Math 430
Notes from Class 10/13
We will use the following (proof done earlier) to calculate rings of integers.

Recall the following two propositions
Proposition 12.1. Let A be Dedekind. Let \mathfrak{p} be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction $\bmod \mathfrak{p}$ of G, which we call \bar{G} factors as

$$
\bar{G}=\bar{g}_{1}^{r_{1}} \cdots \bar{g}_{m}^{r_{m}}
$$

with the \bar{g}_{i} distinct, irreducible, and monic. Then choosing monic $g_{i} \in$ $A[x]$ such that $g_{i} \equiv \bar{g}_{i}(\bmod \mathfrak{p})$, we have
(1) $\mathfrak{q}_{i}=A[\alpha]\left(g_{i}(\alpha), \mathfrak{p}\right)$ is a prime for each i; and
(2) r_{i} is the smallest positive integer such that

$$
R_{\mathfrak{q}_{i}}\left(\mathfrak{q}_{i}\right)^{r_{i}} \subseteq R_{\mathfrak{q}_{i}} \mathfrak{p}
$$

Proposition 12.2. With notation as above, if $r_{i}=1$ then the prime $A[\alpha]\left(\mathfrak{p}, g_{i}(\alpha)\right)$ is invertible. If $r_{i}>1$, then \mathfrak{q}_{i} is not invertible if and only if all the coefficients of the remainder $\bmod g_{i}$ of G are in \mathfrak{p}^{2}, i.e. if writing

$$
G(x)=q(x) g_{i}(x)+r(x)
$$

we have $r(x) \in \mathfrak{p}^{2}[x]$.
Now back to discriminants It is easy to see that $\Delta(F) \in K$. To see this, note that if the roots of F are distinct, then $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is Galois over K and $\prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)$ is certainly invariant under the Galois group of $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ over K. It follows that $\Delta(F) \in K$. To see this, note that if the roots of F are distinct, then $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is Galois over K and $\prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)$ is certainly invariant under the Galois group of $K\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ over K.

Here are some other, often easier ways of writing the discriminant... Let F be monic over K. Then

$$
\Delta(F)=(-1)^{n(n-1) / 2} \prod_{i=1}^{n} F^{\prime}\left(\alpha_{i}\right)
$$

This is quite easy to see, since if $F(X)=\prod_{i=1}^{n}\left(X-\alpha_{i}\right)$, then by the product rule, $F^{\prime}(X)=\sum_{i=1}^{m} \prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)$, so $F^{\prime}\left(\alpha_{i}\right)=\prod_{j \neq i}\left(\alpha_{i}-\alpha_{j}\right)$ and $\prod_{i=1}^{n} F^{\prime}\left(\alpha_{i}\right)=\prod_{i \neq j}\left(\alpha_{i}-\alpha_{j}\right)$.

When F is monic and irreducible with and $L=K(\alpha)$ is separable for a root α of F, this yields

$$
\Delta(F)=(-1)^{n(n-1) / 2} \mathrm{~N}_{L / K}\left(F^{\prime}(\alpha)\right)
$$

Since F^{\prime} has coefficients in K, we see that if $\alpha_{1}, \ldots, \alpha_{n}$ are the conjugates of α, then $\mathrm{N}_{L / K}\left(F^{\prime}(\alpha)\right)=\prod_{i=1}^{m} F^{\prime}\left(\alpha_{i}\right)$ and we are done.

Recall this key fact from last time:
Corollary 12.3. Let A be a Dedekind domain with field of fractions K and let \mathfrak{p} be a maximal prime in A and suppose that $A / \mathfrak{p}=k$ is a perfect field. Then the reduction \bar{F} of F modulo \mathfrak{p} has distinct roots in the algebraic closure of A / \mathfrak{p} if and only if $\Delta(F) \notin \mathfrak{p}$.

