Math 430 Tom Tucker
NOTES FROM CLASS 09/20/21

There were some questions about the proof of unique factorization
in Dedekind domains. I went over that the beginning, and also here’s
something very similar to get the flavor of these types of arguments.

Theorem 7.1. Suppose that R is Dedekind. Then every ideal in R can
be generated by two elements.

Proof. Let I be an ideal of R and let x € I. Then R/(x) is a direct
sum of rings of the form R,/R,p®. All such rings have only principal
ideal so any ideal of R/(z) is principal. Let ¢ : R — R/(z) and let
©(y) generate p(I). Then I = Rx + Ry. O

We make the following definitions

F(R) is the set of invertible fractional ideals of R

P(R) is the set of principal fractional ideals of R

and
Pic(R) = F(R)/P(R).

Pic(R) is called the Picard group of R.
We will show that if R is a DVR, then all of the fractional ideals of
R are invertible. We’ll also want a few facts about invertible ideals.

Lemma 7.2. Let J be a finitely generated fractional ideal of an integral
domain R with field of fractions K and let S be a multiplicative set S
in R not containing 0. Then ST'R(R:J) = (S7'R: S™'RJ).

Proof. Since xJ C R implies that 7J C S7IR for any s € S it is
clear that ST'R(R : J) C (S7'R : S7'RJ). To get the reverse in-
clusion, let y € (S™'R : ST'RJ) and let my, ..., m, generate J as an
R-module. Since yS™'RJ C SR, we must have ym; C S™'R, so we
can write ym; = r;/s; where r; € R and s; € S. Since (s1 - $,y)m; =
(I, sj)ri € R, this means that s;---s,y € (R : J). Thus, y €
STIR(R: J). O

A note on definitions: Fractional ideals are not generally always
assume to be finitely generated.
All invertible ideals are automatically finitely generated, though.

Lemma 7.3. Let J be a fractional ideal of an integral domain R. Then
J is invertible < J s finitely generated and RyJ is an invertible frac-

tional ideal of Ry, for every maximal ideal m of R.
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Proof. (=) Let J be an invertible ideal ideal of R. Then we can write

k
i=1

with n; € (R : J). Since n;J € R for each i, we can write any y € J as
Zle(niy)mi =y, so the m; generate J. Hence, J is finitely generated.
Let m be a maximal ideal of R. Since we can write J(R : J) = R we
must have Ry (J(R : J)) = Ry, 80 (RnJ)(Ru(R : J)) = Ry, 50 Ry J is
invertible

(«=) For any ideal J, we can form J(R : J) C R (not necessarily equal
to R). This will be an ideal I of R. Let m be a maximal ideal of R.
Since J is finitely generated by assumption, we can apply the Lemma
immediately above to obtain (Ry : RnJ) = Rn(R : J). Hence, we have
RywJ(R : J) = Ry. Thus the ideal I = J(R : J) is not contained in any
maximal ideal of R. Thus, I = R and J is invertible. 0

Theorem 7.4. Let R be a a local integral domain of dimension 1.
Then R is a DVR < every nonzero ideal (note: I didn’t say fractional
ideal) of R is invertible.

Proof. (=) If J is a fractional ideal, then zJ C R for some z € R.
Hence xJ = Ra for some a € R since a DVR is PID. Thus, J = Raxz ™.
Clearly (R:J) = Ra 'z and J(R: J) =1, so J is invertible.

(<) Since every nonzero ideal I C R is invertible, every ideal of R is
finitely generated, so R is Noetherian. Now, it will suffice to show that
every nonzero ideal in R is a power of the maximal ideal m of R. The
set of ideals I of R that are not a power of m (note: we consider R to
m’, so the unit ideal is considered to be a power of m) has a maximal
element if it is not empty. Then (R : m)I # [ since if (R : m)[ = I,
then m/ = [ which means that I = 0 by Nakayama’s Lemma (note
that R must be Noetherian since all fractional ideals are invertible).
Since (R : m)I D I (since 1 € (R : m)), this means that (R : m)[ is
strictly larger than I, and is thus a power of m, so (R : m)/m is also a
power of m.

O

Now, we have the global counterpart.

