Math 430
Notes from Class 10/18
Definition 13.1. The discriminant $\Delta\left(B^{\prime} / A\right)$ is defined to be ideal generated by the determinants of all matrices $M=\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right]$ as w_{1}, \ldots, w_{n} range over all bases for L consisting of elements contained in B^{\prime}.

Example 13.2. The reason that we need to talk about the discriminant relative to A is that B^{\prime} could be defined over two different Dedekind domains. For example, we could take $B^{\prime}=\mathbb{Z}[\sqrt{3}, \sqrt{7}]$ which is an extension of \mathbb{Z} as well as of $\mathbb{Z}[\sqrt{3}]$ and $\mathbb{Z}[\sqrt{7}]$. The various discriminants $\Delta\left(B^{\prime} / \mathbb{Z}\right), \Delta\left(B^{\prime} / \mathbb{Z}[\sqrt{3}]\right)$, and $\Delta\left(B^{\prime} / \mathbb{Z}[\sqrt{7}]\right)$ may all be different.

One nice fact about discriminants is that they can be computed locally. We have the following.

Proposition 13.3. With notation as throughout lecture, let S be a multiplicative subset of A not containing 0 . Then

$$
S^{-1} A \Delta\left(B^{\prime} / A\right)=\Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)
$$

Proof. Since any basis with elements in B^{\prime} is also in $S^{-1} B^{\prime}$, it is obvious that

$$
S^{-1} A \Delta\left(B^{\prime} / A\right) \subseteq \Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)
$$

Similarly, given a basis v_{1}, \ldots, v_{n} for L / K contained in $S^{-1} B^{\prime}$, see that the basis w_{1}, \ldots, w_{n} where $w_{i}=s v_{i}$ is contained in B^{\prime} for some $s \in S$. Now

$$
\operatorname{det}\left(T_{L / K}\left(w_{i} w_{j}\right)\right)=s^{n} \operatorname{det}\left(T_{L / K}\left(v_{i} v_{j}\right)\right)
$$

so $S^{-1} A \Delta\left(B^{\prime} / A\right) \supseteq \Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)$.
We know that $\Delta\left(B^{\prime} / A\right)$ is an ideal I. If $I=\prod_{i=1}^{m} \mathfrak{p}_{i}^{e_{i}}$, then $A_{\mathfrak{p}_{i}} I=\mathfrak{p}_{i}^{e_{i}}$, so to figure out what $\Delta\left(B^{\prime} / A\right)$ is, all we have to do is figure out what $\Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)$ is for $S=A \backslash \mathfrak{p}$.

The trace also behaves well with respect to reduction. Recall that whenever we have a finite integral extension of a field, we can define a trace. We'll apply that with the field $k=A / \mathfrak{p}$ for a maximal ideal \mathfrak{p} of A. Since this computation is local, we will work over $A_{\mathfrak{p}}$ (which is a DVR). This is just for simplicity, since we have $B^{\prime} / \mathfrak{p} B^{\prime} \cong$ $S^{-1} B^{\prime} / S^{-1} B^{\prime} \mathfrak{p}$, so it isn't hard to see that the local computation gives the computation over A.

Lemma 13.4. Let A and B^{\prime} be as usual. Let \mathfrak{p} be a maximal prime of A, let $k=A / \mathfrak{p}$, let $S=A \backslash \mathfrak{p}$, and let $\phi: S^{-1} B^{\prime} \longrightarrow S^{-1} B^{\prime} / S^{-1} B^{\prime} \mathfrak{p}$ be
the usual quotient map. Let us denote $S^{-1} B^{\prime} / S^{-1} B^{\prime} \mathfrak{p}$ as C. Then for any $y \in S^{-1} B^{\prime}$, we have $\phi\left(T_{L / K}(y)\right)=\mathrm{T}_{C / k}(\phi(y))$.

