Math 430 Tom Tucker
 NOTES FROM CLASS 09/08/21

Earlier we said that we wanted to show that \mathcal{O}_{K} had many of the same properties as \mathbb{Z}. What we will in fact show is that \mathcal{O}_{K} is something called a Dedekind domain. A Dedekind domain is a simple kind of ring. Let us first define an even simpler kind of ring, a discrete valuation ring, frequently called a DVR.

Definition 4.1. A discrete valuation on a field K is a surjective homomorphism from K^{*} onto the additive group of \mathbb{Z} such that
(1) $v(x y)=v(x)+(y)$;
(2) $v(x+y) \geq \min (v(x), v(y))$.

By convention, we say that $v(0)=\infty$.
Remark 4.2. Note that it follows from property 2 that if $v(x)>v(y)$, then $v(x+y)=v(y)$. To prove this we note that $v(-x)=v(x)$ and $v(y)=v(-y)$, so we have

$$
v(y) \geq \min (v(x+y), v(-x)) \geq v(x+y)
$$

since $v(x)>v(y)$. Since $v(x+y) \geq \min (v(x), v(y))$ also, we must have $v(x+y)=v(y)$.

Example 4.3. Let v_{p} be the p-adic valuation on \mathbb{Q}. That is to say that $v_{p}(a)$ is the largest power dividing a for $a \in \mathbb{Z}$ and $v_{p}(a / b)=$ $v_{p}(a)-v_{p}(b)$ for $a, b \in \mathbb{Z}$.

Definition 4.4. A discrete valuation R ring is a set of the form

$$
\{a \in K \mid v(a) \geq 0\}
$$

How can we identify a DVR? The following will help.
A couple remarks first:
(1) If I and J are principal then so is $I J$. In particular, any power of a principal ideal is principal.
(2) Notation: for any ideal I of R, we say $I^{0}=R$.

Proposition 4.5. Let R be a Noetherian local domain of dimension 1 with maximal ideal \mathcal{M} and with $R / \mathcal{M}=k$ its residue field. Then the following are equivalent
(1) R is a DVR;
(2) R is integrally closed;
(3) \mathcal{M} is principal;
(4) there is some $\pi \in R$ such that every element $a \in R$ can be written uniquely as $u \pi^{n}$ for some unit u and some integer $n \geq 0$;
(5) every nonzero ideal is a power of \mathcal{M}.

Proof. $(1 \Rightarrow 2)$ Suppose that $b \in K \backslash R$. Then $v(b)<0$, so for any monic polynomial in b with coefficients in R, we have

$$
v\left(b^{n}+a_{n} b^{n-1}+\cdots+a_{0}\right)=v\left(b^{n}\right)<0
$$

which means that $b^{n}+a_{n} b^{n-1}+\cdots+a_{0} \neq 0$.
$(2 \Rightarrow 3)$ Let $a \in \mathcal{M}$. There is some n for which $\mathcal{M}^{n} \subseteq(a)$ (by "weak factorization" in Noetherian rings) but \mathcal{M}^{n-1} is not contained in (a) (note $n-1$ could be zero). Let $b \in \mathcal{M}^{n-1} \backslash(a)$ and let $x=a / b$. We can show that $\mathcal{M}=R x$. This is equivalent to showing that $x^{-1} \mathcal{M}=R$. Note that since (b) is not in $(a), b / a=x^{-1}$ cannot be in R. Hence, it cannot be integral over R. By Cayley-Hamilton, $x^{-1} \mathcal{M} \neq \mathcal{M}$ since \mathcal{M} is finitely generated as an R-module and $x^{-1} \notin R$ and R is integrally closed. Since $x^{-1} \mathcal{M}$ is an R-module and $x^{-1} \mathcal{M} \subseteq R$ (this follows from the fact that $\left.b \mathcal{M} \subseteq \mathcal{M}^{n} \subseteq(a)\right)$, this means that $x^{-1} \mathcal{M}$ is an ideal of R not contained in \mathcal{M}. So $x^{-1} \mathcal{M}=R$, as desired.
$(3 \Rightarrow 4)$ Let π generate \mathcal{M}. Now, let $a \in R$. We define $w(a)$ to be the smallest n for which $\mathcal{M}^{n} \subseteq R a$; such an n exists by "weak factorization" in Noetherian rings. We will show by induction that that a can be written as $u \pi^{w(a)}$ for some unit u. The case $w(a)=0$ is trivial, since $w(a)=0$ means a is a unit. If $w(a) \geq 1$, then $a \in \mathcal{M}$. Then we can write $a=\pi b$ for some b. Since, any element in \mathcal{M}^{n}, which is simply the set of $z \pi^{n}$ for $z \in R$, can be written as $x a$ for some $x \in R$, any element $z \pi^{w(a)-1}$ in $\mathcal{M}^{w(a)-1}$ can be written as $x b$ for that same x. Hence $w(b) \leq w(a)-1$. By the same reasoning, $w(b) \geq w(a)-1$. Hence $w(b)=w(a)-1$. So we can write b uniquely as $u \pi^{w(b)}$ for some unit u, which gives $a=u \pi^{w(a)}$ uniquely.
$(4 \Rightarrow 5)$ Let I be an ideal of R. Since I is finitely generated, it has generators m_{1}, \ldots, m_{n} which can all be written as $u_{i} \pi^{t_{i}}$. Then the i for which t_{i} is smallest will generate I from above.
($5 \Rightarrow 1$) Let $a \in R$. Then $R a=\mathcal{M}^{n}$ for some unique n. Letting $v(a)=n$ gives the desired valuation.

