Math 430 Notes from Class 09/29

Last time we proved the following.

Theorem 10.1. Let A be a Dedekind domain with field of fractions K. Let L be a finite separable extension of K and let B be the integral closure of A in L. Then B is Dedekind.

On the next few homework sets, we will work through a proof that this is also true when L is purely inseparable over K. Putting these two together will prove it for all finite extensions.

Proposition 10.2. Let A be a domain, $A \neq 0$, and let B be integral over A. Then for any prime \mathfrak{p} of A, we have $B\mathfrak{p} \neq B$.

Proof. Suppose that $B\mathfrak{p} = 1$. Then there are $b_1, \ldots, b_m \in B$ and $x_1, \ldots, x_m \in \mathfrak{p}$ such that such that

$$b_1 x_1 + \dots + b_m x_m = 1.$$

Let $C = A[b_1, \ldots, b_m]$. Then C is finitely generated as an A-module and $\mathfrak{p}C = C$. Let $N = A_{\mathfrak{p}}C$; then N is finitely generated and $A_{\mathfrak{p}}\mathfrak{p}N = N$. Since $A_{\mathfrak{p}}$ is local, we must have N = 0 by Nakayama's lemma, which gives a contradiction, since $A \neq 0$.

Let's fix our notation for the rest of the day: A is Dedekind with field of fractions $K, L \supseteq K$ is a finite separable field extension of degree n, and B is the integral closure of A in L. Sometimes, we will impose additional restrictions on A.

Corollary 10.3. If A is a principal ideal domain and [L : K] = n for L a separable extension of K, the field of fractions of A, then the integral closure of A in L is isomorphic to A^n as an A-module.

Proof. If A is a principal ideal domain, then any finitely generated torsion-free A-module is a free module. In the proof of the theorem above, we saw that there is a free module of rank n, call it M such that $M \subset B \subset M^{\dagger}$. Since M^{\dagger} is also of rank n, we see that the rank of B must be n.

One more thing I wanted to mention about factorizations of ideals in Dedekind domains. If $I \subseteq \mathfrak{p}$, then \mathfrak{p} must appear in the factorization of I. This follows from the fact that $R_{\mathfrak{p}}I$ is positive power of $R_{\mathfrak{p}}\mathfrak{p}$, which would not happen if I didn't have \mathfrak{p} in its factorization.

Let us continue with the set-up: A a Dedekind ring, K field of fractions of A, L a finite separable extension of K, and B the integral

closure of A in L. We'll have n = [L : K]. Say we have a prime $\mathfrak{p} \subset A$. What can we say about how $B\mathfrak{p}$ factors?

Let's start with some basics. We write

$$B\mathfrak{p}=\mathfrak{q}_1^{e_1}\cdots\mathfrak{q}_m^{e_m}.$$

The number e_i is called the **ramification degree** of \mathfrak{q}_i over \mathfrak{p} . There's another number associated with \mathfrak{q}_i over \mathfrak{p} as well. Recall that we have an injection of fields

$$A/\mathfrak{p} \hookrightarrow B/\mathfrak{q}_i$$

We call the index $[B/\mathfrak{q}_i : A/\mathfrak{p}]$ the **relative degree** of \mathfrak{q}_i over \mathfrak{p} . It isn't hard to see that f_i is finite and in fact $f_i \leq [L:K]$. We'll prove something more general along these lines in a bit. First, let's look at some examples...

Example 10.4. Let $A = \mathbb{Z}$ and $B = \mathbb{Z}[\sqrt{2}]$. Let's look at some factorizations of Bp into primes in p for various p.

- (1) $2B = (\sqrt{2})^2$.
- (2) 3B is a prime.
- (3) $7B = (\sqrt{2} 3)(\sqrt{2} + 3).$

Theorem 10.5. With the set-up above, for \mathfrak{p} a maximal ideal of A we have

$$B\mathfrak{p}=\mathfrak{q}_1^{e_1}\cdots\mathfrak{q}_m^{e_m}$$

and $f_i = [B/\mathfrak{q}_i : A/\mathfrak{p}]$ with

$$\sum_{i=1}^{m} e_i f_i = n.$$

Proof. We know that

$$B/B\mathfrak{p}\cong\sum_{i=1}^m B/\mathfrak{q}_i^{e_i}$$

by the Chinese remainder theorem. Now, let $S = A \setminus \mathfrak{p}$. Then from above, $S^{-1}B$ is the integral closure of $A_{\mathfrak{p}}$ in L. Hence, it is isomorphic to $A_{\mathfrak{p}}^n$ as an $A_{\mathfrak{p}}$ module. It follows that $S^{-1}B/S^{-1}B\mathfrak{p}$ is a $A_{\mathfrak{p}}/\mathfrak{p}$ vector space of dimension n. Moreover, since $S \cap \mathfrak{q}_i$ is empty for each \mathfrak{q}_i , we see that $S^{-1}B\mathfrak{q}_i$ is a prime in $S^{-1}B$ and we have