Theorem 7.5. Let R be a integral domain of dimension 1. Then R is
a Dedekind domain < every fractional ideal of R is invertible.

Proof. (=) Let J be a fractional ideal of R. Then, for every maximal
ideal m, it is clear that R,.J is a fractional ideal of R,. Since R, is
a DVR, R,J must be therefore be invertible for every maximal ideal
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m. Moreover, J must be finitely generated since there is an © € K for
which xJ is an ideal of R and every ideal of R is finitely generated since
R is Noetherian. Therefore, J must be invertible by a Lemma 7.3.
(<) Since every ideal of R is invertible, every ideal of R is finitely
generated, so R is Noetherian. So it’s enough to show that R, is a DVR
for all nozero primes p. Let J be an ideal of R, and let I = J N R.
Then I is invertible so R,I = J is invertible by Lemma 7.3.. Thus R,
is a DVR by Theorem 7.4.
O

Let’s show that not only can every ideal I of a Dedekind domain R
be factored uniquely, but so can every fractional ideal J of a Dedekind
domain. Since every nonzero prime is invertible in R, we can write
p~! = (R : p) for maximal p (by the way nonzero prime means the
same thing as maximal in a 1-dimensional integral domain of course).

Proposition 7.6. Let R be a Dedekind domain. Then every fractional
tdeal J of R has a unique factorization as

J=]]»¢
=1

with all the e; # 0.

Proof. To see that J has some factorization as above we note zJ is an
ideal I in R. So if we factor Rz and I and write J = (z)~'I, we have
a factorization. To see that the factorization is unique we write

r=(Is I

with all the e; and f; positive and no Q; equal to any p;. Let I =
| Q;j Then JI? is an ideal of R with JI* = ([]'_, pi")(IT/Z, Qj-cj).
Since I? has a unique factorization and so does JI?, so must .J have a
unique factorization. O

Back to showing that Ok is Dedekind. All we need is to do is
show that O is Noetherian and one-dimensional. For R-modules (R a
ring), it is easy to see that M satisfies the Noetherian ascending chain
condition if and only if every submodule of M is finitely generated (as
an R-module).

Proposition 7.7. Let R be a ring, let M' and M" be Noetherian R-
modules and let

0— M —M-—M —0
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be an exact sequence of R-modules. Then M is Noetherian.

Proof. We denote the map from M’ into M as i and the map from M to
M" as ¢. It will suffice to show that every submodule N of M is finitely
generated. Since ¢(N) is a submodule N of M" it is finitely generated
by, say, 1, ..., Zm,. Since N Ni(M’), which we denote as N, is a sub-
module of i(M"), it is finitely generated by, say, v1, ..., y,. For each z;,
let z; € N have the property that ¢(z;) = z; and let N” be the module
they generate in N. Then N is generated by y1,...,Yn, 21, .., Zm Since
given any t € N we can write ¢(t) = Y 1", 1¢(2;), so
o(t) — Y riz € N (M),
i=1

and N = N+ N”. O

Corollary 7.8. Let A be a Noetherian ring and let M be a finitely
generated A-module. Then M is a Noetherian A-module

Proof. We proceed by induction on the number of generators of M as
an A-module. If M has one generator, then it is isomorphic to some
quotient of A, so we're done. Otherwise, let =1, ..., z, generate M and
write

0 — Rz, — M — M/(Rx,) — 0.

Then M/(Rz,) is generated by the images of z1,...,x,_1, so must
be Noetherian by the inductive hypothesis. By the Lemma above, M
must be Noetherian. ]

Corollary 7.9. Let A be a Noetherian ring and let B O A be finitely
generated as an A-module. Then B is a Noetherian ring.

Proof. By the corollary above, B is a Noetherian A-module, so every
ideal of B is finitely generated as an A-module, hence also as a B-
module. O

What’s the problem in general then for showing that Oy is Dedekind
for L a number field? The big problem is showing that it is Oy is finitely
generated as a Z-module.

Definition 7.10. We say that M a is Noetherian R-module if for any
ascending chain of R-submodules

MyC M C---C M, C...
there is an N such that M; = M; for all 4,7 > N.



