Math 430

Notes from Class 10/04

Let's begin with the following Lemma, the proof of which is obvious.

Lemma 11.1. Let I be an ideal in Dedekind domain. Write

$$I = \mathfrak{q}_1^{e_1} \cdots \mathbb{Q}_m^{e_m}$$

where the q_i are distinct primes. Then

$$e_i = \min\{m \mid R_{\mathfrak{q}_i}(\mathfrak{q}_i)^m \subseteq R_{\mathfrak{q}_i}I\}.$$

Proposition 11.2. Let A be Dedekind. Let \mathfrak{p} be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction mod \mathfrak{p} of G, which we call \overline{G} factors as

$$\bar{G} = \bar{g}_1^{r_1} \cdots \bar{g}_m^{r_m}$$

with the \bar{g}_i distinct, irreducible, and monic. Then choosing monic $g_i \in A[x]$ such that $g_i \equiv \bar{g}_i \pmod{\mathfrak{p}}$, we have

(1) $\mathbf{q}_i = A[\alpha](g_i(\alpha), \mathbf{p})$ is a prime for each *i*; and

(2) r_i is the smallest positive integer such that

$$R_{\mathfrak{q}_i}(\mathfrak{q}_i)^{r_i} \subseteq R_{\mathfrak{q}_i}\mathfrak{p}.$$

Proof. The proof is quite simple. Note that $A[\alpha]$ is isomorphic to A[x]/G(x). We work in the ring $A[\alpha]/\mathfrak{p}A[\alpha] \cong A[x]/(G(x),\mathfrak{p})$, which is isomorphic to

$$(A/\mathfrak{p})/(\bar{G}(x)) \cong \sum_{i=1}^m (A/\mathfrak{p})[x]/\bar{g}_i(x)^{r_i}.$$

Since $\bar{g}_i(x)$ is irreducible in $(A/\mathfrak{p})[x]$, we see that

$$(A/\mathfrak{p})[x]/\bar{g}_i(x)$$

is a field, so \mathbf{q}_i is prime ideal since

$$A[\alpha]/\mathfrak{q}_i \cong (A/\mathfrak{p})[x]/\bar{g}_i(x).$$

Now,

$$A[\alpha]_{\mathfrak{q}_i}/A[\alpha]_{\mathfrak{q}_i}\mathfrak{p} \cong (A/\mathfrak{p})[x]/\bar{g}_i(x)^{r_i},$$

so r_i is the smallest integer such that

$$g_i(x)^{r_i} \subseteq R_{\mathfrak{q}_i}\mathfrak{p}$$

Corollary 11.3. (Kummer) With notation as above, if $A[\alpha]$ is Dedekind, then

$$A[\alpha]\mathfrak{p} = \mathfrak{q}_1^{e_1} \cdots \mathfrak{q}_m^{e_m}.$$

Proof. Immediate from the lemma and proposition above.

We will also want to deal with rings that are not Dedekind domains. Frequently, we will want to take rings of the form $A[\alpha]$ and try to decide whether or not they are in fact Dedekind. Here's a useful fact.

Proposition 11.4. With notation as above, if $r_i = 1$ then the prime $A[\alpha](\mathfrak{p}, g_i(\alpha))$ is invertible. If $r_i > 1$, then \mathfrak{q}_i is invertible if and only if all the coefficients of the remainder mod g_i of G are in \mathfrak{p}^2 , i.e. if writing

$$G(x) = q(x)g_i(x) + r(x),$$

we have $r(x) \in \mathfrak{p}^2[x]$.

Proof. For each j, select a monic polynomial $g_j \in A[x]$ such that $g_j \equiv g_j \pmod{\mathfrak{p}}$. Since

$$g_1(x)^{r_1}\cdots g_m(x)^{r_m} \equiv f(x) \pmod{\mathfrak{p}}$$

it is clear that

(1)
$$g_1(\alpha)^{r_1} \cdots g_m(\alpha)^{r_m} \in \mathfrak{p},$$

since α is a root of f. Furthermore, we know that for $j \neq i$, we must have that $g_i(\alpha)$ and $g_j(\alpha)$ are coprime. Now, suppose that $r_i = 1$ for some i; let $\mathfrak{q}_i = A[\alpha](g_i(\alpha), \mathfrak{p})$. When we localize at \mathfrak{q}_i , all of the $g_j(\alpha)$ for which $j \neq i$ become units. Thus, (1) has the form $g_i(\alpha)u \in \mathfrak{p}$ for ua unit, so $g_i(\alpha) \subset A[\alpha]\mathfrak{p}$. We know that there exists a $\pi \in A$ such that $A_{\mathfrak{p}} = A_{\mathfrak{p}}\pi$ since \mathfrak{p} is invertible in A. Then

$$A[\alpha]_{\mathfrak{q}_i}(g_i(\alpha),\mathfrak{p}) = A[x]_{\mathfrak{q}_i}\pi$$

so q_i is invertible.

