Math 430 Tom Tucker
 NOTES FROM CLASS 10/25

We will want to work with norms of ideals in a bit. There is one more thing to prove about norms first. First recall a lemma from last time.
Lemma 15.1. Let L be a separable (not necessarily Galois) field extension of K of degree n, let M be the Galois closure of L over K, and let $G=\operatorname{Gal}(M / L)$. Let H_{L} be the subgroup of G that acts trivially on L and let $H \backslash G$ be a complete set of left coset representatives for G over H. Then, for any $y \in L$, we have

$$
T_{L / K}(y)=\sum_{\sigma \in H \backslash G} \sigma(y)
$$

and

$$
\mathrm{N}_{L / K}(y)=\prod_{\sigma \in H \backslash G} \sigma(y)
$$

Proposition 15.2. Let $K \subseteq E \subseteq L$ be finite seprable extension of K. Then, for any $y \in L$, we have

$$
\mathrm{N}_{L / K}(y)=\mathrm{N}_{E / K}\left(\mathrm{~N}_{L / E}(y)\right) .
$$

Proof. Let M be a Galois extension of K that contains L and let $G=$ $\operatorname{Gal}(M / K)$. Let H_{E} and H_{L} be the subgroups of G that act identically on E and L respectively. Note that H_{E} is the Galois group for M over E. Let $\tau_{1}, \ldots, \tau_{s}$ represent the cosets $H_{E} \backslash G$ and $\gamma_{1}, \ldots, \gamma_{t}$ represent the cosets $H_{L} \backslash H_{E}$, then the $\tau_{i} \gamma_{j}$ represent the cosets $H_{L} \backslash G$. Therefore,

$$
\mathrm{N}_{L / K}(y)=\prod_{i, j}\left(\tau_{i} \gamma_{j}\right)(y)=\prod_{i=1}^{s} \tau_{i}\left(\prod_{j=1}^{t} \gamma_{j}(y)\right)=\mathrm{N}_{E / K}\left(\mathrm{~N}_{L / E}(y)\right)
$$

One more thing to prove before getting to norms of ideals.
Proposition 15.3. Let B be a Dedekind domain with finitely many maximal ideals \mathfrak{p}. Then B is a principal ideal domain.

Proof. It will suffice to show that every maximal ideal \mathfrak{p} of B is principal. Let \mathfrak{p} be a maximal ideal of B and let $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{m}$ be the other maximal ideals of B and let

$$
I=\mathfrak{q}_{1} \cdots \mathfrak{q}_{m}
$$

Then $\mathfrak{p}^{2}+I=1$. Since $\mathfrak{p} \neq \mathfrak{p}^{2}$ (by unique factorization), there is some $a \in \mathfrak{p} \backslash \mathfrak{p}^{2}$. By Chinese Remainder Theorem, we may choose γ such that γ is congruent to 1 modulo I and congruent to a modulo \mathfrak{p}^{2}. Then the only possible factorization of (γ) is $(\gamma)=\mathfrak{p}$.

Norms of ideals. Back on our usual set-up A Dedekind with field of fractions K, L a finite seprable extension of K of degree n, B the integral closure of A in L. We'll also want A / \mathfrak{p} to be perfect for every maximal ideal \mathfrak{p}. We have already defined the norm $\mathrm{N}_{L / K}: L \longrightarrow K$; it sends B to A (since all the coefficients of the minimal polynomial of an integral element are integral). When it is clear what field we are working over we will omit the L / K subscript.

Definition 15.4. For any ideal $I \subset B$, we define the ideal $\mathrm{N}(I)$ to be the A-ideal generated by all $\mathrm{N}(x)$ for $x \in I$.

Properties of the norm (8.1 on p. 42)
Proposition 15.5. The norm map has the following properties
(1) $\mathrm{N}(B y)=A \mathrm{~N}(y)$ for any $y \in B$.
(2) If $S \subset A$ is a multiplicative subset not containing 0 , and I is an ideal of B, then $\mathrm{N}\left(S^{-1} B I\right)=S^{-1} A \mathrm{~N}(I)$.
(3) $\mathrm{N}(I J)=\mathrm{N}(I) \mathrm{N}(J)$, for any ideals I and J of B.

