Math 430
Notes from Class 10/04

Let’s begin with the following Lemma, the proof of which is obvious.
Lemma 11.1. Let I be an ideal in Dedekind domain. Write
I=qi o Qy
where the q; are distinct primes. Then
e; =min{m | Ry (q;)™ C Ry, 1}.

Proposition 11.2. Let A be Dedekind. Let p be a maximal ideal of A
and let o be an integral element of a finite separable extension of the
field of fractions of A. Suppose that G is the minimal monic for o over
A and that the reduction mod p of G, which we call G factors as
é - g? T g:nmv
with the g; distinct, 1rreducible, and monic. Then choosing monic g; €
Alx] such that g; = g; (mod p), we have
(1) q; = Ala(gi(),p) is a prime for each i; and
(2) r; is the smallest positive integer such that
qu(ql)rl C qup
Proof. The proof is quite simple. Note that A[a] is isomorphic to
Alz]/G(x). We work in the ring Ala]/pA[a] = Alx]/(G(x),p), which

is isomorphic to

(A/p)/(G(z)) = Z A/p)[x)/gi(=

Since g;(x) is irreducible in (A/p)|
(A/p)]

is a field, so g, is prime ideal since

Alal/aq; = (A/p)[x]/gi(x).

x|), we see that

)
2]/9:(x)

Now,
Alalq,/Aledgp = (A/p)[x]/5:(2)",
so r; is the smallest integer such that
O
Corollary 11.3. (Kummer) With notation as above, if A[a] is Dedekind,
then
Alap =y’ gy
1
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Proof. Immediate from the lemma and proposition above. U

We will also want to deal with rings that are not Dedekind domains.
Frequently, we will want to take rings of the form A[a] and try to decide
whether or not they are in fact Dedekind. Here’s a useful fact.

Proposition 11.4. With notation as above, if r; = 1 then the prime
Ala](p, gi(«)) is invertible. If r; > 1, then q; is invertible if and only
if all the coefficients of the remainder mod g; of G are in p?, i.e. if
writing

G(z) = q(x)gi(x) + r(z),
we have r(x) € p*[x].

Proof. For each j, select a monic polynomial g; € A[z] such that g; = g;
(mod p). Since

1

gi(@)"™ - gm (@)™ = f(x)  (mod p)

it is clear that

(1) gi(a)™ - gm(a)™ € p,

since « is a root of f. Furthermore, we know that for j # ¢, we must
have that ¢;(«) and g;(«) are coprime. Now, suppose that r; = 1 for
some ; let q; = A[](gi(v),p). When we localize at q;, all of the g;(«a)
for which j # i become units. Thus, (1) has the form g;(a)u € p for u
a unit, so g;(a) C A[a]p. We know that there exists a m € A such that
A, = A, since p is invertible in A. Then

A[a]m(gi(a)v p) = A[I]‘h‘ﬂ-
so q; is invertible. U

Note: In fact, it is possible to prove the following though the proof
is more difficult.

Proposition 11.5. With notation as above, if r; = 1 then the prime
Ala](p, gi(«)) is invertible. If r; > 1, then q; is invertible if and only
if all the coefficients of the remainder mod g; of G are in p?, i.e. if
writing

G(x) = q(x)gi(x) + r(z),
we have r(x) € p*[x].

How can we tell which primes we have to worry about (by this, I
mean those for which some r; is greater than 1)7 We can use something
called the discriminant of a finitely generated integral extension of rings
B over A. We will work with several formulations, all of which are
equivalent. Here’s the definition of the discriminant of a polynomial.
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Definition 11.6. Let K be a field and let I’ be the monic polynomial
F(z)=2"+a, 12" "+ +ao.

Then, writing
n

F() = [t —a
i=1
where «; are the roots of F' in some algebraic closure of K, the dis-
criminant A(F') is defined to be

A(F) = (=1)"" D2 T [ — o) = [ [ (i = oy)*.
i#] i<j

Why is this discriminant useful? Because of the following obvious

fact:
A(F) # 0 < F does not have multiple roots.

This is clear because an algebraic closure of K is certainly an integral
domain.

What happens when we reduce a polynomial modulo a maximal ideal
p in a Dedekind domain A.

Proposition 11.7. Let F' be a polynomial in a Dedekind domain A.
Let p be a prime of A and let F be the reduction of F mod p. Let F
be the reduction of F modulo p and let A(F) be the reduction of A(F)
modulo p. Then, we have A(F) = A(F).

Proof. Let F' = [, (X — «;) where the ;. Let B = Alay, -+, ).
Then there is a maximal q in B such that N A =p. Let ¢ : B —
B/cQ. Let h € (B/q)[X] be the polynomial [ (X — ¢(a;)). Now,
the i-th coefficient of h(x) is (—1)""S;y1(d(a1), ..., ¢(ay,)) where Siq
is the ¢ 4 1-st elelementary symmetric polynomial in n-variables. Since
¢ is homomorphism, (—1)"7'S; 1 (¢(aq), ..., d(ay)) is also the i-th co-
efficient of F, so F = h and it is clear that

A(h) = (=12 T [(0(0) = dlay)) = [ [ (@) = dla;)? = A(F).
i i<j
O
This has the following corollary.

Corollary 11.8. Let A be a Dedekind domain with field of fractions
K and let p be a maximal prime in A. Then the reduction F of F
modulo p has distinct roots in the algebraic closure of A/p if and only

if A(F) & p.



