
Math 430 Tom Tucker
NOTES FROM CLASS 10/25

We will want to work with norms of ideals in a bit. There is one more
thing to prove about norms first. First recall a lemma from last time.

Lemma 15.1. Let L be a separable (not necessarily Galois) field ex-
tension of K of degree n, let M be the Galois closure of L over K, and
let G = Gal(M/L). Let HL be the subgroup of G that acts trivially on
L and let H\G be a complete set of left coset representatives for G over
H. Then, for any y ∈ L, we have

TL/K(y) =
∑

σ∈H\G

σ(y)

and
NL/K(y) =

∏
σ∈H\G

σ(y)

Proposition 15.2. Let K ⊆ E ⊆ L be finite seprable extension of K.
Then, for any y ∈ L, we have

NL/K(y) = NE/K(NL/E(y)).

Proof. Let M be a Galois extension of K that contains L and let G =
Gal(M/K). Let HE and HL be the subgroups of G that act identically
on E and L respectively. Note that HE is the Galois group for M over
E. Let τ1, . . . , τs represent the cosets HE\G and γ1, . . . , γt represent
the cosets HL\HE, then the τiγj represent the cosets HL\G. Therefore,

NL/K(y) =
∏
i,j

(τiγj)(y) =
s∏
i=1

τi(
t∏

j=1

γj(y)) = NE/K(NL/E(y)).

�

One more thing to prove before getting to norms of ideals.

Proposition 15.3. Let B be a Dedekind domain with finitely many
maximal ideals p. Then B is a principal ideal domain.

Proof. It will suffice to show that every maximal ideal p of B is prin-
cipal. Let p be a maximal ideal of B and let q1, . . . , qm be the other
maximal ideals of B and let

I = q1 · · · qm.
Then p2 + I = 1. Since p 6= p2 (by unique factorization), there is some
a ∈ p \ p2. By Chinese Remainder Theorem, we may choose γ such
that γ is congruent to 1 modulo I and congruent to a modulo p2. Then
the only possible factorization of (γ) is (γ) = p. �
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Norms of ideals. Back on our usual set-up A Dedekind with field
of fractions K, L a finite seprable extension of K of degree n, B the
integral closure of A in L. We’ll also want A/p to be perfect for every
maximal ideal p. We have already defined the norm NL/K : L −→ K;
it sends B to A (since all the coefficients of the minimal polynomial of
an integral element are integral). When it is clear what field we are
working over we will omit the L/K subscript.

Definition 15.4. For any ideal I ⊂ B, we define the ideal N(I) to be
the A-ideal generated by all N(x) for x ∈ I.

Properties of the norm (8.1 on p. 42)

Proposition 15.5. The norm map has the following properties

(1) N(By) = AN(y) for any y ∈ B.
(2) If S ⊂ A is a multiplicative subset not containing 0, and I is an

ideal of B, then N(S−1BI) = S−1AN(I).
(3) N(IJ) = N(I) N(J), for any ideals I and J of B.

Proof. 1. We know the norm map is multiplicative since the determi-
nant of matrices is. Since N(B) ⊂ A, it follows that N(By) ⊂ AN(y).
Also, N(y) ⊂ N(By), so AN(y) ⊂ N(By), so N(By) = AN(y).

2. For any y ∈ S−1BI, we can write y = x/s for x ∈ I and s ∈
S. Then N(y) = N(x/s) = N(x)/sn ∈ S−1AN(I), so N(S−1BI) ⊆
S−1AN(I). On the other hand, S−1AN(I) is generated as an S−1A-
module by N(I), and N(I) ⊆ N(S−1BI), so we have S−1AN(I) ⊆
N(S−1BI).

3. This is surprisingly difficult, since we the norm is not additive. On
the other hand, since any ideal of A is determined by its localizations
at all the maximal p of A, it will suffice to show that Ap N(I)Ap N(J) =
Ap N(IJ). From 2, this means we only have to show that

N(S−1BI) N(S−1BJ) = N(S−1BIJ).

Since there are finitely many primes q ∈ B such that q ∩ A = p, the
ring S−1B has finitely many primes, hence is a principal ideal domain.
So we write S−1Bx = S−1BI and S−1By = S−1BJ . Then we have

N(S−1BI) N(S−1BJ) = N(S−1Bx) N(S−1By)

= N(S−1Bxy) = N(S−1BIJ),

and we are done. �

Now, we want to figure out what the norm of a prime ideal in B is.
We begin with a simple observation.
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Lemma 15.6. Let q ∩ A = p for q a maximal ideal of B. Then N(q)
is a power of p.

Proof. First of all, we know that N(q) cannot be all of A since writing
N(y) is a power of y1 · · · ym where the yi are the conjugates of y, one of
which is y itself. Thus N(y) ⊆ q, so N(y) ⊆ q∩A = p. Since p ⊆ q and
N(a) = an (n = [L : k], as usual), N(q) contains an for every a ∈ p. So
N(q) contains pn. Thus, it cannot be contained in any maximal ideal
other than p, since p2 is prime to any maximal ideal other than p, and
our proof is complete. �

Lemma 15.7. Suppose that L is Galois over K. Let q be maximal in
B with q ∩ A = p and let f = [B/q : A/p]. Then N(q) = pf .

Proof. Since we know that N(q) is a power of p, it suffices to show that
Ap N(q) = pf , which is equivalent to showing that N(S−1Bq) = pf ,
where S = A \ p. We write

N(q) = p`.

So it suffices to show this for A = Ap and B = S−1B. In this case, B
is a principal ideal domain and we may write q = Bπ. Now, letting
G = Gal(L/K), we see that

BN(q) = BN(Bπ) =
∏
σ∈G

Bσ(π) = B
∏
σ∈G

σ(q).

Letting q1, . . . , qm be the distinct conjugates of q, i.e. all the primes of
B lying over p, we see that

BN(q) = qt1 · · · qtm,
where t = n/m. (since n is the size of G). Now, we know that the
relative degrees [B/qi : A/p] are all equal to some fixed number f , and
likewise all the ramification indices are equal to some fixed e, so we
have

Bp = qe1 · · · qem,
with mef = n, so e = n/mf . Thus, t = f , and our proof is complete.

�

Theorem 15.8. Let L be any finite separable extension of K and let
A and B be a usual. Let q be maximal in B with q ∩ A = p and let
f = [B/qi : A/p] = f . Then N(q) = pf .

Proof. Let M be the Galois closure of L over K. Let R be the integral
closure of B in M , which is also the integral closure of A in M . Let m
be a maximal ideal of R with m ∩ B = q. From the previous Lemma,
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we know that NM/L(m) = q[R/m:B/q]. By the previous Lemma and
transitivity of the norm, we know that

NL/K(q[R/m:B/q]) = NL/K(NM/L(m)) = NM/K(m) = p[R/m:A/p].

Thus

NL/K(q) = p
[R/m:A/p]
[R/m:B/q] = pf ,

where f = [B/q : A/p]. �

Now, a quick beginning to cyclotomic fields. All of this is over Q.
We will use the following notation a lot: ξm is called a primitive root
of unity if ξm = 1 and ξn 6= 1 for all 1 ≤ n < m.

We let Φ(x) denote the polynomial (xp− 1)/(x− 1). It is easily seen
that Φ(x+1) is Eisenstein and therefore irreducible. More on this next
time.


