Math 430 Tom Tucker

NOTES FROM CLASS 09/13/21
Lemma 5.1. If $I+J_{1}=1$ and $I+J_{2}=1$, then $I+J_{1} J_{2}=1$.
Proof. Writing $a+b=1$ for $a \in I$ and $b \in J_{1}$ and writing $a^{\prime}+b^{\prime}=1$ for $a \in I$ and $b \in J_{2}$, we see that

$$
1=(a+b)\left(a^{\prime}+b^{\prime}\right)=a a^{\prime}+a b^{\prime}+b a^{\prime}+b b^{\prime} \subseteq I+J_{1} J_{2} .
$$

Proposition 5.2. (Chinese Remainder theorem) Let R be a ring and let I_{1}, \ldots, I_{n} be a set of ideals of R such that $I_{j}+I_{k}=1$ for $j /-j$. Then the natural map

$$
R \longrightarrow \bigoplus_{j=1}^{n} R / I_{j}
$$

is surjective with kernel $I_{1} \cdots I_{n}$.
Proof. We proceed by induction on n. If $n=1$, then the result is obvious. Otherwise, write $I:=I_{1}$ and $J:=I_{2} \cdots I_{n}$. Applying the lemmas above, $I+J=1$ and the natural map

$$
R \longrightarrow R / I \oplus R / J
$$

is surjective with kernel $I J$. Since the natural map

$$
R \longrightarrow \bigoplus_{j=2}^{n} R / I_{j}
$$

is surjective with kernel $I_{2} \cdots I_{n}$ by the inductive hypothesis, we are done.

One more criterion related to being a DVR.
Proposition 5.3. Let A be a Noetherian local ring with maximal ideal \mathcal{M}. Let $I \subseteq M$ have the property that $I+\mathcal{M}^{2}=\mathcal{M}$. Then $I=\mathcal{M}$.

Proof. Let $N=\mathcal{M} / I$. Let $a \in \mathcal{M}$. Then there is a $b \in \mathcal{M}^{2}$ such that $a-b \in I$. Thus, $\mathcal{M} N=N$. By Nakayama's lemma (note that N is finitely generated since A is Noetherian), we have $N=0$ so $I=\mathcal{M}$.

Corollary 5.4. Let A be a Noetherian local ring. Let \mathcal{M} be its maximal ideal and let k be the residue field A / \mathcal{M}. Then

$$
\operatorname{dim}_{k} \mathcal{M} / \mathcal{M}^{2}=1
$$

if and only if \mathcal{M} is principal

Proof. One direction is easy: If \mathcal{M} is generated by π, then $\mathcal{M} / \mathcal{M}^{2}$ is generated by the image of π modulo \mathcal{M}^{2}. To prove the other direction, suppose that $\mathcal{M} / \mathcal{M}^{2}$ has dimension 1 . Then we can write $\mathcal{M}=R a+$ \mathcal{M}^{2} for some $a \in \mathcal{M}$. Then the module $M=\mathcal{M} / a$ has the property that $\mathcal{M} M=M$, since any element in M can be written as $c a+d$ for $c \in R$ and $d \in \mathcal{M}^{2}$. By Nakayama's lemma, we thus have $M=0$, so $\mathcal{M}=R a$.

Proposition 5.5. Let R be a domain and let $S \subseteq R$ be a multiplicative subset not containing 0 . Let $b \in K$, where K is the field of fractions of R. Then b is integral over $S^{-1} R \Leftrightarrow$ sb is integral over R for some $s \in S$.
Proof. If b is integral over $S^{-1} R$, then we can write

$$
b^{n}+\frac{a_{n-1}}{s_{n-1}} b^{n-1}+\cdots+\frac{b_{0}}{s_{0}}=0 .
$$

Letting $s=\prod_{i=0}^{n-1} s_{i}$ and multiplying through by s^{n} we obtain

$$
(s b)^{n}+a_{n-1}^{\prime}(s b)^{n-1}+\cdots+a_{0}^{\prime}=0
$$

where

$$
a_{i}^{\prime}=s^{n-i-1} \prod_{\substack{j=1 \\ j \neq i}}^{n} s_{i} a_{i}
$$

which is clearly in R. Hence $s b$ is integral over R. Similarly, if an element $s b$ with $b \in S^{-1} R$ and $s \in S$ satisfies an equation

$$
(s b)^{n}+a_{n-1}(s b)^{n-1}+\cdots+a_{0}=0
$$

with $a_{i} \in R$, then dividing through by s^{n} gives an equation

$$
b^{n}+\frac{a_{n-1}}{s} b^{n-1}+\cdots+\frac{a_{0}}{s^{n}}
$$

with coefficients in $S^{-1} R$.

