
Math 430
Notes from Class 10/04

Let’s begin with the following Lemma, the proof of which is obvious.

Lemma 11.1. Let I be an ideal in Dedekind domain. Write

I = qe11 · · ·Qem
m

where the qi are distinct primes. Then

ei = min{m | Rqi(qi)
m ⊆ RqiI}.

Proposition 11.2. Let A be Dedekind. Let p be a maximal ideal of A
and let α be an integral element of a finite separable extension of the
field of fractions of A. Suppose that G is the minimal monic for α over
A and that the reduction mod p of G, which we call Ḡ factors as

Ḡ = ḡr11 · · · ḡrmm ,

with the ḡi distinct, irreducible, and monic. Then choosing monic gi ∈
A[x] such that gi ≡ ḡi (mod p), we have

(1) qi = A[α](gi(α), p) is a prime for each i; and
(2) ri is the smallest positive integer such that

Rqi(qi)
ri ⊆ Rqip.

Proof. The proof is quite simple. Note that A[α] is isomorphic to
A[x]/G(x). We work in the ring A[α]/pA[α] ∼= A[x]/(G(x), p), which
is isomorphic to

(A/p)/(Ḡ(x)) ∼=
m∑
i=1

(A/p)[x]/ḡi(x)ri .

Since ḡi(x) is irreducible in (A/p)[x]), we see that

(A/p)[x]/ḡi(x)

is a field, so qi is prime ideal since

A[α]/qi ∼= (A/p)[x]/ḡi(x).

Now,
A[α]qi/A[α]qip

∼= (A/p)[x]/ḡi(x)ri ,

so ri is the smallest integer such that

gi(x)ri ⊆ Rqip.

�

Corollary 11.3. (Kummer) With notation as above, if A[α] is Dedekind,
then

A[α]p = qe11 · · · qemm .
1



2

Proof. Immediate from the lemma and proposition above. �

We will also want to deal with rings that are not Dedekind domains.
Frequently, we will want to take rings of the form A[α] and try to decide
whether or not they are in fact Dedekind. Here’s a useful fact.

Proposition 11.4. With notation as above, if ri = 1 then the prime
A[α](p, gi(α)) is invertible. If ri > 1, then qi is invertible if and only
if all the coefficients of the remainder mod gi of G are in p2, i.e. if
writing

G(x) = q(x)gi(x) + r(x),

we have r(x) ∈ p2[x].

Proof. For each j, select a monic polynomial gj ∈ A[x] such that gj ≡ gj
(mod p). Since

g1(x)r1 · · · gm(x)rm ≡ f(x) (mod p)

it is clear that

(1) g1(α)r1 · · · gm(α)rm ∈ p,

since α is a root of f . Furthermore, we know that for j 6= i, we must
have that gi(α) and gj(α) are coprime. Now, suppose that ri = 1 for
some i; let qi = A[α](gi(α), p). When we localize at qi, all of the gj(α)
for which j 6= i become units. Thus, (1) has the form gi(α)u ∈ p for u
a unit, so gi(α) ⊂ A[α]p. We know that there exists a π ∈ A such that
Ap = Apπ since p is invertible in A. Then

A[α]qi(gi(α), p) = A[x]qiπ

so qi is invertible. �

Note: In fact, it is possible to prove the following though the proof
is more difficult.

Proposition 11.5. With notation as above, if ri = 1 then the prime
A[α](p, gi(α)) is invertible. If ri > 1, then qi is invertible if and only
if all the coefficients of the remainder mod gi of G are in p2, i.e. if
writing

G(x) = q(x)gi(x) + r(x),

we have r(x) ∈ p2[x].

How can we tell which primes we have to worry about (by this, I
mean those for which some ri is greater than 1)? We can use something
called the discriminant of a finitely generated integral extension of rings
B over A. We will work with several formulations, all of which are
equivalent. Here’s the definition of the discriminant of a polynomial.
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Definition 11.6. Let K be a field and let F be the monic polynomial

F (x) = xn + an−1x
n−1 + · · ·+ a0.

Then, writing

F (x) =
n∏

i=1

(x− αi)

where αi are the roots of F in some algebraic closure of K, the dis-
criminant ∆(F ) is defined to be

∆(F ) = (−1)n(n−1)/2
∏
i 6=j

(αi − αj) =
∏
i<j

(αi − αj)
2.

Why is this discriminant useful? Because of the following obvious
fact:

∆(F ) 6= 0 ⇔ F does not have multiple roots.

This is clear because an algebraic closure of K is certainly an integral
domain.

What happens when we reduce a polynomial modulo a maximal ideal
p in a Dedekind domain A.

Proposition 11.7. Let F be a polynomial in a Dedekind domain A.
Let p be a prime of A and let F̄ be the reduction of F mod p. Let F̄
be the reduction of F modulo p and let ∆(F ) be the reduction of ∆(F )
modulo p. Then, we have ∆(F ) = ∆(F̄ ).

Proof. Let F =
∏n

i=1(X − αi) where the αi. Let B = A[α1, · · · , αn].
Then there is a maximal q in B such that q ∩ A = p. Let φ : B −→
B/cQ. Let h ∈ (B/q)[X] be the polynomial

∏m
i=1(X − φ(αi)). Now,

the i-th coefficient of h(x) is (−1)n−iSi+1(φ(α1), . . . , φ(αn)) where Si+1

is the i+ 1-st elelementary symmetric polynomial in n-variables. Since
φ is homomorphism, (−1)n−iSi+1(φ(α1), . . . , φ(αn)) is also the i-th co-
efficient of F̄ , so F̄ = h and it is clear that

∆(h) = (−1)n(n−1)/2
∏
i 6=j

(φ(αi)− φ(αj)) =
∏
i<j

(φ(αi)− φ(αj))
2 = ∆(F ).

�

This has the following corollary.

Corollary 11.8. Let A be a Dedekind domain with field of fractions
K and let p be a maximal prime in A. Then the reduction F̄ of F
modulo p has distinct roots in the algebraic closure of A/p if and only
if ∆(F ) /∈ p.


