Math 430 Tom Tucker

NOTES FROM CLASS 09/15/21
I wanted to do a very quick proof of something from last time.
Theorem 6.1. Let A be a Dedekind domain and let B be an integral extension of A that is an integral domain. Then B has dimension 1.

Proof. We first show that if $\mathcal{Q} \subseteq \mathcal{Q}^{\prime}$ satisfy $\mathcal{Q} \cap A=\mathcal{Q}^{\prime} \cap A=\mathcal{P}$ (for \mathcal{Q}, \mathcal{Q}^{\prime} primes of B), then $\mathcal{Q}=\mathcal{Q}^{\prime}$. This follows immediately from applying Lemma 5.7 from last time to the extension B / \mathcal{Q} of A / \mathcal{P} (using the fact that the image of \mathcal{Q}^{\prime} cannot intersect A / \mathcal{P} in the zero ideal unless this image is 0). This implies that the dimension of B is at most 1 since the dimension of A is 1 . Now note that B has a nonzero maximal ideal since it cannot be a field as it cannot contain the field of fractions of A. Thus the dimension of B is 1 .

Lemma 6.2. Let R be a integral domain, let \mathcal{M} be a maximal ideal of R, let $n \geq q$, and let ϕ the quotient map $\phi: R \longrightarrow R / \mathcal{M}^{n}$ be the quotient map. Then $\phi(s)$ is a unit in R / \mathcal{M}^{n} for every $s \in R \backslash \mathcal{M}$.
Proof. Since \mathcal{M} is maximal, we can have $R s+\mathcal{M}=1$ for $s \notin \mathcal{M}$. Thus, we can write $a x+m=1$ for $a \in R$ and $m \in \mathcal{M}^{n}$ using facts about coprime ideals proved earlier. Thus $a x=1\left(\bmod \mathcal{M}^{n}\right)$, so $\phi(a x)=$ 1.

Note in the following proof we do not simply mod out by I and factor 0 . We mod out by an ideal smaller than I so that the projection of I onto each factor is not zero. That way we can apply Nakayama's lemma.

Theorem 6.3. Let R be a Dedekind domain, let $I \subset R$ be a nonzero ideal, and let $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ be the set of primes that contain I. Then there exists a unique n-tuple e_{1}, \ldots, e_{n} of non-negative integers such that

$$
\prod_{j=1}^{n} \mathcal{P}_{j}^{e_{j}}=I
$$

Proof. There are positive integers f_{j} such that

$$
\prod_{j=1}^{m} \mathcal{P}_{j}^{f_{j}-1} \subset I
$$

since R is Noetherian. Let's set up a bit of notation first. For each $j=1, \ldots, n$ we have the quotient $\operatorname{map} \phi_{j}: R \longrightarrow R / \mathcal{P}_{j}^{f_{j}}$. Let ϕ be the map from R to $\bigoplus_{j=1}^{n} R / \mathcal{P}_{j}^{f_{j}}$ given by

$$
\phi(r)=\left(\phi_{1}(r), \ldots \phi_{n}(r)\right)
$$

We'll denote $R / \mathcal{P}_{j}^{f_{j}}$ as R_{j}. Since $\phi(I)$ is an ideal, it has decomposition as above $\phi(I)=\bigoplus_{j=1}^{n} \phi_{j}(I)$. Each $\phi_{j}(I)$ is an ideal in $R / \mathcal{P}_{j}^{f_{j}}$. We know that $R / \mathcal{P}_{j}^{f_{j}}$ is isomorphic to $R_{\mathcal{P}_{j}} / \mathcal{P}_{j}^{f_{j}}$, so $\phi_{j}(I)$ must be a power of $\phi_{j}\left(\mathcal{P}_{j}\right)$; here we use the fact that $R_{\mathcal{P}_{j}}$ is a DVR. So we can write $\phi_{j}(I)=\mathcal{P}_{j}^{e_{j}}$ for some unique $e_{j}<f_{j}$ (since I was actually contained in the product of the \mathcal{P}_{i} to the $f_{i}-1$ power). Since

$$
\phi\left(\mathcal{P}_{j}\right)=\bigoplus_{\ell \neq j} R_{j} \bigoplus \phi_{j}\left(\mathcal{P}_{j}\right)
$$

(this follows from the Chinese Remainder theorem, in fact), we see then that

$$
\prod_{j=1}^{n} \phi\left(\mathcal{P}_{j}^{e_{j}}\right)=\bigoplus_{j=1}^{n} \phi_{j}\left(\mathcal{P}_{j}\right)=\bigoplus_{j=1}^{n} \phi_{j}(I)=\phi(I) .
$$

Since all the $e_{j} \leq f_{j}$, we have

$$
\operatorname{ker} \phi=\prod_{j=1}^{n} \mathcal{P}_{j}^{e_{j}} \subset \prod_{j=1}^{n} \mathcal{P}_{j}^{f_{j}}
$$

so

$$
I=\phi^{-1}(\phi(I))=\phi^{-1}\left(\prod_{j=1}^{n} \phi\left(\mathcal{P}_{j}^{e_{j}}\right)\right)=\prod_{j=1}^{n} \mathcal{P}_{j}^{e_{j}},
$$

as desired. To see that the e_{i} are unique, recall that $\phi_{j}(I)=\phi_{j}\left(\mathcal{P}_{j}\right)^{e_{j}}$ for a unique e_{j}, so for $e_{j}^{\prime}<e_{j}$, we have

$$
\phi_{j}\left(\mathcal{P}_{j}\right)^{e_{j}} \not \subset \phi_{j}(I)
$$

and for $e_{j}^{\prime}>e_{j}$, we have

$$
\phi_{j}(I) \not \subset \phi_{j}\left(\mathcal{P}_{j}\right)^{e_{j}}
$$

(by Nakayama's Lemma), either of which forces the product

$$
\prod_{j=1}^{n} \phi\left(\mathcal{P}_{j}\right) \neq \phi(I)
$$

Now, for what are called fractional ideals
Definition 6.4. Let R be an integral domain with field of fractions K. A fractional ideal of R is an R-submodule $J \subset K$ for which there is some nonzero $x \in R$ such that $x J \subset R$.

Definition 6.5. For a fractional ideal J, we define $(R: J)$ to be set

$$
\{x \in K \mid x J \subseteq R\}
$$

We say that J is invertible if $J(R: J)=R$.
A few remarks on the definition above. It is clear that $(R: R)=R$ since R contains 1 and is closed under multiplication. It follows that when $J N=R$, we must have $N=(R: J)$. Also note that $J(R: J)$ may not be all of R, as we'll see in some examples later.

If we consider the unit ideal R to be the identity, then we see that the invertible ideals of R form a group under fractional ideal multiplication, since it clear that if J and N are invertible, so is $J N$ and that if J is invertible, then so is its inverse $(R: J)$ invertible, by definition.

We say, as usual, that a fractional ideal J is principal if there exists some y such that $R y=J$. The principal fractional ideals of J are clearly invertible and form a subgroup of the group of invertible ideals.

We make the following definitions
$\mathbf{F}(R)$ is the set of invertible fractional ideals of R
$\mathbb{P}(R)$ is the set of principal fractional ideals of R
and

$$
\operatorname{Pic}(R)=\mathbf{F}(R) / \mathbb{P}(R)
$$

$\operatorname{Pic}(R)$ is called the Picard group of R.
We will show that if R is a DVR, then all of the fractional ideals of R are invertible. We'll also want a few facts about invertible ideals.