Example 4.6. The ideal \mathcal{P} generated by 2 and $\sqrt{5}-5$ in $\mathbb{Z}[\sqrt{5}]$ is prime but $\mathbb{Z}[\sqrt{5}]_{\mathcal{P}}$ is not a DVR. More on this later.

Definition 4.7. Dedekind domain is a Noetherian domain R such that $R_{\mathcal{P}}$ is a DVR for every nonzero prime \mathcal{P} of R.

The ideal structure is a bit more complicated than that of a DVR. Recall that in any noetherian ring R for every ideal I we can write $\prod_{i=1}^{n} \mathcal{P}_{i} \subseteq I$ with $\mathcal{P}_{i} \supseteq I$. We'll prove that in a Dedekind domain we can write get an inequality and get it uniquely.

One more thing: we'll want to work in Noetherian domains of (Krull) dimension 1 more generally, as you'll see later. So we'll try to state results for them when possible.

To understand how to factorize an ideal I, we'll want to understand R / I. To help us with this we'll want the Chinese remainer theorem.

The Chinese remainder theorem really consists of writing 1 in a lot of different ways. Let's prove the following easy Lemma.

Lemma 4.8. Let I and J be ideals in R. Suppose that $I+J=1$. Then
(1) $I \cap J=I J$; and
(2) for any positive integers m, n, we have $I^{m}+J^{n}=1$.

Proof. Since $I+J=1$, we can write $a+b=1$ for $a \in I$ and $b \in J$. Now 1. follows from the fact that for if $x \in I \cap J$, then $x=(a+b) x=$ $a x+b x \in I J$, so $I \cap J \subseteq I J$. The reverse inclusion $I J \cup I \cap J$ is obvious. To prove 2 ., we simply write $(a+b)^{2(m+n)}=1$, and note that the expansion of $(a+b)^{2(m+n)}$ consists entirely of elements in either $I^{m+n} \subseteq I^{m}$ or $J^{m+n} \subseteq J^{n}$.

Lemma 4.9. Let I and J be ideals of R and suppose that $I+J=1$. Then the natural map

$$
\phi: R \longrightarrow R / I \oplus R / J
$$

is surjective with kernel IJ.
Proof. The kernel is $I \cap J$ which equals $I J$ from the Lemma above. Now, to see that it is surjective, write $a+b=1$ with $a \in I$ and $b \in J$. Then $b=1-a$ and $\phi(b)=(1,0)$ and $\phi(a)=(0,1)$. Since $\phi(R)$ is clearly a $R / I \oplus R / J$ module and $R / I \oplus R / J$ is generated by $(1,0)$ and $(0,1)$ as an $R / I \oplus R / J$ module, ϕ must be surjective.

