Math 430
Notes from Class 09/29
Last time we proved the following.
Theorem 10.1. Let A be a Dedekind domain with field of fractions K. Let L be a finite separable extension of K and let B be the integral closure of A in L. Then B is Dedekind.

On the next few homework sets, we will work through a proof that this is also true when L is purely inseparable over K. Putting these two together will prove it for all finite extensions.

Proposition 10.2. Let A be a domain, $A \neq 0$, and let B be integral over A. Then for any prime \mathfrak{p} of A, we have $B \mathfrak{p} \neq B$.

Proof. Suppose that $B \mathfrak{p}=1$. Then there are $b_{1}, \ldots, b_{m} \in B$ and $x_{1}, \ldots, x_{m} \in \mathfrak{p}$ such that such that

$$
b_{1} x_{1}+\cdots+b_{m} x_{m}=1
$$

Let $C=A\left[b_{1}, \ldots, b_{m}\right]$. Then C is finitely generated as an A-module and $\mathfrak{p} C=C$. Let $N=A_{\mathfrak{p}} C$; then N is finitely generated and $A_{\mathfrak{p}} \mathfrak{p}=N$. Since $A_{\mathfrak{p}}$ is local, we must have $N=0$ by Nakayama's lemma, which gives a contradiction, since $A \neq 0$.

Let's fix our notation for the rest of the day: A is Dedekind with field of fractions $K, L \supseteq K$ is a finite separable field extension of degree n , and B is the integral closure of A in L. Sometimes, we will impose additional restrictions on A.

Corollary 10.3. If A is a principal ideal domain and $[L: K]=n$ for L a separable extension of K, the field of fractions of A, then the integral closure of A in L is isomorphic to A^{n} as an A-module.

Proof. If A is a principal ideal domain, then any finitely generated torsion-free A-module is a free module. In the proof of the theorem above, we saw that there is a free module of rank n, call it M such that $M \subset B \subset M^{\dagger}$. Since M^{\dagger} is also of rank n, we see that the rank of B must be n.

One more thing I wanted to mention about factorizations of ideals in Dedekind domains. If $I \subseteq \mathfrak{p}$, then \mathfrak{p} must appear in the factorization of I. This follows from the fact that $R_{\mathfrak{p}} I$ is positive power of $R_{\mathfrak{p}} \mathfrak{p}$, which would not happen if I didn't have \mathfrak{p} in its factorization.

Let us continue with the set-up: A a Dedekind ring, K field of fractions of A, L a finite separable extension of K, and B the integral
closure of A in L. We'll have $n=[L: K]$. Say we have a prime $\mathfrak{p} \subset A$. What can we say about how $B \mathfrak{p}$ factors?

Let's start with some basics. We write

$$
B \mathfrak{p}=\mathfrak{q}_{1}^{e_{1}} \cdots \mathfrak{q}_{m}^{e_{m}} .
$$

The number e_{i} is called the ramification degree of \mathfrak{q}_{i} over \mathfrak{p}. There's another number associated with \mathfrak{q}_{i} over \mathfrak{p} as well. Recall that we have an injection of fields

$$
A / \mathfrak{p} \hookrightarrow B / \mathfrak{q}_{i} .
$$

We call the index $\left[B / \mathfrak{q}_{i}: A / \mathfrak{p}\right]$ the relative degree of \mathfrak{q}_{i} over \mathfrak{p}. It isn't hard to see that f_{i} is finite and in fact $f_{i} \leq[L: K]$. We'll prove something more general along these lines in a bit. First, let's look at some examples...

Example 10.4. Let $A=\mathbb{Z}$ and $B=\mathbb{Z}[\sqrt{2}]$. Let's look at some factorizations of $B p$ into primes in p for various p.
(1) $2 B=(\sqrt{2})^{2}$.
(2) $3 B$ is a prime.
(3) $7 B=(\sqrt{2}-3)(\sqrt{2}+3)$.

