\left(1-\xi_{q}^{k}\right) /\left(1-\xi_{q}\right)=1+\xi_{q}+\cdots+\xi_{q}^{k-1}$, so is in $\mathbb{Z}\left[\xi_{q}\right]$, and since $\xi_{q}=\xi_{q}^{k j}$ for $j$ the inverse of $k$ modulo $q$, we also have that $\left(1-\xi_{q}\right) /\left(1-\xi_{q}^{k}\right)$ is in $\mathbb{Z}\left[\xi_{q}\right]$. Thus, $\left(1-\xi_{q}^{k}\right) /\left(1-\xi_{q}\right)$ is a unit in $\mathbb{Z}\left[\xi_{q}\right]$. Thus, we have

$$
\Phi_{q}(1)=\prod_{\substack{1 \leq k<q \\(k, q)=1}}\left(1-\xi_{q}^{k}\right)=\prod_{\substack{1 \leq k<q \\(k, q)=1}} u_{k}\left(1-\xi_{q}^{k}\right)=u\left(1-\xi_{q}\right)^{\phi(q)},
$$

where $u_{k}$ and $u$ are units (in $\mathbb{Z}\left[\xi_{q}\right]$ ). Similarly, for any $k$ such that $(k, q)=1$, we have $v\left(1-\xi_{q}^{k} \phi^{\phi(q)}=p\right.$ for a unit $v$. It follows that $\left(1-\xi_{q}^{k}\right)$ is not a unit for $(k, q)=1$. Now, if $\Phi_{q}(X)=F(X) G(X)$ for polynomials $F$ and $G$ over $\mathbb{Z}$, either $F(1)= \pm 1$ or $G(1)= \pm 1$. But since each is a product of $\left(1-\xi_{q}^{k}\right)$ for various $k$, neither can be a unit, so $\Phi_{q}$ must be irreducible.

The following is obvious now.

## Corollary 16.3.

$$
\left[\mathbb{Q}\left(\xi_{q}\right): \mathbb{Q}\right]=\phi(q)=p^{a-1}(p-1) .
$$

Theorem 16.4. The integral closure of $\mathbb{Z}$ in $\mathbb{Q}\left(\xi_{q}\right)$ is $\mathbb{Z}\left[\xi_{q}\right]$. Furthemore, $p$ ramifies completely in $\mathbb{Q}\left(\xi_{q}\right)$.
Proof. Since $\Delta\left(\mathbb{Z}\left[\xi_{q}\right] / \mathbb{Z}\right)$ is a power of $p$, the only primes in $\mathbb{Z}\left[\xi_{q}\right]$ that could fail to be invertible are those lying over $p$. On the other hand, by the Kummer theorem, the only prime lying over $p$ in $\mathbb{Z}\left[\xi_{q}\right]$ is $\left(p, \xi_{q}-1\right)$ since $\Phi_{q}(X)$ divides $\left(X^{q}-1\right) \equiv(X-1)^{q}(\bmod p)$. We know that

$$
\left(\xi_{q}-1\right) \cdot \prod_{\substack{1<k<q \\(k, q)=1}}\left(\xi_{q}^{k}-1\right)=p
$$

and of course $\left(\xi_{q}^{k}-1\right)$ is in $\mathbb{Z}\left[\xi_{q}\right]$ for any $k$, so

$$
\left(p, \xi_{q}-1\right)=\left(\xi_{q}-1\right)
$$

and is therefore principle and hence invertible. Since $\left(\xi_{q}-1\right)$ has residue field $\mathbb{Z} / p \mathbb{Z}$ is the only prime that lies over $p$ it follows that $p$ ramifies completley in $\mathbb{Z}\left[\xi_{q}\right]$.
Theorem 16.5. Let $m$ be any positive integer. Then $\mathbb{Z}\left[\xi_{m}\right]$ is Dedekind and the field $\mathbb{Q}\left(\xi_{m}\right)$ is Galois of degree of $\phi(m)$ over $\mathbb{Q}$. Thus, $\Phi_{m}(X)$ is irreducible over $\mathbb{Q}$ for all $m$.
Proof. It is obvious that $\mathbb{Q}\left(\xi_{m}\right)$ is Galois. Indeed, $\xi_{m}^{m}=1$ implies $\sigma\left(\xi_{m}\right)^{m}=1$ for any conjugate $\sigma\left(\xi_{m}\right)$ of $\xi_{m}$. But every root of $x^{m}-1=0$
is a power of $\xi_{m}$ so is in $\mathbb{Q}\left(\xi_{m}\right)$. Hence, $\mathbb{Q}\left(\xi_{m}\right)$ is the splitting field for the minimal monic of $\xi_{m}$ and is therefore Galois.

