Math 430 Tom Tucker

NOTES FROM CLASS 08/30/21
First a few quick notes:
One quick note on unique factorization. More on this later. In what follows, A will also be an integral domain. We say two elements $a, b \in A$ are associates if $A a=A b$.

Definition 2.1. Let A be an integral domain. We say that a non-unit $a \in A$ is irreducible if if $a=b c$ means that b or c is a unit.

Definition 2.2. Let A be an integral domain. We say that a non-unit $\pi \in A$ is prime if $\pi \mid b c$ implies $\pi \mid b$ or $\pi \mid c$.

Note that a prime is irreducible, since if π is prime and $\pi=b c$, then either $\pi \mid b$ or $\pi \mid c$. Suppose WLOG that $\pi \mid b$. Then we have $b c=w \pi c=\pi$ so $w c=1$ and thus c is a unit. In general, however, an irreducible need not be prime. Take $\sqrt{6}$ in the ring $\mathbb{Z}[\sqrt{-6}]$, for example.

Now suppose that every element of A has unique factorization into irreducibles, which means that for any $a \in A$ factors into irreducible elements and if furthermore, if we have

$$
u b_{1} \cdots b_{m}=w c_{1} \cdots c_{n}
$$

for units u, w and irreducibles, $b_{1}, \ldots, b_{m}, c_{1} \ldots, c_{n}$, then we have $m=n$ and permutation σ of $\{1, \ldots, m\}$ such that for each a_{i}, the element $b_{\sigma(i)}$ is an associate of a_{i}. Note that if A has unique factorization, then every irreducible element of A is prime since if $a \mid b c$, then some associate of a appears in the factorization of b or c and thus a divides b or c.

Thus, in a UFD, everything factors into primes.
Now, a quick note about how to tell when something is integral by looking at its minimal polynomial.
Proposition 2.3. (Prop. 2.5 from Janusz) Let R be a domain with field of fractions K and let L be an algebraic extension of K. Let $b \in L$ and let $f(X)$ be the minimal polynomial for b that has coefficients in K and leading coefficient 1. Then, the coefficients of f are integral over R whenever b is integral over R. In particular, if R is integrally closed in K and b is integral over R, then the coefficients of f are in R.
Proof. Suppose that b is integral over R. We can write

$$
f(X)=\left(X-b_{1}\right)\left(X-b_{2}\right) \cdots\left(X-b_{n}\right),
$$

by extending L to some field E over which f splits. Note that any polynomial satisfied by b is divisible by f in $K[X]$, so if b satisfies an integral polynomial with coefficients in R, so do all of the other b_{i}.

Hence, if b is integral then so are all of the b_{i}. The coefficients of f are all in the ring $R\left[b_{1}, \ldots, b_{n}\right]$, so this also means that the coefficients of f are integral over R as desired. Now, since these coefficients are also in K, they are actually in R if R is integrally closed.

So, to check if something is integral, all we have to do is check its minimal polynomial. Example, let $\alpha=\sqrt{11} / 7$. Its minimal polynomial is $X^{2}-11 / 49$ which isn't integral over \mathbb{Z}, so we're done.

Theorem 2.4. (Cayley-Hamilton) Let $A \subseteq B$. Suppose that M is a finitely generated A-module with generators m_{1}, \ldots, m_{n}. Suppose that that M is also a faithful $A[b]-m o d u l e$ (this means the only element that annihilates all of M is 0) and that b acts on the generators m_{i} in the following way

$$
\begin{equation*}
b m_{i}=\sum_{j=1}^{n} a_{i j} m_{j} \tag{1}
\end{equation*}
$$

Then b satisfies the equation

$$
\operatorname{det}\left(\begin{array}{llll}
b-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & b-a_{22} & \cdots & -a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{n 2} & -a_{n 1} & \cdots & b-a_{n n}
\end{array}\right)=0
$$

