Math 430

Notes from Class 10/04

Let's begin with the following Lemma, the proof of which is obvious.

Lemma 11.1. Let I be an ideal in Dedekind domain. Write

$$
I=\mathfrak{q}_1^{e_1}\cdots\mathbb{Q}_m^{e_m}
$$

where the q_i are distinct primes. Then

$$
e_i = \min\{m \mid R_{\mathfrak{q}_i}(\mathfrak{q}_i)^m \subseteq R_{\mathfrak{q}_i}I\}.
$$

Proposition 11.2. Let A be Dedekind. Let **p** be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction mod $\mathfrak p$ of G, which we call G factors as

$$
\bar{G} = \bar{g}_1^{r_1} \cdots \bar{g}_m^{r_m},
$$

with the \bar{g}_i distinct, irreducible, and monic. Then choosing monic $g_i \in$ $A[x]$ such that $g_i \equiv \bar{g}_i \pmod{\mathfrak{p}}$, we have

(1) $\mathfrak{q}_i = A[\alpha](g_i(\alpha), \mathfrak{p})$ is a prime for each i; and

 (2) r_i is the smallest positive integer such that

$$
R_{\mathfrak{q}_i}(\mathfrak{q}_i)^{r_i} \subseteq R_{\mathfrak{q}_i} \mathfrak{p}.
$$

Proof. The proof is quite simple. Note that $A[\alpha]$ is isomorphic to $A[x]/G(x)$. We work in the ring $A[\alpha]/\mathfrak{p}A[\alpha] \cong A[x]/(G(x), \mathfrak{p})$, which is isomorphic to

$$
(A/\mathfrak{p})/(\bar{G}(x)) \cong \sum_{i=1}^m (A/\mathfrak{p})[x]/\bar{g}_i(x)^{r_i}.
$$

Since $\bar{g}_i(x)$ is irreducible in $(A/\mathfrak{p})[x]$, we see that

$$
(A/\mathfrak{p})[x]/\bar{g}_i(x)
$$

is a field, so q_i is prime ideal since

$$
A[\alpha]/\mathfrak{q}_i \cong (A/\mathfrak{p})[x]/\bar{g}_i(x).
$$

Now,

$$
A[\alpha]_{\mathfrak{q}_i}/A[\alpha]_{\mathfrak{q}_i}\mathfrak{p}\cong (A/\mathfrak{p})[x]/\bar{g}_i(x)^{r_i},
$$

so r_i is the smallest integer such that

$$
g_i(x)^{r_i} \subseteq R_{\mathfrak{q}_i} \mathfrak{p}.
$$

 \Box

Corollary 11.3. (Kummer) With notation as above, if $A[\alpha]$ is Dedekind, then

$$
A[\alpha]\mathfrak{p}=\mathfrak{q}_1^{e_1}\cdots\mathfrak{q}_m^{e_m}.
$$

Proof. Immediate from the lemma and proposition above. \Box

We will also want to deal with rings that are not Dedekind domains. Frequently, we will want to take rings of the form $A[\alpha]$ and try to decide whether or not they are in fact Dedekind. Here's a useful fact.

Proposition 11.4. With notation as above, if $r_i = 1$ then the prime $A[\alpha](\mathfrak{p}, g_i(\alpha))$ is invertible. If $r_i > 1$, then \mathfrak{q}_i is invertible if and only if all the coefficients of the remainder mod g_i of G are in \mathfrak{p}^2 , i.e. if writing

$$
G(x) = q(x)g_i(x) + r(x),
$$

we have $r(x) \in \mathfrak{p}^2[x]$.

Proof. For each j, select a monic polynomial $g_i \in A[x]$ such that $g_i \equiv g_i$ (mod p). Since

$$
g_1(x)^{r_1} \cdots g_m(x)^{r_m} \equiv f(x) \pmod{\mathfrak{p}}
$$

it is clear that

2

(1)
$$
g_1(\alpha)^{r_1} \cdots g_m(\alpha)^{r_m} \in \mathfrak{p},
$$

since α is a root of f. Furthermore, we know that for $j \neq i$, we must have that $g_i(\alpha)$ and $g_j(\alpha)$ are coprime. Now, suppose that $r_i = 1$ for some *i*; let $\mathfrak{q}_i = A[\alpha](g_i(\alpha), \mathfrak{p})$. When we localize at \mathfrak{q}_i , all of the $g_j(\alpha)$ for which $j \neq i$ become units. Thus, (1) has the form $g_i(\alpha)u \in \mathfrak{p}$ for u a unit, so $g_i(\alpha) \subset A[\alpha]$ **p**. We know that there exists a $\pi \in A$ such that $A_{\mathfrak{p}} = A_{\mathfrak{p}} \pi$ since \mathfrak{p} is invertible in A. Then