Theorem 10.5. With the set-up above, for \mathfrak{p} a maximal ideal of A we have

$$
B \mathfrak{p}=\mathfrak{q}_{1}^{e_{1}} \cdots \mathfrak{q}_{m}^{e_{m}}
$$

and $f_{i}=\left[B / \mathfrak{q}_{i}: A / \mathfrak{p}\right]$ with

$$
\sum_{i=1}^{m} e_{i} f_{i}=n
$$

Proof. We know that

$$
B / B \mathfrak{p} \cong \sum_{i=1}^{m} B / \mathfrak{q}_{i}^{e_{i}}
$$

by the Chinese remainder theorem. Now, let $S=A \backslash \mathfrak{p}$. Then from above, $S^{-1} B$ is the integral closure of $A_{\mathfrak{p}}$ in L. Hence, it is isomorphic to $A_{\mathfrak{p}}^{n}$ as an $A_{\mathfrak{p}}$ module. It follows that $S^{-1} B / S^{-1} B \mathfrak{p}$ is a $A_{\mathfrak{p}} / \mathfrak{p}$ vector space of dimension n. Moreover, since $S \cap \mathfrak{q}_{i}$ is empty for each \mathfrak{q}_{i}, we see that $S^{-1} B \mathfrak{q}_{i}$ is a prime in $S^{-1} B$ and we have

$$
S^{-1} B \mathfrak{p}=S^{-1} B \mathfrak{q}_{1}^{e_{1}} \cdots \mathfrak{q}_{m}^{e_{m}} .
$$

Combining this with homework results plus further localization, we obtain

$$
S^{-1} B / S^{-1} B \mathfrak{p} \cong \sum_{i=1}^{m}\left(S^{-1} B\right) /\left(S^{-1} B \mathfrak{q}_{i}^{e_{i}}\right) \cong \sum_{i=1}^{m} B_{\mathfrak{q}_{i}} /\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{e_{i}}\right)
$$

Thus, we see that

$$
\operatorname{dim}_{A_{\mathfrak{p}} / A_{\mathfrak{p}} \mathfrak{p}}\left(\sum_{i=1}^{m} B_{\mathfrak{q}_{i}} /\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{e_{i}}\right)\right)=n
$$

It will suffice to show, then, that

$$
\left.\operatorname{dim}_{(} A_{\mathfrak{p}} / A_{\mathfrak{p}} \mathfrak{p}\right)\left(\sum_{i=1}^{m} B_{\mathfrak{q}_{i}} /\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{e_{i}}\right)\right)=\sum_{i=1}^{m} e_{i} f_{i}
$$

which would follow from

$$
\operatorname{dim}_{\left(A_{\mathfrak{p}} / A_{\mathfrak{p p}}\right)}\left(B_{\mathfrak{q}_{i}} /\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{e_{i}}\right)\right)=e_{i} f_{i} .
$$

Since we can write

$$
0=B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{e_{i}} /\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{e_{i}}\right) \subset\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{e_{i}}\right) /\left(B_{\mathfrak{q}_{i}}\right) \mathfrak{q}_{i}^{e_{i}-1} \subset \cdots \subset B_{\mathfrak{q}_{i}} /\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{e_{i}}\right)
$$

we need only show that

$$
\operatorname{dim}_{A_{\mathfrak{p}} / \mathfrak{p}}\left(\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{j}\right) /\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{j+1}\right)\right)=f_{i}
$$

for any $j \geq 0$. Note that since $B_{\mathfrak{q}_{i}}$ is a DVR, its its maximal ideal is generated by a single element π. It follows that each power $B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{j}$ is generated by π^{j} and that $\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{j}\right) /\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{j+1}\right)$ is therefore a 1-dimensional $B_{\mathfrak{q}_{i}} / B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}$ vector space. Since B / \mathfrak{q}_{i} is an f_{i} dimensional A / \mathfrak{p}-vector space, it follows that $\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{j}\right) /\left(B_{\mathfrak{q}_{i}} \mathfrak{q}_{i}^{j+1}\right)$ is an f_{i}-dimensional A / \mathfrak{p} vector space and we are done.

Next time we will prove the following.
Proposition 10.6. Let A be Dedekind. Let \mathcal{P} be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction $\bmod \mathcal{P}$ of G, which we call \bar{G} factors as

$$
\bar{G}=\bar{g}_{1}^{r_{1}} \cdots \bar{g}_{m}^{r_{m}}
$$

with the \bar{g}_{i} distinct, irreducible, and monic. Then choosing monic $g_{i} \in$ $A[x]$ such that $g_{i} \equiv \bar{g}_{i}(\bmod \mathcal{P})$, we have
(1) $\mathcal{Q}_{i}=A[\alpha]\left(g_{i}(\alpha), \mathcal{P}\right)$ is a prime for each i; and
(2) r_{i} is the smallest positive integer such that

$$
R_{\mathcal{Q}_{i}}\left(\mathcal{Q}_{i}\right)^{r_{i}} \subseteq R_{\mathcal{Q}_{i}} \mathcal{P}
$$

