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Lemma 5.1. If I + J1 = 1 and I + J2 = 1, then I + J1J2 = 1.

Proof. Writing a + b = 1 for a ∈ I and b ∈ J1 and writing a′ + b′ = 1
for a ∈ I and b ∈ J2, we see that

1 = (a+ b)(a′ + b′) = aa′ + ab′ + ba′ + bb′ ⊆ I + J1J2.

�

Proposition 5.2. (Chinese Remainder theorem) Let R be a ring and
let I1, . . . , In be a set of ideals of R such that Ij + Ik = 1 for j 6 −j.
Then the natural map

R −→
n⊕

j=1

R/Ij

is surjective with kernel I1 · · · In.

Proof. We proceed by induction on n. If n = 1, then the result is
obvious. Otherwise, write I := I1 and J := I2 · · · In. Applying the
lemmas above, I + J = 1 and the natural map

R −→ R/I ⊕R/J

is surjective with kernel IJ . Since the natural map

R −→
n⊕

j=2

R/Ij

is surjective with kernel I2 · · · In by the inductive hypothesis, we are
done. �

One more criterion related to being a DVR.

Proposition 5.3. Let A be a Noetherian local ring with maximal ideal
M. Let I ⊆M have the property that I +M2 =M. Then I =M.

Proof. Let N =M/I. Let a ∈ M. Then there is a b ∈ M2 such that
a − b ∈ I. Thus, MN = N . By Nakayama’s lemma (note that N is
finitely generated since A is Noetherian), we have N = 0 so I =M. �

Corollary 5.4. Let A be a Noetherian local ring. LetM be its maximal
ideal and let k be the residue field A/M. Then

dimkM/M2 = 1

if and only if M is principal
1
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Proof. One direction is easy: If M is generated by π, then M/M2 is
generated by the image of π moduloM2. To prove the other direction,
suppose that M/M2 has dimension 1. Then we can write M = Ra+
M2 for some a ∈ M. Then the module M = M/a has the property
that MM = M , since any element in M can be written as ca + d for
c ∈ R and d ∈ M2. By Nakayama’s lemma, we thus have M = 0, so
M = Ra. �

Proposition 5.5. Let R be a domain and let S ⊆ R be a multiplicative
subset not containing 0. Let b ∈ K, where K is the field of fractions
of R. Then b is integral over S−1R ⇔ sb is integral over R for some
s ∈ S.

Proof. If b is integral over S−1R, then we can write

bn +
an−1
sn−1

bn−1 + · · ·+ b0
s0

= 0.

Letting s =
∏n−1

i=0 si and multiplying through by sn we obtain

(sb)n + a′n−1(sb)
n−1 + · · ·+ a′0 = 0

where

a′i = sn−i−1
n∏

j=1
j 6=i

siai

which is clearly in R. Hence sb is integral over R. Similarly, if an
element sb with b ∈ S−1R and s ∈ S satisfies an equation

(sb)n + an−1(sb)
n−1 + · · ·+ a0 = 0,

with ai ∈ R, then dividing through by sn gives an equation

bn +
an−1
s

bn−1 + · · ·+ a0
sn
,

with coefficients in S−1R.
�

Corollary 5.6. If R is integrally closed, then S−1R is integrally closed.

Proof. When R is integrally closed, any b that is integral over R is in R.
Since any element c ∈ K that is integral over S−1R has the property
that sc is integral over R for some s ∈ S, this means that sc ∈ R for
some s ∈ S and hence that c ∈ S−1R.

�

Lemma 5.7. Let A ⊆ B be domains and suppose that every element
of B is algebraic over A. Then for every ideal nonzero I of B, we have
I ∩ A 6= 0.
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Proof. Let b ∈ I be nonzero. Since b is algebraic over A and b 6= 0, we
can write

anb
n + · · ·+ a0 = 0,

for ai ∈ A and a0 6= 0. Then a0 ∈ I ∩ Z. �

Theorem 5.8. Let α be an algebraic number that is integral over Z.
Suppose that Z[α] is integrally closed. Then Z[α] is a Dedekind domain.