Proof. Let $\bar{w}_{1}, \ldots, \bar{w}_{n}$ be a basis for C over k and pick $w_{i} \in B^{\prime}$ such that $\phi\left(w_{i}\right)=\bar{w}_{i}$. Since the \bar{w}_{i} are linearly independent, the w_{i} must be as well. To see this, suppose that $\sum_{i=1}^{n} a_{i} w_{i}=0$ for $a_{i} \in S^{-1} B^{\prime}$ (remember that everything in L is x / a for $x \in B^{\prime}$ and $a \in A$). By dividing through by a power of a generator π for $A_{\mathfrak{p}} \mathfrak{p}$, we can assume that not all of the a_{i} are in $S^{-1} B^{\prime} \mathfrak{p}$. This means then that $\sum_{i=1}^{n} \phi\left(a_{i}\right) \bar{w}_{i}=0$, with some $\phi\left(a_{i}\right) \neq 0$, which is impossible. Now, we are essentially done, since we can define the trace of any $y \in B^{\prime}$ with respect to this basis. We have

$$
y w_{i}=\sum_{j=1}^{n} m_{i j} w_{j}
$$

with $m_{i j} \in A$, and

$$
\phi(y) \bar{w}_{i}=\sum_{j=1}^{n} \phi\left(m_{i j}\right) \bar{w}_{j} .
$$

Hence,

$$
\phi\left(\mathrm{T}_{L / K}(y)\right)=\sum_{i=1}^{n} \phi\left(m_{i i}\right)=\mathrm{T}_{C / k}(\phi(y)) .
$$

When B is the integral closure of A in L, and \mathfrak{p} is maximal in A, we can write

$$
\mathfrak{p} B=\mathfrak{q}_{1}^{e_{1}} \cdots \mathfrak{q}_{m}^{e_{m}} .
$$

If $e_{i}>1$ for some i, then we say that \mathfrak{p} ramifies in B. When $B=A[\alpha]$, we know that \mathfrak{p} ramifies in B if and only if $\Delta(B / A) \subseteq \mathfrak{p}$. That is true more generally.

Theorem 13.5. Let B be the integral closure of A in L and let \mathfrak{p} be maximal in A. Then $\Delta(B / A) \subseteq \mathfrak{p}$ if and only if \mathfrak{p} ramifies in B or B / \mathfrak{q} is inseparable over A / \mathfrak{p} for some prime \mathfrak{q} such that $\mathfrak{q} \cap A=\mathfrak{p}$.

Proof. It will suffice to prove this locally, that is to say, it will suffice to replace A with $A_{\mathfrak{p}}$ and B with B where $S=A \backslash \mathfrak{p}$. As in the previous Lemma, we write $k=A / \mathfrak{p}$ and $C=B / \mathfrak{p} B$ and let

$$
\phi: B \longrightarrow B / \mathfrak{p} B
$$

Also, as in that Lemma let $\bar{w}_{1}, \ldots, \bar{w}_{n}$ be a basis for C over k and pick $w_{i} \in B$ such that $\phi\left(w_{i}\right)=\bar{w}_{i}$. It is clear then that

$$
A_{\mathfrak{p}} w_{1}+\ldots A_{\mathfrak{p}} w_{n}+\mathfrak{p} B=B
$$

so by Nakayama's Lemma, the w_{i} generate B as an $A_{\mathfrak{p}}$ module. From the Lemma above we have $T_{L / K}\left(w_{i} w_{j}\right)=T_{C / k}\left(\bar{w}_{i} \bar{w}_{j}\right)$, so the matrix $M=\left[\mathrm{T}_{C / k}\left(\bar{w}_{i} \bar{w}_{j}\right)\right]$ represents the form $(x, y)=\mathrm{T}_{C / k}(x y)$ on C / k. Let us now decompose C / k as ring, we have

$$
C \cong B / \mathfrak{p} B \cong \bigoplus_{i=1}^{m} B / \mathfrak{q}_{i}^{e_{i}}
$$