Note: In fact, it is possible to prove the following though the proof is more difficult.

Proposition 11.5. With notation as above, if $r_i = 1$ then the prime $A[\alpha](\mathfrak{p}, g_i(\alpha))$ is invertible. If $r_i > 1$, then \mathfrak{q}_i is invertible if and only if all the coefficients of the remainder mod g_i of G are in \mathfrak{p}^2 , i.e. if writing

$$G(x) = q(x)g_i(x) + r(x),$$

we have $r(x) \in \mathfrak{p}^2[x]$.

How can we tell which primes we have to worry about (by this, I mean those for which some r_i is greater than 1)? We can use something called the discriminant of a finitely generated integral extension of rings B over A. We will work with several formulations, all of which are equivalent. Here's the definition of the discriminant of a polynomial.

 $\mathbf{2}$

Definition 11.6. Let K be a field and let F be the monic polynomial

$$F(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0.$$

Then, writing

$$F(x) = \prod_{i=1}^{n} (x - \alpha_i)$$

where α_i are the roots of F in some algebraic closure of K, the discriminant $\Delta(F)$ is defined to be

$$\Delta(F) = (-1)^{n(n-1)/2} \prod_{i \neq j} (\alpha_i - \alpha_j) = \prod_{i < j} (\alpha_i - \alpha_j)^2$$

Why is this discriminant useful? Because of the following obvious fact:

 $\Delta(F) \neq 0 \Leftrightarrow F$ does not have multiple roots.

This is clear because an algebraic closure of K is certainly an integral domain.

What happens when we reduce a polynomial modulo a maximal ideal \mathfrak{p} in a Dedekind domain A.

Proposition 11.7. Let F be a polynomial in a Dedekind domain A. Let \mathfrak{p} be a prime of A and let \overline{F} be the reduction of F mod \mathfrak{p} . Let \overline{F} be the reduction of F modulo \mathfrak{p} and let $\overline{\Delta}(F)$ be the reduction of $\Delta(F)$ modulo \mathfrak{p} . Then, we have $\overline{\Delta}(F) = \Delta(\overline{F})$.

Proof. Let $F = \prod_{i=1}^{n} (X - \alpha_i)$ where the α_i . Let $B = A[\alpha_1, \dots, \alpha_n]$. Then there is a maximal \mathfrak{q} in B such that $\mathfrak{q} \cap A = \mathfrak{p}$. Let $\phi : B \longrightarrow B/cQ$. Let $h \in (B/\mathfrak{q})[X]$ be the polynomial $\prod_{i=1}^{m} (X - \phi(\alpha_i))$. Now, the *i*-th coefficient of h(x) is $(-1)^{n-i}S_{i+1}(\phi(\alpha_1), \dots, \phi(\alpha_n))$ where S_{i+1} is the i+1-st elementary symmetric polynomial in *n*-variables. Since ϕ is homomorphism, $(-1)^{n-i}S_{i+1}(\phi(\alpha_1), \dots, \phi(\alpha_n))$ is also the *i*-th coefficient of \bar{F} , so $\bar{F} = h$ and it is clear that

$$\Delta(h) = (-1)^{n(n-1)/2} \prod_{i \neq j} (\phi(\alpha_i) - \phi(\alpha_j)) = \prod_{i < j} (\phi(\alpha_i) - \phi(\alpha_j))^2 = \overline{\Delta}(F).$$

This has the following corollary.

Corollary 11.8. Let A be a Dedekind domain with field of fractions K and let \mathfrak{p} be a maximal prime in A. Then the reduction \overline{F} of F modulo \mathfrak{p} has distinct roots in the algebraic closure of A/\mathfrak{p} if and only if $\Delta(F) \notin \mathfrak{p}$.