Math 430 Tom Tucker NOTES FROM CLASS 10/25

We will want to work with norms of ideals in a bit. There is one more thing to prove about norms first. First recall a lemma from last time.

Lemma 15.1. Let L be a separable (not necessarily Galois) field extension of K of degree n, let M be the Galois closure of L over K, and let G = Gal(M/L). Let H_L be the subgroup of G that acts trivially on L and let $H \setminus G$ be a complete set of left coset representatives for G over H. Then, for any $y \in L$, we have

$$T_{L/K}(y) = \sum_{\sigma \in H \setminus G} \sigma(y)$$

and

$$\mathcal{N}_{L/K}(y) = \prod_{\sigma \in H \setminus G} \sigma(y)$$

Proposition 15.2. Let $K \subseteq E \subseteq L$ be finite seprable extension of K. Then, for any $y \in L$, we have

$$\mathcal{N}_{L/K}(y) = \mathcal{N}_{E/K}(\mathcal{N}_{L/E}(y)).$$

Proof. Let M be a Galois extension of K that contains L and let G = Gal(M/K). Let H_E and H_L be the subgroups of G that act identically on E and L respectively. Note that H_E is the Galois group for M over E. Let τ_1, \ldots, τ_s represent the cosets $H_E \setminus G$ and $\gamma_1, \ldots, \gamma_t$ represent the cosets $H_L \setminus H_E$, then the $\tau_i \gamma_i$ represent the cosets $H_L \setminus G$. Therefore,

$$\mathcal{N}_{L/K}(y) = \prod_{i,j} (\tau_i \gamma_j)(y) = \prod_{i=1}^s \tau_i (\prod_{j=1}^t \gamma_j(y)) = \mathcal{N}_{E/K}(\mathcal{N}_{L/E}(y)).$$

One more thing to prove before getting to norms of ideals.

Proposition 15.3. Let B be a Dedekind domain with finitely many maximal ideals \mathfrak{p} . Then B is a principal ideal domain.

Proof. It will suffice to show that every maximal ideal \mathfrak{p} of B is principal. Let \mathfrak{p} be a maximal ideal of B and let $\mathfrak{q}_1, \ldots, \mathfrak{q}_m$ be the other maximal ideals of B and let

$$I = \mathfrak{q}_1 \cdots \mathfrak{q}_m.$$

Then $\mathfrak{p}^2 + I = 1$. Since $\mathfrak{p} \neq \mathfrak{p}^2$ (by unique factorization), there is some $a \in \mathfrak{p} \setminus \mathfrak{p}^2$. By Chinese Remainder Theorem, we may choose γ such that γ is congruent to 1 modulo I and congruent to a modulo \mathfrak{p}^2 . Then the only possible factorization of (γ) is $(\gamma) = \mathfrak{p}$.

Norms of ideals. Back on our usual set-up A Dedekind with field of fractions K, L a finite seprable extension of K of degree n, B the integral closure of A in L. We'll also want A/\mathfrak{p} to be perfect for every maximal ideal \mathfrak{p} . We have already defined the norm $N_{L/K} : L \longrightarrow K$; it sends B to A (since all the coefficients of the minimal polynomial of an integral element are integral). When it is clear what field we are working over we will omit the L/K subscript.

Definition 15.4. For any ideal $I \subset B$, we define the ideal N(I) to be the A-ideal generated by all N(x) for $x \in I$.

Properties of the norm (8.1 on p. 42)

Proposition 15.5. The norm map has the following properties

- (1) N(By) = A N(y) for any $y \in B$.
- (2) If $S \subset A$ is a multiplicative subset not containing 0, and I is an ideal of B, then $N(S^{-1}BI) = S^{-1}AN(I)$.
- (3) N(IJ) = N(I)N(J), for any ideals I and J of B.

Proof. 1. We know the norm map is multiplicative since the determinant of matrices is. Since $N(B) \subset A$, it follows that $N(By) \subset AN(y)$. Also, $N(y) \subset N(By)$, so $AN(y) \subset N(By)$, so N(By) = AN(y).

2. For any $y \in S^{-1}BI$, we can write y = x/s for $x \in I$ and $s \in S$. Then $N(y) = N(x/s) = N(x)/s^n \in S^{-1}AN(I)$, so $N(S^{-1}BI) \subseteq S^{-1}AN(I)$. On the other hand, $S^{-1}AN(I)$ is generated as an $S^{-1}A$ -module by N(I), and $N(I) \subseteq N(S^{-1}BI)$, so we have $S^{-1}AN(I) \subseteq N(S^{-1}BI)$.

3. This is surprisingly difficult, since we the norm is not additive. On the other hand, since any ideal of A is determined by its localizations at all the maximal \mathfrak{p} of A, it will suffice to show that $A_{\mathfrak{p}} N(I)A_{\mathfrak{p}} N(J) = A_{\mathfrak{p}} N(IJ)$. From 2, this means we only have to show that

$$\mathcal{N}(S^{-1}BI)\mathcal{N}(S^{-1}BJ) = \mathcal{N}(S^{-1}BIJ).$$

Since there are finitely many primes $\mathbf{q} \in B$ such that $\mathbf{q} \cap A = \mathbf{p}$, the ring $S^{-1}B$ has finitely many primes, hence is a principal ideal domain. So we write $S^{-1}Bx = S^{-1}BI$ and $S^{-1}By = S^{-1}BJ$. Then we have

$$\begin{split} \mathbf{N}(S^{-1}BI)\,\mathbf{N}(S^{-1}BJ) &= \mathbf{N}(S^{-1}Bx)\,\mathbf{N}(S^{-1}By) \\ &= \mathbf{N}(S^{-1}Bxy) = \mathbf{N}(S^{-1}BIJ), \end{split}$$

and we are done.