Let's do some examples of Dedekind domains today. We'll start with $\mathbb{Q}(\sqrt[3]{5})$, which we will show is Dedekind. First of all, we'll calculate the discriminant of $\mathbb{Z}[\sqrt[3]{5}]$. We see that the minimal polynomial of $\sqrt[3]{5}$ is $F(X)=X^{3}-5$, which has derivative $3 X^{2}$, so

$$
\Delta(F)=\mathrm{N}_{\mathbb{Q}(\sqrt[3]{5}) / \mathbb{Q}}\left(F^{\prime}(\sqrt[3]{5})\right)=\mathrm{N}_{\mathbb{Q}(\sqrt[3]{5}) / \mathbb{Q}}\left(3 \sqrt[3]{5}^{2}\right)=3^{3} 5^{2}
$$

so we know that any non-invertible primes must lie over 3 or 5 , since a prime $\left(\mathcal{Q}, g_{i}(\sqrt[3]{5})\right)$ can fail to be invertible if and only if $g^{2} \mid F$ $(\bmod p \mathbb{Z})$ where $\mathcal{Q} \cap \mathbb{Z}=p \mathbb{Z}$.

Let's factor over 5 and see what happens... We get $X^{3}-5 \equiv X^{3}$ $(\bmod 5)$, so we get the prime $(\sqrt[3]{5}, 5)$ which is certainly generated by $\sqrt[3]{5}$ and hence is principal and thus invertible. Over 3, things are a bit more complicated. We factor as $X^{3}-5 \equiv(X-5)^{3}(\bmod 3)$, so we have the ideal $(\sqrt[3]{5}-5,3)$, which we denote as \mathcal{Q}. How can we tell whether or not this is locally principal? Let's recall a bit about the norm.

One way to check if an integer n is in the ideal generated by an element β in an integral extension ring is to see if n is the ideal generated by the norm of β. Let's apply this idea to the above we see that
$\mathrm{N}_{\mathbb{Q}(\sqrt[3]{5}) / \mathbb{Q}}(\sqrt[3]{5}-5)=(1-\sqrt[3]{5})\left(1+\sqrt[3]{5}+\sqrt[3]{5}^{2}\right)=5-125=-120=(-40) \cdot 3$.

Since -40 is unit in $\mathbb{Z}[\sqrt[3]{5}]_{\mathcal{Q}}$, it follows that

$$
\mathbb{Z}[\sqrt[3]{5}]_{\mathcal{Q}}(\sqrt[3]{5}-5)=\mathbb{Z}[\sqrt[3]{5}]_{\mathcal{Q}} \mathcal{Q}
$$

so \mathcal{Q} is locally principal, as desired. Thus, we see that $\mathbb{Z}[\sqrt[3]{5}]$ is a Dedekind domain as desired.

What about $\mathbb{Z}[\sqrt[3]{19}]$? Calculating the discriminant yields $3^{3} \cdot 19^{2}$. Again, it is easy to see that the prime lying over 19 is just $\sqrt[3]{19}$. But the prime lying over 3 is trickier. We see that the only prime $\mathbb{Q} \in \mathbb{Z}[\sqrt[3]{19}]$ such that $\mathbb{Q} \cap \mathbb{Z}=3 \mathbb{Z}$ is the prime $(\sqrt[3]{19}-19,3)$. Modulo 3 we have

$$
(X-19)^{3}=X-19 \quad(\bmod 3)
$$

From some work from last time, $(\sqrt[3]{19}-19,3)$ is invertible if and only if the remainder of $X^{3}-19$ modulo $X-19$ is divisble by 3^{2}. We see that

$$
\left(X^{3}-19\right)=(X-19)\left(X^{2}+19 X+19^{2}\right)+19^{3}-19
$$

Since

$$
19^{3}-19 \equiv-18 \quad(\bmod 9) \equiv 0 \quad(\bmod 19)
$$

we see that $(\sqrt[3]{19}-19,3)$ is not invertible.
In fact, we can generalize this to show that if a is a square-free integer and p is a prime, then $\mathbb{Z}[\sqrt[p]{a}]$ is Dedekind if and only if $a^{p}-a \not \equiv 0$ $\left(\bmod p^{2}\right)$. This will be on your homework.