We will show that $\mathbb{Z}\left[\xi_{m}\right]$ is Dedekind and that $\mathbb{Q}\left(\xi_{m}\right)$ has degree $\phi(m)$ over $\mathbb{Q}$ by induction on the number $r$ of distinct prime factors $p$ of $m$. We have already treated the case $r=1$. Then writing $m=m^{\prime} q$ where $m^{\prime}$ has $r-1$ distinct prime factors and $q$ is a prime power (which is prime to $m^{\prime}$ ). The discriminant of $\mathbb{Z}\left[\xi_{m}^{\prime}\right]$ divides $\left(m^{\prime}\right)^{m^{\prime}}$ (the discriminant of $x^{m^{\prime}}-1$ ) so is prime to the discriminant of $\mathbb{Z}\left[\xi_{q}\right]$ (since $\left(m^{\prime}, q\right)=1$ ). By this week's homework $\# 5$, it follows that $\mathbb{Z}\left[\xi_{q}, \xi_{m^{\prime}}\right]$ is Dedekind, since $\mathbb{Z}\left[\xi_{m}^{\prime}\right]$ and $\mathbb{Z}\left[\xi_{q}\right]$ are Dedekind by the inductive hypothesis and have coprime discriminants. Since $\xi_{m}^{q}$ is a primitive $m^{\prime}$-th root of unity and $\xi_{m}^{m^{\prime}}$ is primitive $q$-th root of unity,

$$
\mathbb{Z}\left[\xi_{m}\right]=\mathbb{Z}\left[\xi_{q}, \xi_{m^{\prime}}\right],
$$

so $\mathbb{Z}\left[\xi_{m}\right]$ is Dedekind.
To calculate the degree of $\mathbb{Q}\left(\xi_{m}\right)$ it will suffice to show that $\mathbb{Q}\left(\xi_{q}\right)$ and $\mathbb{Q}\left(\xi_{m^{\prime}}\right)$ are disjoint over $\mathbb{Q}$, since that means that the degree of $\mathbb{Q}\left(\xi_{m}\right)$ is the product of the degrees of $\mathbb{Q}\left(\xi_{q}\right)$ and $\mathbb{Q}\left(\xi_{m^{\prime}}\right)$, and $\phi(m)=\phi(q) \phi\left(m^{\prime}\right)$ since $m^{\prime}$ and $q$ are relatively prime. Now $p$ ramifies completely in $\mathbb{Q}\left(\xi_{q}\right)$, and not at all in $\mathbb{Q}\left(\xi_{m}\right)$ so $\mathbb{Q}\left(\xi_{q}\right) \cap \mathbb{Q}\left(\xi_{m^{\prime}}\right)=\mathbb{Q}$, as desired, by a previous homework problem.

To see that $\Phi_{m}(X)$ is irreducible over $\mathbb{Q}$ for all $m$ we simply note that $\operatorname{deg} \Phi_{m}(X)=\phi(m)=\left[\mathbb{Q}\left(\xi_{m}\right): \mathbb{Q}\right]$.

Now quadratic reciprocity.
We can use cyclotomic fields to prove the quadratic reciprocity theorem. Recall the definition the quadratic residue symbol for a prime $p$. It is defined for an integer $a$ coprime to $p$ as

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
& 1: \\
&-1: a \text { is square } \quad(\bmod p) \\
&(\bmod p)
\end{aligned}\right.
$$

From now on, $p$ and $q$ are distinct odd primes (there is also a form of quadratic reciprocity when one of them is 2 , but we will not treat it). Quadratic reciprocity relates $\left(\frac{p}{q}\right)$ with $\left(\frac{q}{p}\right)$. It says that for $p$ and $q$ odd we have

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(q-1)(p-1)}{4}} .
$$

When $p$ is odd and $(a, p)=1$, we have
(1) $\left(\frac{a}{p}\right)=a^{(p-1) / 2}$;
(2) $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$;
(3) $\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}$;
(4) $\left(\frac{a}{p}\right)=(-1)^{\frac{p-1}{\operatorname{ord}(a)}}$, where $\operatorname{ord}_{p}(a)$ denotes the order of $a(\bmod p)$.

Properties 2, 3, and 4 follow immediately from 1. Property 1 follows from the fact that $(\mathbb{Z} / p \mathbb{Z})^{*}$ has a primitive root $\theta$ and $a$ is square $\bmod$ $p$ if and only if $a=\theta^{r}$ for some even $r$. Now, $\left(\theta^{r}\right)^{(p-1) / 2}=1$ if $r$ is even and -1 is $r$ is odd, so we are done.

We will give a simple proof of quadratic reciprocity by factoring $p$ in $\mathbb{Z}\left[\xi_{q}\right]$.
Lemma 16.6. The field $\mathbb{Q}\left(\xi_{q}\right)$ contains exactly one quadratic field. It is $\mathbb{Q}\left(\sqrt{\left.(-1)^{(q-1) / 2} q\right)}\right.$.
Proof. The field $\mathbb{Q}\left(\xi_{q}\right)$ is Galois since all the conjugates of $\xi_{q}$ are powers of $\xi_{q}$ and hence $\Phi_{q}$ splits completely in $\mathbb{Q}\left(\xi_{q}\right)$. It is clear that the Galois group is $(\mathbb{Z} / a \mathbb{Z})^{*}$ which is cyclic of even order, so there is exactly one subgroup of index 2 , and one subfield of degree 2 . Since $\mathbb{Q}\left(\xi_{q}\right)$ only ramifies at $p$, this quadratic field cannot ramify at 2 , so it must have discriminant divisible only by $q$. There are only two possibilities $\mathbb{Q}(\sqrt{q})$ and $\mathbb{Q}(\sqrt{-q})$. By checking the ramification at 2 , we see that if $q \equiv 1$ $(\bmod 4)$ it is $\mathbb{Q}(\sqrt{q})$, if $q \equiv 3(\bmod 4)$, then $-q \equiv 1(\bmod 4)$, so it must be $\mathbb{Q}(\sqrt{-q})$.