Proof. 1. We know the norm map is multiplicative since the determinant of matrices is. Since $\mathrm{N}(B) \subset A$, it follows that $\mathrm{N}(B y) \subset A \mathrm{~N}(y)$. Also, $\mathrm{N}(y) \subset \mathrm{N}(B y)$, so $A \mathrm{~N}(y) \subset \mathrm{N}(B y)$, so $\mathrm{N}(B y)=A \mathrm{~N}(y)$.
2. For any $y \in S^{-1} B I$, we can write $y=x / s$ for $x \in I$ and $s \in$ S. Then $\mathrm{N}(y)=\mathrm{N}(x / s)=\mathrm{N}(x) / s^{n} \in S^{-1} A \mathrm{~N}(I)$, so $\mathrm{N}\left(S^{-1} B I\right) \subseteq$ $S^{-1} A \mathrm{~N}(I)$. On the other hand, $S^{-1} A \mathrm{~N}(I)$ is generated as an $S^{-1} A$ module by $\mathrm{N}(I)$, and $\mathrm{N}(I) \subseteq \mathrm{N}\left(S^{-1} B I\right)$, so we have $S^{-1} A \mathrm{~N}(I) \subseteq$ $\mathrm{N}\left(S^{-1} B I\right)$.
3. This is surprisingly difficult, since we the norm is not additive. On the other hand, since any ideal of A is determined by its localizations at all the maximal \mathfrak{p} of A, it will suffice to show that $A_{\mathfrak{p}} \mathrm{N}(I) A_{\mathfrak{p}} \mathrm{N}(J)=$ $A_{\mathfrak{p}} \mathrm{N}(I J)$. From 2, this means we only have to show that

$$
\mathrm{N}\left(S^{-1} B I\right) \mathrm{N}\left(S^{-1} B J\right)=\mathrm{N}\left(S^{-1} B I J\right) .
$$

Since there are finitely many primes $\mathfrak{q} \in B$ such that $\mathfrak{q} \cap A=\mathfrak{p}$, the ring $S^{-1} B$ has finitely many primes, hence is a principal ideal domain. So we write $S^{-1} B x=S^{-1} B I$ and $S^{-1} B y=S^{-1} B J$. Then we have

$$
\begin{aligned}
\mathrm{N}\left(S^{-1} B I\right) \mathrm{N}\left(S^{-1} B J\right) & =\mathrm{N}\left(S^{-1} B x\right) \mathrm{N}\left(S^{-1} B y\right) \\
& =\mathrm{N}\left(S^{-1} B x y\right)=\mathrm{N}\left(S^{-1} B I J\right),
\end{aligned}
$$

and we are done.
Now, we want to figure out what the norm of a prime ideal in B is. We begin with a simple observation.

Lemma 15.6. Let $\mathfrak{q} \cap A=\mathfrak{p}$ for \mathfrak{q} a maximal ideal of B. Then $\mathrm{N}(\mathfrak{q})$ is a power of \mathfrak{p}.

Proof. First of all, we know that $\mathrm{N}(\mathfrak{q})$ cannot be all of A since writing $\mathrm{N}(y)$ is a power of $y_{1} \cdots y_{m}$ where the y_{i} are the conjugates of y, one of which is y itself. Thus $\mathrm{N}(y) \subseteq \mathfrak{q}$, so $\mathrm{N}(y) \subseteq \mathfrak{q} \cap A=\mathfrak{p}$. Since $\mathfrak{p} \subseteq \mathfrak{q}$ and $\mathrm{N}(a)=a^{n}(n=[L: k]$, as usual $), \mathrm{N}(\mathfrak{q})$ contains a^{n} for every $a \in \mathfrak{p}$. So $N(\mathfrak{q})$ contains \mathfrak{p}^{n}. Thus, it cannot be contained in any maximal ideal other than \mathfrak{p}, since \mathfrak{p}^{2} is prime to any maximal ideal other than \mathfrak{p}, and our proof is complete.