$$
A[\alpha]_{\mathfrak{q}_i}(g_i(\alpha), \mathfrak{p}) = A[x]_{\mathfrak{q}_i} \pi
$$

so \mathfrak{q}_i is invertible.

Note: In fact, it is possible to prove the following though the proof is more difficult.

Proposition 11.5. With notation as above, if $r_i = 1$ then the prime $A[\alpha](\mathfrak{p}, g_i(\alpha))$ is invertible. If $r_i > 1$, then \mathfrak{q}_i is invertible if and only if all the coefficients of the remainder mod g_i of G are in \mathfrak{p}^2 , i.e. if writing

$$
G(x) = q(x)g_i(x) + r(x),
$$

we have $r(x) \in \mathfrak{p}^2[x]$.

How can we tell which primes we have to worry about (by this, I mean those for which some r_i is greater than 1)? We can use something called the discriminant of a finitely generated integral extension of rings B over A. We will work with several formulations, all of which are equivalent. Here's the definition of the discriminant of a polynomial.

Definition 11.6. Let K be a field and let F be the monic polynomial

$$
F(x) = x^{n} + a_{n-1}x^{n-1} + \cdots + a_0.
$$

Then, writing

$$
F(x) = \prod_{i=1}^{n} (x - \alpha_i)
$$

where α_i are the roots of F in some algebraic closure of K, the discriminant $\Delta(F)$ is defined to be

$$
\Delta(F) = (-1)^{n(n-1)/2} \prod_{i \neq j} (\alpha_i - \alpha_j) = \prod_{i < j} (\alpha_i - \alpha_j)^2.
$$

Why is this discriminant useful? Because of the following obvious fact:

 $\Delta(F) \neq 0 \Leftrightarrow F$ does not have multiple roots.

This is clear because an algebraic closure of K is certainly an integral domain.

What happens when we reduce a polynomial modulo a maximal ideal p in a Dedekind domain A.

Proposition 11.7. Let F be a polynomial in a Dedekind domain A. Let **p** be a prime of A and let \overline{F} be the reduction of F mod **p**. Let \overline{F} be the reduction of F modulo p and let $\overline{\Delta}(F)$ be the reduction of $\Delta(F)$ modulo p. Then, we have $\overline{\Delta}(F) = \Delta(\overline{F})$.

Proof. Let $F = \prod_{i=1}^{n} (X - \alpha_i)$ where the α_i . Let $B = A[\alpha_1, \dots, \alpha_n]$. Then there is a maximal q in B such that $\mathfrak{q} \cap A = \mathfrak{p}$. Let $\phi : B \longrightarrow$ B/cQ . Let $h \in (B/\mathfrak{q})[X]$ be the polynomial $\prod_{i=1}^{m}(X - \phi(\alpha_i))$. Now, the *i*-th coefficient of $h(x)$ is $(-1)^{n-i}S_{i+1}(\phi(\alpha_1), \ldots, \phi(\alpha_n))$ where S_{i+1} is the $i+1$ -st elelementary symmetric polynomial in *n*-variables. Since ϕ is homomorphism, $(-1)^{n-i}S_{i+1}(\phi(\alpha_1), \ldots, \phi(\alpha_n))$ is also the *i*-th coefficient of \bar{F} , so $\bar{F} = h$ and it is clear that

$$
\Delta(h) = (-1)^{n(n-1)/2} \prod_{i \neq j} (\phi(\alpha_i) - \phi(\alpha_j)) = \prod_{i < j} (\phi(\alpha_i) - \phi(\alpha_j))^2 = \overline{\Delta}(F).
$$

This has the following corollary.

Corollary 11.8. Let A be a Dedekind domain with field of fractions K and let **p** be a maximal prime in A. Then the reduction \overline{F} of F modulo **p** has distinct roots in the algebraic closure of A/\mathfrak{p} if and only *if* $\Delta(F)$ ∉ p.