Math 430 Tom Tucker
NOTES FROM CLASS 10/25

We will want to work with norms of ideals in a bit. There is one more
thing to prove about norms first. First recall a lemma from last time.

Lemma 15.1. Let L be a separable (not necessarily Galois) field ex-
tension of K of degree n, let M be the Galois closure of L over K, and
let G = Gal(M/L). Let Hy, be the subgroup of G that acts trivially on
L and let H\G be a complete set of left coset representatives for G over
H. Then, for any y € L, we have

Tyx(y)= > oy
oc€H\G
and
Npw) =[] o)
c€H\G
Proposition 15.2. Let K C E C L be finite seprable extension of K.
Then, for any y € L, we have

Nz/k(y) = Ng/x(Nr/e(y))-

Proof. Let M be a Galois extension of K that contains L and let G =
Gal(M/K). Let Hg and Hj, be the subgroups of G that act identically
on E and L respectively. Note that Hg is the Galois group for M over
E. Let 1,..., 7 represent the cosets Hg\G and ~1,...,7; represent
the cosets Hp,\ Hg, then the 7,7, represent the cosets Hy\G. Therefore,

Nix(y) = [ () ) = HTi(H 7)) = Nk (Neys(y))-

irj i=
O

One more thing to prove before getting to norms of ideals.

Proposition 15.3. Let B be a Dedekind domain with finitely many
mazximal ideals p. Then B s a principal ideal domain.

Proof. Tt will suffice to show that every maximal ideal p of B is prin-
cipal. Let p be a maximal ideal of B and let qq,...,q, be the other
maximal ideals of B and let

Then p? + I = 1. Since p # p? (by unique factorization), there is some
a € p\ p?. By Chinese Remainder Theorem, we may choose 7 such
that 7 is congruent to 1 modulo I and congruent to @ modulo p?. Then
the only possible factorization of (v) is (y) = p. O
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Norms of ideals. Back on our usual set-up A Dedekind with field
of fractions K, L a finite seprable extension of K of degree n, B the
integral closure of A in L. We'll also want A/p to be perfect for every
maximal ideal p. We have already defined the norm Ny /x : L — K;
it sends B to A (since all the coefficients of the minimal polynomial of
an integral element are integral). When it is clear what field we are
working over we will omit the L/K subscript.

Definition 15.4. For any ideal I C B, we define the ideal N(/) to be
the A-ideal generated by all N(z) for x € I.

Properties of the norm (8.1 on p. 42)

Proposition 15.5. The norm map has the following properties

(1) N(By) = AN(y) for any y € B.

(2) If S C A is a multiplicative subset not containing 0, and I is an
ideal of B, then N(ST'BI) = ST'AN(I).

(3) N(IJ) =N(I)N(J), for any ideals I and J of B.

Proof. 1. We know the norm map is multiplicative since the determi-
nant of matrices is. Since N(B) C A, it follows that N(By) C AN(y).
Also, N(y) € N(By), so AN(y) C N(By), so N(By) = AN(y).

2. For any y € S7'BI, we can write y = x/s for x € [ and s €
S. Then N(y) = N(z/s) = N(z)/s" € STTAN(I), so N(S™'BI) C
STYAN(I). On the other hand, ST'AN([) is generated as an S~'A-
module by N(I), and N(I) € N(S™!'BI), so we have ST!AN(I) C
N(S~'BI).

3. This is surprisingly difficult, since we the norm is not additive. On
the other hand, since any ideal of A is determined by its localizations
at all the maximal p of A, it will suffice to show that A, N(1)A, N(J) =
A, N(IJ). From 2, this means we only have to show that

N(S™'BI)N(S™'BJ) = N(S™'BIJ).

Since there are finitely many primes q € B such that g A = p, the
ring S7!' B has finitely many primes, hence is a principal ideal domain.
So we write ST'Bx = S™'BI and S™'By = S™'BJ. Then we have

N(S'BI)N(S™'BJ) = N(S~'Bx) N(S~'By)
= N(S~'Bzy) = N(S™'BIJ),
and we are done. OJ

Now, we want to figure out what the norm of a prime ideal in B is.
We begin with a simple observation.
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Lemma 15.6. Let qN A = p for q a mazimal ideal of B. Then N(q)
s a power of p.

Proof. First of all, we know that N(q) cannot be all of A since writing
N(y) is a power of 4 - - - Y, where the y; are the conjugates of y, one of
which is y itself. Thus N(y) C g, so N(y) C qnA = p. Since p C q and
N(a) = a™ (n = [L : k], as usual), N(q) contains a™ for every a € p. So
N(q) contains p™. Thus, it cannot be contained in any maximal ideal
other than p, since p? is prime to any maximal ideal other than p, and
our proof is complete. O

Lemma 15.7. Suppose that L is Galois over K. Let q be mazximal in
B with qN A= p and let f = [B/q: A/p]. Then N(q) = p’.

Proof. Since we know that N(q) is a power of p, it suffices to show that
A, N(q) = p/, which is equivalent to showing that N(S~!'Bq) = p/,
where S = A\ p. We write

N(q) = p".
So it suffices to show this for A = A, and B = S~'B. In this case, B
is a principal ideal domain and we may write ¢ = Bw. Now, letting

G = Gal(L/K), we see that
BN(q) = BN(Br) = [[ Bo(r) = B[] o(q).

ceG ceG
Letting q1, ..., q,n, be the distinct conjugates of q, i.e. all the primes of
B lying over p, we see that

BN(q) =dy- - dp,

where t = n/m. (since n is the size of G). Now, we know that the

relative degrees [B/q; : A/p] are all equal to some fixed number f, and

likewise all the ramification indices are equal to some fixed e, so we

have

Bp =di-- - dp,

with mef =n, so e = n/mf. Thus, t = f, and our proof is complete.

O

Theorem 15.8. Let L be any finite separable extension of K and let
A and B be a usual. Let q be maximal in B with qN A = p and let

f=1[B/ai: Afp] = f. Then N(q) = p’.

Proof. Let M be the Galois closure of L over K. Let R be the integral
closure of B in M, which is also the integral closure of A in M. Let m
be a maximal ideal of R with m N B = q. From the previous Lemma,
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we know that Ny (m) = qlf#/™B/d By the previous Lemma and
transitivity of the norm, we know that

NL/K(q[R/m:B/q}) = Nz/k(Nar/p(m)) = Npy/re(m) = p[R/m:A/p]_
Thus

[R/m:A/p]

Np/k(q) = plErms/l = p/,
where f = [B/q: A/p]. O

Now, a quick beginning to cyclotomic fields. All of this is over Q.
We will use the following notation a lot: &, is called a primitive root
of unity if ™ =1 and £" # 1 for all 1 <n < m.

We let ®(z) denote the polynomial (z¥ —1)/(xz —1). It is easily seen
that ®(z+1) is Eisenstein and therefore irreducible. More on this next
time.




