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NOTES FROM CLASS 09/13/21

Lemma 5.1. ]f] + Jl =1 and I+ J2 = ]_7 then I—I— Jljg =1.

Proof. Writing a +b =1 for a € I and b € J; and writing o/ + b =1
for a € I and b € J,, we see that

1= (a+0b)(d +b)=ad+ab +ba" + b C I+ JiJs.
U

Proposition 5.2. (Chinese Remainder theorem) Let R be a ring and
let I,..., 1, be a set of ideals of R such that I; + I, = 1 for j /-j.
Then the natural map

R— PR/
j=1
s surjective with kernel Iy ---I,,.

Proof. We proceed by induction on n. If n = 1, then the result is
obvious. Otherwise, write I := I; and J := Iy---1,. Applying the
lemmas above, I +.J =1 and the natural map

R— R/I®&R/J

is surjective with kernel /.J. Since the natural map
R— PR/
j=2
is surjective with kernel I5--- I, by the inductive hypothesis, we are
done. O

One more criterion related to being a DVR.

Proposition 5.3. Let A be a Noetherian local ring with mazimal ideal
M. Let I C M have the property that I + M? = M. Then I = M.

Proof. Let N = M/I. Let a € M. Then there is a b € M? such that
a—0b¢€ I. Thus, MN = N. By Nakayama’s lemma (note that N is
finitely generated since A is Noetherian), we have N =0so I = M. O

Corollary 5.4. Let A be a Noetherian local ring. Let M be its mazimal
ideal and let k be the residue field A/ M. Then

dim, M/ M? =1
if and only if M s principal
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Proof. One direction is easy: If M is generated by =, then M /M? is
generated by the image of 7 modulo M?2. To prove the other direction,
suppose that M /M? has dimension 1. Then we can write M = Ra +
M? for some a € M. Then the module M = M /a has the property
that MM = M, since any element in M can be written as ca + d for
c € R and d € M?. By Nakayama’s lemma, we thus have M = 0, so
M = Ra. O

Proposition 5.5. Let R be a domain and let S C R be a multiplicative
subset not containing 0. Let b € K, where K 1is the field of fractions
of R. Then b is integral over ST'R < sb is integral over R for some
seS.

Proof. 1f b is integral over ST!R, then we can write

b"+%b”—1+...+_:0'
Sn—1 S0
Letting s = H?;Ol s; and multiplying through by s™ we obtain

(sb)" +al,_,(sb)" '+ +ay=0

n
a, = s"! H Sia;
j=1
J#
which is clearly in R. Hence sb is integral over R. Similarly, if an
element sb with b € S™'R and s € S satisfies an equation

(5D)™ 4 ap_1(sb)" 1+ +ag =0,
with a; € R, then dividing through by s™ gives an equation

where

An1,, a
b L 2
S s

with coefficients in S™!R.

O
Corollary 5.6. If R is integrally closed, then S™'R is integrally closed.

Proof. When R is integrally closed, any b that is integral over R is in R.
Since any element ¢ € K that is integral over S~'R has the property
that sc is integral over R for some s € S, this means that sc € R for
some s € S and hence that ¢ € S7'R.

O

Lemma 5.7. Let A C B be domains and suppose that every element
of B is algebraic over A. Then for every ideal nonzero I of B, we have

INA#0.



3

Proof. Let b € I be nonzero. Since b is algebraic over A and b # 0, we
can write

ab" + - +ag =0,
for a; € A and ag # 0. Then ag € I NZ. O

Theorem 5.8. Let a be an algebraic number that is integral over Z.
Suppose that Z[a] is integrally closed. Then Z[ca] is a Dedekind domain.

Proof. Since Z|a] is a finitely generated Z-module, any ideal of Z[«] is
also a finitely generated Z-module. Hence, any ideal of Z[a] is finitely
generated over Z[a], so Z[a] is Noetherian. Let Q be a prime in Z[a].
Then, Q NZ is a prime ideal (p) in Z. Hence, Z[a]/Q is a quotient
of F,[X]/f(X) where f(X) is the minimal monic satisfied by «. Since
F,[X]/f(X) has dimension 0 (Exercise 7 on the homework), this im-
plies that Z[«]/Q is a field so Q@ must be maximal. O

Remark 5.9. The rings we deal with will not in general have this form.

Lemma 5.10. Let R be a ring that has direct sum decomposition
R=R;
j=1
Then every ideal in I C R can be written as
=1
j=1
forideals I; C R;. If P is a prime of R then there is some j for which

we can write
P=PrPPr

Iy
Proof. We can view R = ]_, R; as the set of
(1, ..y Tn)

with r; € R;. Let p; be the usual projection from R onto its j-th
coordinate and let 7; be the usual embedding of R; into R obtained by
sending 7; € R; to the element of R with all coordinates 0 except for
the j-th coordinate which is set to r;. Since an ideal I of R must be a
i;(R;) module, the set of p;(r) for which r € I must form an ideal R;
ideal, call it ;. It is easy to see that I; = p;(I). Certainly, I C € p,(I).
Since we can multiply anything in I by (0,...,1;,0,...,0) we see that
i;p;(I) C 1. Hence @ p;(I) C I, and we are done with our description
of ideals of @?:1 R;. For prime ideals, we note that if P is a prime
then (a1,...,a,)(b1,...,b,) € P implies that a;b; € p;(P) for each j,
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so p;(P) must be a prime of R; or all of R;. Suppose we had k # j with
p;(P) # R; and pi(P) # Ri. Then choosing a; € p;(P), ar € pr(P)
and b; & p;(P), b, ¢ pi(P), we see that

(45(ay) + i;(bx))(i(b;) + ix(ar)) € P,
but (i;(a;)+i;(bg)), (4;(b;)+ix(ax)) ¢ P, a contradiction, so p;(P) = R;

for all but one 7. Thus
P-Drdr
1]
for some prime P; of R;. O

Corollary 5.11. Let R be a Noetherian ring in which every prime ideal
1s maximal. Then R has only finitely many prime ideals Py, ..., P, and
can be written as

R @ R/PY.
j=1

Proof. Since R is Noetherian, there are prime ideals P; such that [] P;"
j=1

0 (remember that we can make the product be contained in 0 and 0 is

the only element in R0). Then the natural map

R — @ R/P!"
j=1

is surjective with kernel 0, hence it is an isomoprhism. Within each
factor R/P;", the only prime ideal is the image of P; under the quotient
map ¢, since the image of any other prime under ¢ is all of R/P;" by
the Lemma above. Hence, ¢(P;) is the only prime in R/P;". By the
Lemma above, the only primes in R are of the form ,; R ¢(P:).

U

Corollary 5.12. Let R be a Noetherian ring of dimension 1. Then
every nonzero ideal I is contained in finitely many prime ideals P.

Proof. Every prime ideal in R/I is maximal, so the proposition above
applies. O

Lemma 5.13. Let R be a integral domain, let M be a maximal ideal
of R, let n > q, and let ¢ the quotient map ¢ : R — R/M"™ be the
quotient map. Then ¢(s) is a unit in R/M™ for every s € R\ M.

Proof. Since M is maximal, we can have Rs+M = 1 for s ¢ M. Thus,
we can write ax +m = 1 for a € R and m € M" using facts about
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coprime ideals proved earlier. Thus ax = 1 (mod M™), so ¢(ax) =
1. U