$$S^{-1}B\mathfrak{p} = S^{-1}B\mathfrak{q}_1^{e_1}\cdots\mathfrak{q}_m^{e_m}.$$

Combining this with homework results plus further localization, we obtain

$$S^{-1}B/S^{-1}B\mathfrak{p} \cong \sum_{i=1}^{m} (S^{-1}B)/(S^{-1}B\mathfrak{q}_{i}^{e_{i}}) \cong \sum_{i=1}^{m} B_{\mathfrak{q}_{i}}/(B_{\mathfrak{q}_{i}}\mathfrak{q}_{i}^{e_{i}}).$$

 $\mathbf{2}$

Thus, we see that

$$\dim_{A_{\mathfrak{p}}/A_{\mathfrak{p}}\mathfrak{p}}(\sum_{i=1}^m B_{\mathfrak{q}_i}/(B_{\mathfrak{q}_i}\mathfrak{q}_i^{e_i}))=n.$$

It will suffice to show, then, that

$$\dim_{(A_{\mathfrak{p}}/A_{\mathfrak{p}}\mathfrak{p})}(\sum_{i=1}^{m}B_{\mathfrak{q}_{i}}/(B_{\mathfrak{q}_{i}}\mathfrak{q}_{i}^{e_{i}}))=\sum_{i=1}^{m}e_{i}f_{i},$$

which would follow from

$$\dim_{(A_{\mathfrak{p}}/A_{\mathfrak{p}}\mathfrak{p})}(B_{\mathfrak{q}_i}/(B_{\mathfrak{q}_i}\mathfrak{q}_i^{e_i})) = e_i f_i.$$

Since we can write

$$0 = B_{\mathfrak{q}_i}\mathfrak{q}_i^{e_i}/(B_{\mathfrak{q}_i}\mathfrak{q}_i^{e_i}) \subset (B_{\mathfrak{q}_i}\mathfrak{q}_i^{e_i})/(B_{\mathfrak{q}_i})\mathfrak{q}_i^{e_i-1} \subset \cdots \subset B_{\mathfrak{q}_i}/(B_{\mathfrak{q}_i}\mathfrak{q}_i^{e_i}),$$

we need only show that

$$\dim_{A_{\mathfrak{p}}/\mathfrak{p}}((B_{\mathfrak{q}_i}\mathfrak{q}_i^j)/(B_{\mathfrak{q}_i}\mathfrak{q}_i^{j+1})) = f_i,$$

for any $j \geq 0$. Note that since $B_{\mathfrak{q}_i}$ is a DVR, its its maximal ideal is generated by a single element π . It follows that each power $B_{\mathfrak{q}_i}\mathfrak{q}_i^j$ is generated by π^j and that $(B_{\mathfrak{q}_i}\mathfrak{q}_i^j)/(B_{\mathfrak{q}_i}\mathfrak{q}_i^{j+1})$ is therefore a 1-dimensional $B_{\mathfrak{q}_i}/B_{\mathfrak{q}_i}\mathfrak{q}_i$ vector space. Since B/\mathfrak{q}_i is an f_i dimensional A/\mathfrak{p} -vector space, it follows that $(B_{\mathfrak{q}_i}\mathfrak{q}_i^j)/(B_{\mathfrak{q}_i}\mathfrak{q}_i^{j+1})$ is an f_i -dimensional A/\mathfrak{p} vector space and we are done. \Box

Next time we will prove the following.

Proposition 10.6. Let A be Dedekind. Let \mathcal{P} be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction mod \mathcal{P} of G, which we call \overline{G} factors as

$$\bar{G} = \bar{g}_1^{r_1} \cdots \bar{g}_m^{r_m}$$

with the \bar{g}_i distinct, irreducible, and monic. Then choosing monic $g_i \in A[x]$ such that $g_i \equiv \bar{g}_i \pmod{\mathcal{P}}$, we have

- (1) $Q_i = A[\alpha](g_i(\alpha), \mathcal{P})$ is a prime for each *i*; and
- (2) r_i is the smallest positive integer such that

$$R_{\mathcal{Q}_i}(\mathcal{Q}_i)^{r_i} \subseteq R_{\mathcal{Q}_i}\mathcal{P}.$$