where

$$
\mathfrak{p} B=\mathfrak{q}_{1}^{e_{1}} \cdots \mathfrak{q}_{m}^{e_{m}} .
$$

If $e_{i}>1$, then any element $z \in C$ such that $z=0$ in every coordinate but i and has i-th coordinate in \mathfrak{q}_{i}, has the property that $z^{e_{i}}=0$. Furthermore the set of such z forms an ideal. This means $T_{C / k}(z x)=0$ for all $x \in C$, by your homework. Thus, the pairing

$$
(x, y)=T_{C / k}(x y)
$$

is degenerate, which means that $\Delta(B / A)$ is 0 zero modulo \mathfrak{p}.
If $e_{i}=1$ for every i, then

$$
C \cong B / \mathfrak{q}_{1} \oplus \cdots \oplus B / \mathfrak{q}_{m}
$$

The trace form $(x, y)=\mathrm{T}_{C / k}(x y)$ decomposes into a sum of forms

$$
(a, b)=\mathrm{T}_{\left(B / \mathfrak{q}_{i}\right) / k}(a b) .
$$

Now, $(a, b)=\mathrm{T}_{\left(B / \mathfrak{q}_{i}\right) / k}(a b)$ is nondegenerate if and only if B / \mathfrak{q}_{i} is separable over k. Since a direct sum of forms is nondegenerate if and only if each form is nondegenerate, our proof is complete.

Here is a simple and easy to prove fact comparing the discriminants of different subrings B and B^{\prime} of L

Proposition 13.6. Let $B^{\prime} \subset B$ where B and B^{\prime} are as usual (we will usually take B to the be the integral closure of A in L). Suppose that B has a basis v_{1}, \ldots, v_{n} as an A-module and that B^{\prime} has a basis w_{1}, \ldots, w_{n} as an A-module. Writing

$$
w_{i}=\sum_{\ell=1}^{n} n_{i \ell} a_{\ell},
$$

and letting N be the matrix $\left[n_{i \ell}\right]$, we have

$$
\begin{equation*}
\operatorname{det}\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right]=(\operatorname{det} N)^{2} \operatorname{det}\left[\mathrm{~T}_{L / K}\left(v_{i} v_{j}\right)\right] . \tag{1}
\end{equation*}
$$

Proof. Now,

$$
\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)=\sum_{\ell=1}^{n} \sum_{k=1}^{n} n_{i \ell} n_{j k} \mathrm{~T}_{L / K}\left(v_{i} v_{j}\right)
$$

A bit of linear algebra shows that this is exactly the same as the $i j$-th coordinate of the matrix $N^{t} M N$ where $M=\left[\mathrm{T}_{L / K}\left(v_{i} v_{j}\right)\right]$. Equation 1 follows. I gave an easier explanation on the board.
Corollary 13.7. Let $B^{\prime} \subset B$ with B^{\prime} and B as usual. Then

$$
\Delta(B / A)\left(\Delta\left(B^{\prime} / A\right)\right)^{-1}=I^{2}
$$

for some ideal I in A.
Proof. Recall that we can compute discriminants locally, and that a nonzero ideal J if and only if for every maximal \mathfrak{p} in A, we have $A_{\mathfrak{p}} J=$ $A_{\mathfrak{p}} \mathfrak{p}^{2 e_{\mathfrak{p}}}$ for some integer $e_{\mathfrak{p}}$. At each \mathfrak{p}, taking $S=A \backslash \mathfrak{p}$ the $A_{\mathfrak{p}}$-modules $S^{-1} B$ and $S^{-1} B^{\prime}$ are free $A_{\mathfrak{p}}$-modules, so we can apply the previous Proposition to $\Delta\left(S^{-1} B / A_{\mathfrak{p}}\right)$ and $\Delta\left(S^{-1} B^{\prime} / A_{\mathfrak{p}}\right)$. Since $\operatorname{det} N \in A_{\mathfrak{p}}$, $(\operatorname{det} N)^{2}$ is an even power of \mathfrak{p} (possibly 0).