For an element $\alpha \notin A$ that is integral over A, we define the discriminant $\Delta(\alpha / A)$ to be $\Delta(F)$ where F is the minimal monic for α over A. We also define the discriminant $\Delta(A[\alpha])$ to be $\Delta(A[\alpha])$.

Given a Dedekind domain A with field of fractions K and a finite separable extension L of K of degree n we want to be able to define a discriminant $\Delta\left(B^{\prime} / A\right)$ of any subring B^{\prime} of L. This will involve working with a basis for L over K that consists entirely of elements contained in B^{\prime}

A bit more on subrings of the integral closure.
Proposition 12.4. Let A be an integral domain with field of fractions K and let L be a finite extension of K. Suppose that $B^{\prime} \subset L$ has field of fractions L and is integral over A. Then, for every element $y \in L$ there exists $a \in A$ such that ay $\in B^{\prime}$.

Proof. Let $y=\alpha / \beta$ for $\alpha, \beta \in B^{\prime}$ with $\alpha, \beta \neq 0$. We will show that $\alpha / \beta=b / a$ for $b \in B^{\prime}$ and $a \in A$. We know that the ideal $B^{\prime} \beta$ has nonzero intersection with A by taking the constant term of the minimal monic polynomial for β over A. Thus, we can write $\gamma \beta=a$ for some nonzero $a \in A$. Then $1 / \beta=\gamma / a$, so $\alpha / \beta=\alpha \gamma / a$ and we are done, since this means that $a(\alpha / \beta) \in B^{\prime}$.

For the rest of class, A is Dedekind with field of fractions K, the field L is a finite separable extension of K of degree n, and B^{\prime} is a subring of L that is integral over A. We will also assume that for every maximal ideal \mathfrak{p} of A, the residue field A / \mathfrak{p} is perfect.

We'll begin with a definition that works when B^{\prime} is a free A-module, i.e. when B^{\prime} is isomorphic as an A-module to A^{n}, where $n=[L: K]$. In this case, we choose a basis w_{1}, \ldots, w_{n} for B^{\prime} over A and we let M be the matrix $\left[m_{i j}\right]$ where $m_{i j}=\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)$. Then we define

$$
\begin{equation*}
\Delta\left(B^{\prime}\right)=\operatorname{det} M \tag{1}
\end{equation*}
$$

How do we know that this agrees with our earlier definition in the case $B^{\prime}=A[\alpha]$? In fact, it more or less follows from some earlier work we did. Recall that in this case, we can choose the basis $1, \alpha, \ldots, \alpha^{n-1}$, so that $\left[m_{i j}\right]=\left[\mathrm{T}_{L / K}\left(\alpha^{i+j-2}\right)\right]$, which we recall is equal to

$$
\sum_{\ell=1}^{n} \alpha_{\ell}^{i+j-2}
$$

As we saw earlier, letting N be the van der Monde matrix

$$
\left(\begin{array}{lll}
1 & \cdots & 1 \\
\alpha_{1} & \cdots & \alpha_{n} \\
\cdots & \cdots & \cdots \\
\alpha_{1}^{n-1} & \cdots & \alpha_{n}^{n-1}
\end{array}\right)
$$

we have $N N^{t}=M$, so

$$
\operatorname{det} M=(\operatorname{det} N)^{2}=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

which is the same as $\Delta(\alpha)$, so our definitions agree.
Not all B^{\prime} will be free A-modules, however, so we have the more general definition below.
Definition 12.5. With notation as above $\Delta\left(B^{\prime} / A\right)$ is defined to be ideal generated by the determinants of all matrices $M=\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right]$ as w_{1}, \ldots, w_{n} range over all bases for L consisting of elements contained in B^{\prime}.