Proof. Since Z[α] is a finitely generated Z-module, any ideal of Z[α[ is
also a finitely generated Z-module. Hence, any ideal of Z[α] is finitely
generated over Z[α], so Z[α] is Noetherian. Let Q be a prime in Z[α].
Then, Q ∩ Z is a prime ideal (p) in Z. Hence, Z[α]/Q is a quotient
of Fp[X]/f(X) where f(X) is the minimal monic satisfied by α. Since
Fp[X]/f(X) has dimension 0 (Exercise 7 on the homework), this im-
plies that Z[α]/Q is a field so Q must be maximal. �

Remark 5.9. The rings we deal with will not in general have this form.

Lemma 5.10. Let R be a ring that has direct sum decomposition

R =
n⊕

j=1

Rj.

Then every ideal in I ⊂ R can be written as

I =
n⊕

j=1

Ij

for ideals Ij ⊂ Rj. If P is a prime of R then there is some j for which
we can write

P =
⊕
` 6=j

R`

⊕
Pj

Proof. We can view R =
⊕n

j=1Rj as the set of

(r1, . . . , rn)

with rj ∈ Rj. Let pj be the usual projection from R onto its j-th
coordinate and let ij be the usual embedding of Rj into R obtained by
sending rj ∈ Rj to the element of R with all coordinates 0 except for
the j-th coordinate which is set to rj. Since an ideal I of R must be a
ij(Rj) module, the set of pj(r) for which r ∈ I must form an ideal Rj

ideal, call it Ij. It is easy to see that Ij = pj(I). Certainly, I ⊂
⊕

pj(I).
Since we can multiply anything in I by (0, . . . , 1j, 0, . . . , 0) we see that
ijpj(I) ⊂ I. Hence

⊕
pj(I) ⊂ I, and we are done with our description

of ideals of
⊕n

j=1Rj. For prime ideals, we note that if P is a prime

then (a1, . . . , an)(b1, . . . , bn) ∈ P implies that ajbj ∈ pj(P) for each j,
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so pj(P) must be a prime of Rj or all of Rj. Suppose we had k 6= j with
pj(P) 6= Rj and pk(P) 6= Rk. Then choosing aj ∈ pj(P), ak ∈ pk(P)
and bj /∈ pj(P), bk /∈ pk(P), we see that

(ij(aj) + ij(bk))(ij(bj) + ik(ak)) ∈ P ,
but (ij(aj)+ij(bk)), (ij(bj)+ik(ak)) /∈ P , a contradiction, so pj(P) = Rj

for all but one j. Thus

P =
⊕
`6=j

R`

⊕
Pj

for some prime Pj of Rj. �

Corollary 5.11. Let R be a Noetherian ring in which every prime ideal
is maximal. Then R has only finitely many prime ideals P1, . . . ,Pn and
can be written as

R ∼=
n⊕

j=1

R/Pwi
i .

Proof. SinceR is Noetherian, there are prime ideals Pi such that
n∏

j=1

Pwi
i =

0 (remember that we can make the product be contained in 0 and 0 is
the only element in R0). Then the natural map

R −→
n⊕

j=1

R/Pwi
i

is surjective with kernel 0, hence it is an isomoprhism. Within each
factor R/Pwi

i , the only prime ideal is the image of Pi under the quotient
map φ, since the image of any other prime under φ is all of R/Pwi

i by
the Lemma above. Hence, φ(Pi) is the only prime in R/Pwi

i . By the
Lemma above, the only primes in R are of the form

⊕
`6=j R

⊕
φ(Pi).

�

Corollary 5.12. Let R be a Noetherian ring of dimension 1. Then
every nonzero ideal I is contained in finitely many prime ideals P.

Proof. Every prime ideal in R/I is maximal, so the proposition above
applies. �

Lemma 5.13. Let R be a integral domain, let M be a maximal ideal
of R, let n ≥ q, and let φ the quotient map φ : R −→ R/Mn be the
quotient map. Then φ(s) is a unit in R/Mn for every s ∈ R \M.

Proof. SinceM is maximal, we can have Rs+M = 1 for s /∈M. Thus,
we can write ax + m = 1 for a ∈ R and m ∈ Mn using facts about
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coprime ideals proved earlier. Thus ax = 1 (mod Mn), so φ(ax) =
1. �


