Math 430
Notes from Class 10/13

We will use the following (proof done earlier) to calculate
rings of integers.
Recall the following two propositions

Proposition 12.1. Let A be Dedekind. Let p be a maximal ideal of A
and let o be an integral element of a finite separable extension of the
field of fractions of A. Suppose that G is the minimal monic for o over
A and that the reduction mod p of G, which we call G factors as

G=g gy,

with the g; distinct, irreducible, and monic. Then choosing monic g; €
Alz] such that g; = g; (mod p), we have

(1) q; = Alo(gi(«),p) is a prime for each i; and
(2) r; is the smallest positive integer such that

qu'(qi)ri C qup-

Proposition 12.2. With notation as above, if r; = 1 then the prime
Ala](p, gi(«)) is invertible. If r; > 1, then q; is not invertible if and
only if all the coefficients of the remainder mod g; of G are in p2, i.e.
if writing

G(z) = q(x)gi(x) + r(w),
we have r(zx) € p*[z].

Now back to discriminants It is easy to see that A(F) € K. To
see this, note that if the roots of F' are distinct, then K(ay,...,q,) is
Galois over K and [](o; — o) is certainly invariant under the Galois

i#]
group of K(ay,...,a,) over K. It follows that A(F') € K. To see this,
note that if the roots of F' are distinct, then K(aq,...,a,) is Galois
over K and [](a; — «;) is certainly invariant under the Galois group
1#]

of K(ov,...,ay) over K.

Here are some other, often easier ways of writing the discriminant...

Let F' be monic over K. Then

A(F) = (—1)=1/2 ﬁF’(ai).
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This is quite easy to see, since if FI(X) = [[(X — «;), then by the

=1

product rule, F'(X) = > [[( — «;j), so F'(a;) = [[(cv — o) and
i=1iZj it
»1_[1 F’(O&i) = 1;[(0(2 - Oéj).
i= 1#]
When F' is monic and irreducible with and L = K(«) is separable
for a root a of F', this yields

A(F) = (=1)"" 2Ny (F'(a)).
Since F’ has coefficients in K, we see that if o, ..., «, are the conju-
gates of «, then Ny /x(F'(a)) = [] F'(a;) and we are done.
i=1
Recall this key fact from last time:

Corollary 12.3. Let A be a Dedekind domain with field of fractions
K and let p be a mazimal prime in A and suppose that A/p =k is a
perfect field. Then the reduction F' of F modulo p has distinct roots in
the algebraic closure of A/p if and only if A(F) ¢ p.

Let’s do some examples of Dedekind domains today. We'll start with
Q(+/5), which we will show is Dedekind. First of all, we'll calculate the
discriminant of Z[+/5]. We see that the minimal polynomial of v/5 is
F(X) = X3 — 5, which has derivative 3X?, so

2
A(F) = No(g)q(F'(V5)) = No(y5,0(3V5 ) = 35",

so we know that any non-invertible primes must lie over 3 or 5, since
a prime (Q,g;(v/5)) can fail to be invertible if and only if ¢ | F
(mod pZ) where Q NZ = pZ.

Let’s factor over 5 and see what happens... We get X3 — 5 = X3
(mod 5), so we get the prime (3/5,5) which is certainly generated by
/5 and hence is principal and thus invertible. Over 3, things are a
bit more complicated. We factor as X? — 5 = (X — 5)® (mod 3), so
we have the ideal (v/5 — 5, 3), which we denote as Q. How can we tell
whether or not this is locally principal? Let’s recall a bit about the
norm.

One way to check if an integer n is in the ideal generated by an ele-
ment [§ in an integral extension ring is to see if n is the ideal generated
by the norm of . Let’s apply this idea to the above we see that

No(v5,0(V5-5) = (1-V/B)(14+V/5+V/5) = 5-125 = —120 = (~40) 3.



Since —40 is unit in Z[v/5]g, it follows that
Z[V5lo(V5 = 5) = Z[V5]0Q,

so Q is locally principal, as desired. Thus, we see that Z[V/5] is a
Dedekind domain as desired.

What about Z[v/19]? Calculating the discriminant yields 3% - 19%.
Again, it is easy to see that the prime lying over 19 is just v/19. But the
prime lying over 3 is trickier. We see that the only prime Q € Z[+/19]
such that Q N Z = 3Z is the prime (/19 — 19, 3). Modulo 3 we have

(X =19 =X —19 (mod 3).

From some work from last time, (v/19 — 19, 3) is invertible if and only
if the remainder of X3 — 19 modulo X — 19 is divisble by 32. We see
that
(X? —19) = (X — 19)(X? + 19X + 19?) + 19° — 19.
Since
19 —19=-18 (mod 9)=0 (mod 19)

we see that (/19 — 19, 3) is not invertible.

In fact, we can generalize this to show that if a is a square-free integer
and p is a prime, then Z[/a] is Dedekind if and only if a? — a # 0
(mod p?). This will be on your homework.

For an element o ¢ A that is integral over A, we define the discrim-
inant A(a/A) to be A(F') where F is the minimal monic for a over A.
We also define the discriminant A(A[a]) to be A(Ala]).

Given a Dedekind domain A with field of fractions K and a finite
separable extension L of K of degree n we want to be able to define a
discriminant A(B’/A) of any subring B’ of L. This will involve working
with a basis for L over K that consists entirely of elements contained
in B

A bit more on subrings of the integral closure.

Proposition 12.4. Let A be an integral domain with field of fractions
K and let L be a finite extension of K. Suppose that B' C L has field
of fractions L and is integral over A. Then, for every element y € L
there exists a € A such that ay € B’.

Proof. Let y = a/p for o, 5 € B' with a, 8 # 0. We will show that
a/f = bja for b € B' and a € A. We know that the ideal B’ has
nonzero intersection with A by taking the constant term of the minimal
monic polynomial for g over A. Thus, we can write 75 = a for some
nonzero a € A. Then 1/ = v/a, so a/f = a7y/a and we are done,
since this means that a(a/f) € B'. O



For the rest of class, A is Dedekind with field of fractions K, the field
L is a finite separable extension of K of degree n, and B’ is a subring of
L that is integral over A. We will also assume that for every maximal
ideal p of A, the residue field A/p is perfect.

We'll begin with a definition that works when B’ is a free A-module,
i.e. when B’ is isomorphic as an A-module to A", where n = [L : K].

In this case, we choose a basis wy, ..., w, for B’ over A and we let M
be the matrix [m;;] where m;; = Tk (w;w;). Then we define
(1) A(B') = det M.

How do we know that this agrees with our earlier definition in the case
B’ = Ala]? In fact, it more or less follows from some earlier work we
did. Recall that in this case, we can choose the basis 1,a,...,a" !, so
that [m;;] = [Tr/x(a’*772)], which we recall is equal to

n
i+j—2
E ay .
(=1

As we saw earlier, letting N be the van der Monde matrix

1 1
(03] (7%
.« .. )
n—1 n—1
Oél an

we have NNt = M, so
det M = (det N)* = H(ai — ;)%

i<j
which is the same as A(«), so our definitions agree.

Not all B will be free A-modules, however, so we have the more
general definition below.

Definition 12.5. With notation as above A(B’/A) is defined to be
ideal generated by the determinants of all matrices M = [Tk (w;w;)]

as wy, . . ., w, range over all bases for L consisting of elements contained
in B'.