Corollary 5.6. If R is integrally closed, then $S^{-1} R$ is integrally closed.
Proof. When R is integrally closed, any b that is integral over R is in R. Since any element $c \in K$ that is integral over $S^{-1} R$ has the property that $s c$ is integral over R for some $s \in S$, this means that $s c \in R$ for some $s \in S$ and hence that $c \in S^{-1} R$.

Lemma 5.7. Let $A \subseteq B$ be domains and suppose that every element of B is algebraic over A. Then for every ideal nonzero I of B, we have $I \cap A \neq 0$.

Proof. Let $b \in I$ be nonzero. Since b is algebraic over A and $b \neq 0$, we can write

$$
a_{n} b^{n}+\cdots+a_{0}=0,
$$

for $a_{i} \in A$ and $a_{0} \neq 0$. Then $a_{0} \in I \cap \mathbb{Z}$.
Theorem 5.8. Let α be an algebraic number that is integral over \mathbb{Z}. Suppose that $\mathbb{Z}[\alpha]$ is integrally closed. Then $\mathbb{Z}[\alpha]$ is a Dedekind domain.
Proof. Since $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z}-module, any ideal of $\mathbb{Z}[\alpha[$ is also a finitely generated \mathbb{Z}-module. Hence, any ideal of $\mathbb{Z}[\alpha]$ is finitely generated over $\mathbb{Z}[\alpha]$, so $\mathbb{Z}[\alpha]$ is Noetherian. Let \mathcal{Q} be a prime in $Z[\alpha]$. Then, $\mathcal{Q} \cap \mathbb{Z}$ is a prime ideal (p) in \mathbb{Z}. Hence, $\mathbb{Z}[\alpha] / \mathcal{Q}$ is a quotient of $\mathbf{F}_{p}[X] / f(X)$ where $f(X)$ is the minimal monic satisfied by α. Since $\mathbf{F}_{p}[X] / f(X)$ has dimension 0 (Exercise 7 on the homework), this implies that $\mathbb{Z}[\alpha] / \mathcal{Q}$ is a field so \mathcal{Q} must be maximal.
Remark 5.9. The rings we deal with will not in general have this form.
Lemma 5.10. Let R be a ring that has direct sum decomposition

$$
R=\bigoplus_{j=1}^{n} R_{j} .
$$

Then every ideal in $I \subset R$ can be written as

$$
I=\bigoplus_{j=1}^{n} I_{j}
$$

for ideals $I_{j} \subset R_{j}$. If \mathcal{P} is a prime of R then there is some j for which we can write