Now, we want to figure out what the norm of a prime ideal in B is. We begin with a simple observation.

Lemma 15.6. Let $\mathfrak{q} \cap A = \mathfrak{p}$ for \mathfrak{q} a maximal ideal of B. Then $N(\mathfrak{q})$ is a power of \mathfrak{p} .

Proof. First of all, we know that $N(\mathbf{q})$ cannot be all of A since writing N(y) is a power of $y_1 \cdots y_m$ where the y_i are the conjugates of y, one of which is y itself. Thus $N(y) \subseteq \mathbf{q}$, so $N(y) \subseteq \mathbf{q} \cap A = \mathbf{p}$. Since $\mathbf{p} \subseteq \mathbf{q}$ and $N(a) = a^n$ $(n = [L : k], \text{ as usual}), N(\mathbf{q})$ contains a^n for every $a \in \mathbf{p}$. So $N(\mathbf{q})$ contains \mathbf{p}^n . Thus, it cannot be contained in any maximal ideal other than \mathbf{p} , since \mathbf{p}^2 is prime to any maximal ideal other than \mathbf{p} , and our proof is complete.

Lemma 15.7. Suppose that L is Galois over K. Let \mathfrak{q} be maximal in B with $\mathfrak{q} \cap A = \mathfrak{p}$ and let $f = [B/\mathfrak{q} : A/\mathfrak{p}]$. Then $N(\mathfrak{q}) = \mathfrak{p}^f$.

Proof. Since we know that $N(\mathbf{q})$ is a power of \mathbf{p} , it suffices to show that $A_{\mathbf{p}} N(\mathbf{q}) = \mathbf{p}^{f}$, which is equivalent to showing that $N(S^{-1}B\mathbf{q}) = \mathbf{p}^{f}$, where $S = A \setminus \mathbf{p}$. We write

$$N(\mathfrak{q}) = \mathfrak{p}^{\ell}$$

So it suffices to show this for $A = A_{\mathfrak{p}}$ and $B = S^{-1}B$. In this case, B is a principal ideal domain and we may write $\mathfrak{q} = B\pi$. Now, letting $G = \operatorname{Gal}(L/K)$, we see that

$$B \operatorname{N}(\mathfrak{q}) = B \operatorname{N}(B\pi) = \prod_{\sigma \in G} B\sigma(\pi) = B \prod_{\sigma \in G} \sigma(\mathfrak{q}).$$

Letting $\mathfrak{q}_1, \ldots, \mathfrak{q}_m$ be the distinct conjugates of \mathfrak{q} , i.e. all the primes of B lying over \mathfrak{p} , we see that

$$B \operatorname{N}(\mathfrak{q}) = \mathfrak{q}_1^t \cdots \mathfrak{q}_m^t,$$

where t = n/m. (since *n* is the size of *G*). Now, we know that the relative degrees $[B/\mathfrak{q}_i : A/\mathfrak{p}]$ are all equal to some fixed number *f*, and likewise all the ramification indices are equal to some fixed *e*, so we have

$$B\mathfrak{p}=\mathfrak{q}_1^e\cdots\mathfrak{q}_m^e,$$

with mef = n, so e = n/mf. Thus, t = f, and our proof is complete.

Theorem 15.8. Let *L* be any finite separable extension of *K* and let *A* and *B* be a usual. Let \mathfrak{q} be maximal in *B* with $\mathfrak{q} \cap A = \mathfrak{p}$ and let $f = [B/\mathfrak{q}_i : A/\mathfrak{p}] = f$. Then $N(\mathfrak{q}) = \mathfrak{p}^f$.

Proof. Let M be the Galois closure of L over K. Let R be the integral closure of B in M, which is also the integral closure of A in M. Let \mathfrak{m} be a maximal ideal of R with $\mathfrak{m} \cap B = \mathfrak{q}$. From the previous Lemma,

we know that $N_{M/L}(\mathfrak{m}) = \mathfrak{q}^{[R/\mathfrak{m}:B/\mathfrak{q}]}$. By the previous Lemma and transitivity of the norm, we know that

$$N_{L/K}(\mathfrak{q}^{[R/\mathfrak{m}:B/\mathfrak{q}]}) = N_{L/K}(N_{M/L}(\mathfrak{m})) = N_{M/K}(\mathfrak{m}) = \mathfrak{p}^{[R/\mathfrak{m}:A/\mathfrak{p}]}.$$

Thus

4

$$N_{L/K}(\mathfrak{q}) = \mathfrak{p}^{\frac{|R/\mathfrak{m}:A/\mathfrak{p}|}{|R/\mathfrak{m}:B/\mathfrak{q}|}} = \mathfrak{p}^f,$$

where $f = [B/\mathfrak{q} : A/\mathfrak{p}].$

Now, a quick beginning to cyclotomic fields. All of this is over \mathbb{Q} . We will use the following notation a lot: ξ_m is called a *primitive root* of unity if $\xi^m = 1$ and $\xi^n \neq 1$ for all $1 \leq n < m$.

We let $\Phi(x)$ denote the polynomial $(x^p - 1)/(x - 1)$. It is easily seen that $\Phi(x+1)$ is Eisenstein and therefore irreducible. More on this next time.