Lemma 15.7. Suppose that L is Galois over K. Let \mathfrak{q} be maximal in B with $\mathfrak{q} \cap A=\mathfrak{p}$ and let $f=[B / \mathfrak{q}: A / \mathfrak{p}]$. Then $\mathrm{N}(\mathfrak{q})=\mathfrak{p}^{f}$.
Proof. Since we know that $N(\mathfrak{q})$ is a power of \mathfrak{p}, it suffices to show that $A_{\mathfrak{p}} \mathrm{N}(\mathfrak{q})=\mathfrak{p}^{f}$, which is equivalent to showing that $\mathrm{N}\left(S^{-1} B \mathfrak{q}\right)=\mathfrak{p}^{f}$, where $S=A \backslash \mathfrak{p}$. We write

$$
\mathrm{N}(\mathfrak{q})=\mathfrak{p}^{\ell}
$$

So it suffices to show this for $A=A_{\mathfrak{p}}$ and $B=S^{-1} B$. In this case, B is a principal ideal domain and we may write $\mathfrak{q}=B \pi$. Now, letting $G=\operatorname{Gal}(L / K)$, we see that

$$
B \mathrm{~N}(\mathfrak{q})=B \mathrm{~N}(B \pi)=\prod_{\sigma \in G} B \sigma(\pi)=B \prod_{\sigma \in G} \sigma(\mathfrak{q}) .
$$

Letting $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{m}$ be the distinct conjugates of \mathfrak{q}, i.e. all the primes of B lying over \mathfrak{p}, we see that

$$
B \mathrm{~N}(\mathfrak{q})=\mathfrak{q}_{1}^{t} \cdots \mathfrak{q}_{m}^{t},
$$

where $t=n / m$. (since n is the size of G). Now, we know that the relative degrees $\left[B / \mathfrak{q}_{i}: A / \mathfrak{p}\right]$ are all equal to some fixed number f, and likewise all the ramification indices are equal to some fixed e, so we have

$$
B \mathfrak{p}=\mathfrak{q}_{1}^{e} \cdots \mathfrak{q}_{m}^{e}
$$

with $m e f=n$, so $e=n / m f$. Thus, $t=f$, and our proof is complete.

Theorem 15.8. Let L be any finite separable extension of K and let A and B be a usual. Let \mathfrak{q} be maximal in B with $\mathfrak{q} \cap A=\mathfrak{p}$ and let $f=\left[B / \mathfrak{q}_{i}: A / \mathfrak{p}\right]=f$. Then $\mathrm{N}(\mathfrak{q})=\mathfrak{p}^{f}$.

Proof. Let M be the Galois closure of L over K. Let R be the integral closure of B in M, which is also the integral closure of A in M. Let \mathfrak{m} be a maximal ideal of R with $\mathfrak{m} \cap B=\mathfrak{q}$. From the previous Lemma,
we know that $\mathrm{N}_{M / L}(\mathfrak{m})=\mathfrak{q}^{[R / \mathfrak{m}: B / \mathfrak{q}]}$. By the previous Lemma and transitivity of the norm, we know that

$$
\mathrm{N}_{L / K}\left(\mathfrak{q}^{[R / \mathfrak{m}: B / \mathfrak{q}]}\right)=\mathrm{N}_{L / K}\left(\mathrm{~N}_{M / L}(\mathfrak{m})\right)=\mathrm{N}_{M / K}(\mathfrak{m})=\mathfrak{p}^{[R / \mathfrak{m}: A / \mathfrak{p}]}
$$

Thus

$$
\mathrm{N}_{L / K}(\mathfrak{q})=\mathfrak{p}^{\frac{[R / \mathrm{m}: A / \mathrm{A}]}{R / \mathrm{m}: B / q]}}=\mathfrak{p}^{f},
$$

where $f=[B / \mathfrak{q}: A / \mathfrak{p}]$.
Now, a quick beginning to cyclotomic fields. All of this is over \mathbb{Q}. We will use the following notation a lot: ξ_{m} is called a primitive root of unity if $\xi^{m}=1$ and $\xi^{n} \neq 1$ for all $1 \leq n<m$.

We let $\Phi(x)$ denote the polynomial $\left(x^{p}-1\right) /(x-1)$. It is easily seen that $\Phi(x+1)$ is Eisenstein and therefore irreducible. More on this next time.