$$
\mathcal{P}=\bigoplus_{\ell \neq j} R_{\ell} \bigoplus \mathcal{P}_{j}
$$

Proof. We can view $R=\bigoplus_{j=1}^{n} R_{j}$ as the set of

$$
\left(r_{1}, \ldots, r_{n}\right)
$$

with $r_{j} \in R_{j}$. Let p_{j} be the usual projection from R onto its j-th coordinate and let i_{j} be the usual embedding of R_{j} into R obtained by sending $r_{j} \in R_{j}$ to the element of R with all coordinates 0 except for the j-th coordinate which is set to r_{j}. Since an ideal I of R must be a $i_{j}\left(R_{j}\right)$ module, the set of $p_{j}(r)$ for which $r \in I$ must form an ideal R_{j} ideal, call it I_{j}. It is easy to see that $I_{j}=p_{j}(I)$. Certainly, $I \subset \bigoplus p_{j}(I)$. Since we can multiply anything in I by $\left(0, \ldots, 1_{j}, 0, \ldots, 0\right)$ we see that $i_{j} p_{j}(I) \subset I$. Hence $\bigoplus p_{j}(I) \subset I$, and we are done with our description of ideals of $\bigoplus_{j=1}^{n} R_{j}$. For prime ideals, we note that if \mathcal{P} is a prime then $\left(a_{1}, \ldots, a_{n}\right)\left(b_{1}, \ldots, b_{n}\right) \in \mathcal{P}$ implies that $a_{j} b_{j} \in p_{j}(\mathcal{P})$ for each j,
so $p_{j}(\mathcal{P})$ must be a prime of R_{j} or all of R_{j}. Suppose we had $k \neq j$ with $p_{j}(\mathcal{P}) \neq R_{j}$ and $p_{k}(\mathcal{P}) \neq R_{k}$. Then choosing $a_{j} \in p_{j}(\mathcal{P}), a_{k} \in p_{k}(\mathcal{P})$ and $b_{j} \notin p_{j}(\mathcal{P}), b_{k} \notin p_{k}(\mathcal{P})$, we see that

$$
\left(i_{j}\left(a_{j}\right)+i_{j}\left(b_{k}\right)\right)\left(i_{j}\left(b_{j}\right)+i_{k}\left(a_{k}\right)\right) \in \mathcal{P},
$$

but $\left(i_{j}\left(a_{j}\right)+i_{j}\left(b_{k}\right)\right),\left(i_{j}\left(b_{j}\right)+i_{k}\left(a_{k}\right)\right) \notin \mathcal{P}$, a contradiction, so $p_{j}(\mathcal{P})=R_{j}$ for all but one j. Thus

$$
\mathcal{P}=\bigoplus_{\ell \neq j} R_{\ell} \bigoplus \mathcal{P}_{j}
$$

for some prime \mathcal{P}_{j} of R_{j}.
Corollary 5.11. Let R be a Noetherian ring in which every prime ideal is maximal. Then R has only finitely many prime ideals $\mathcal{P}_{1}, \ldots, \mathcal{P}_{n}$ and can be written as

$$
R \cong \bigoplus_{j=1}^{n} R / \mathcal{P}_{i}^{w_{i}}
$$

Proof. Since R is Noetherian, there are prime ideals \mathcal{P}_{i} such that $\prod_{j=1}^{n} \mathcal{P}_{i}^{w_{i}}=$ 0 (remember that we can make the product be contained in 0 and 0 is the only element in $R 0$). Then the natural map

$$
R \longrightarrow \bigoplus_{j=1}^{n} R / \mathcal{P}_{i}^{w_{i}}
$$

is surjective with kernel 0 , hence it is an isomoprhism. Within each factor $R / \mathcal{P}_{i}^{w_{i}}$, the only prime ideal is the image of \mathcal{P}_{i} under the quotient map ϕ, since the image of any other prime under ϕ is all of $R / \mathcal{P}_{i}^{w_{i}}$ by the Lemma above. Hence, $\phi\left(\mathcal{P}_{i}\right)$ is the only prime in $R / \mathcal{P}_{i}^{w_{i}}$. By the Lemma above, the only primes in R are of the form $\bigoplus_{\ell \neq j} R \bigoplus \phi\left(\mathcal{P}_{i}\right)$.

Corollary 5.12. Let R be a Noetherian ring of dimension 1. Then every nonzero ideal I is contained in finitely many prime ideals \mathcal{P}.

Proof. Every prime ideal in R / I is maximal, so the proposition above applies.

Lemma 5.13. Let R be a integral domain, let \mathcal{M} be a maximal ideal of R, let $n \geq q$, and let ϕ the quotient map $\phi: R \longrightarrow R / \mathcal{M}^{n}$ be the quotient map. Then $\phi(s)$ is a unit in R / \mathcal{M}^{n} for every $s \in R \backslash \mathcal{M}$.

Proof. Since \mathcal{M} is maximal, we can have $R s+\mathcal{M}=1$ for $s \notin \mathcal{M}$. Thus, we can write $a x+m=1$ for $a \in R$ and $m \in \mathcal{M}^{n}$ using facts about
coprime ideals proved earlier. Thus $a x=1\left(\bmod \mathcal{M}^{n}\right)$, so $\phi(a x)=$ 1.

