
Math 430 Tom Tucker
NOTES FROM CLASS 09/15/21

I wanted to do a very quick proof of something from last time.

Theorem 6.1. Let A be a Dedekind domain and let B be an integral
extension of A that is an integral domain. Then B has dimension 1.

Proof. We first show that if Q ⊆ Q′ satisfy Q∩A = Q′∩A = P (for Q,
Q′ primes of B), then Q = Q′. This follows immediately from applying
Lemma 5.7 from last time to the extension B/Q of A/P (using the fact
that the image of Q′ cannot intersect A/P in the zero ideal unless this
image is 0). This implies that the dimension of B is at most 1 since
the dimension of A is 1. Now note that B has a nonzero maximal ideal
since it cannot be a field as it cannot contain the field of fractions of
A. Thus the dimension of B is 1. �

Lemma 6.2. Let R be a integral domain, let M be a maximal ideal
of R, let n ≥ q, and let φ the quotient map φ : R −→ R/Mn be the
quotient map. Then φ(s) is a unit in R/Mn for every s ∈ R \M.

Proof. SinceM is maximal, we can have Rs+M = 1 for s /∈M. Thus,
we can write ax + m = 1 for a ∈ R and m ∈ Mn using facts about
coprime ideals proved earlier. Thus ax = 1 (mod Mn), so φ(ax) =
1. �

Note in the following proof we do not simply mod out by I and factor
0. We mod out by an ideal smaller than I so that the projection of
I onto each factor is not zero. That way we can apply Nakayama’s
lemma.

Theorem 6.3. Let R be a Dedekind domain, let I ⊂ R be a nonzero
ideal, and let P1, . . . ,Pn be the set of primes that contain I. Then there
exists a unique n-tuple e1, . . . , en of non-negative integers such that

n∏
j=1

Pej
j = I.

Proof. There are positive integers fj such that
m∏
j=1

Pfj−1
j ⊂ I

since R is Noetherian. Let’s set up a bit of notation first. For each

j = 1, . . . , n we have the quotient map φj : R −→ R/Pfj
j . Let φ be the

map from R to
⊕n

j=1R/P
fj
j given by

φ(r) = (φ1(r), . . . φn(r)).
1
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We’ll denote R/Pfj
j as Rj. Since φ(I) is an ideal, it has decomposition

as above φ(I) =
⊕n

j=1 φj(I). Each φj(I) is an ideal in R/Pfj
j . We

know that R/Pfj
j is isomorphic to RPj

/Pfj
j , so φj(I) must be a power

of φj(Pj); here we use the fact that RPj
is a DVR. So we can write

φj(I) = Pej
j for some unique ej < fj (since I was actually contained in

the product of the Pi to the fi − 1 power). Since

φ(Pj) =
⊕
`6=j

Rj

⊕
φj(Pj)

(this follows from the Chinese Remainder theorem, in fact), we see then
that

n∏
j=1

φ(Pej
j ) =

n⊕
j=1

φj(Pj) =
n⊕

j=1

φj(I) = φ(I).

Since all the ej ≤ fj, we have

kerφ =
n∏

j=1

Pej
j ⊂

n∏
j=1

Pfj
j ,

so

I = φ−1(φ(I)) = φ−1(
n∏

j=1

φ
(
Pej

j )
)

=
n∏

j=1

Pej
j ,

as desired. To see that the ei are unique, recall that φj(I) = φj(Pj)
ej

for a unique ej, so for e′j < ej, we have

φj(Pj)
ej 6⊂ φj(I)

and for e′j > ej, we have

φj(I) 6⊂ φj(Pj)
ej

(by Nakayama’s Lemma), either of which forces the product

n∏
j=1

φ(Pj) 6= φ(I).

�

Now, for what are called fractional ideals

Definition 6.4. Let R be an integral domain with field of fractions
K. A fractional ideal of R is an R-submodule J ⊂ K for which there
is some nonzero x ∈ R such that xJ ⊂ R.
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Definition 6.5. For a fractional ideal J , we define (R : J) to be set

{x ∈ K | xJ ⊆ R}.
We say that J is invertible if J(R : J) = R.

A few remarks on the definition above. It is clear that (R : R) = R
since R contains 1 and is closed under multiplication. It follows that
when JN = R, we must have N = (R : J). Also note that J(R : J)
may not be all of R, as we’ll see in some examples later.

If we consider the unit ideal R to be the identity, then we see that the
invertible ideals of R form a group under fractional ideal multiplication,
since it clear that if J and N are invertible, so is JN and that if J is
invertible, then so is its inverse (R : J) invertible, by definition.

We say, as usual, that a fractional ideal J is principal if there exists
some y such that Ry = J . The principal fractional ideals of J are
clearly invertible and form a subgroup of the group of invertible ideals.

We make the following definitions

F(R) is the set of invertible fractional ideals of R

P(R) is the set of principal fractional ideals of R

and
Pic(R) = F(R)/P(R).

Pic(R) is called the Picard group of R.
We will show that if R is a DVR, then all of the fractional ideals of

R are invertible. We’ll also want a few facts about invertible ideals.