Proof. Let T be the matrix $b I-\left[a_{i j}\right]$. The theorem then says that $\operatorname{det} T=0$. Notice that we can consider T as an endomorphism of M^{n} by writing

$$
\left(\begin{array}{llll}
b-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & b-a_{22} & \cdots & -a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{n 2} & -a_{n 1} & \cdots & b-a_{n n}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
b x_{1}-\sum_{j=1}^{n} a_{1 j} x_{j} \\
\cdot \\
\cdot \\
b x_{n}-\sum_{j=1}^{n} a_{n j} x_{j}
\end{array}\right)
$$

where the x_{i} are elements of M. Let $\left(x_{1}, \ldots, x_{n}\right)$ be $\left(m_{1}, \ldots, m_{n}\right)$, we obtain

$$
\left(\begin{array}{llll}
b-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & b-a_{22} & \cdots & -a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{n 2} & -a_{n 1} & \cdots & b-a_{n n}
\end{array}\right)\left(\begin{array}{l}
m_{1} \\
\cdot \\
\cdot \\
m_{n}
\end{array}\right)=\left(\begin{array}{l}
b m_{1}-\sum_{j=1}^{n} a_{1 j} m_{j} \\
\cdot \\
\cdot \\
b m_{n}-\sum_{j=1}^{n} a_{n j} m_{j}
\end{array}\right)=\left(\begin{array}{l}
0 \\
\cdot \\
\cdot \\
0
\end{array}\right)
$$

by equation (1). Now, recall from linear algebra (exercise) that there is a matrix U, called the adjoint of T, for which $U T=(\operatorname{det} T) I$. We obtain

$$
\left(\begin{array}{llll}
\operatorname{det} T & 0 & \cdots & 0 \\
0 & \operatorname{det} T & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \operatorname{det} T
\end{array}\right)\left(\begin{array}{l}
m_{1} \\
\cdot \\
\cdot \\
m_{n}
\end{array}\right)=\left(\begin{array}{l}
(\operatorname{det} T) m_{1} \\
\cdot \\
\cdot \\
(\operatorname{det} T) m_{n}
\end{array}\right)=\left(\begin{array}{l}
0 \\
\cdot \\
\cdot \\
0
\end{array}\right)
$$

so $(\operatorname{det} T) m_{i}=0$ for each m_{i}. Hence $(\operatorname{det} T)=0$, since $(\operatorname{det} T) \in A[b]$ and $A[b]$ acts faithfully on M.
Corollary 2.5. Let $A \subseteq B$ and let $b \in B$. If $A[b] \subseteq B^{\prime} \subseteq B$ for a ring B^{\prime} that is finitely generated as an A-module, then b is integral over A.

Proof. Since $b \in B^{\prime}$, multiplication by b sends B^{\prime} to B^{\prime}. Moreover, the resulting map is A-linear (by distributivity of multiplication). The action of $A[b]$ on B^{\prime} must be faithful since $c \cdot 1=0$ implies $c=0$.

Let m_{1}, \ldots, m_{n} generate B^{\prime} as an A-module. Then, for each i with $1 \leq i \leq n$, we can write

$$
b x_{i}=\sum_{j=1}^{n} a_{i j} x_{j} .
$$

Clearly, the equation

$$
\operatorname{det}\left(\begin{array}{llll}
b-a_{11} & -a_{21} & \cdots & -a_{n 1} \\
-a_{12} & b-a_{22} & \cdots & -a_{n 2} \\
\cdots & \cdots & \cdots & \cdots \\
-a_{1 n} & -a_{2 n} & \cdots & b-a_{n n}
\end{array}\right)=0
$$

is integral.
For now, let's note the following corollary.
Corollary 2.6. Let $A \subseteq B$. Then the set of all elements in B that are integral over A is a ring.

Proof. We need only show that the elements in B that are integral over A forms a ring. If α and β are integral over A, then $A[\alpha, \beta]$ is finitely generated as an A-module. Hence, $-\alpha, \alpha+\beta$, and $\alpha \beta$ are all integral over A since they are contained in $A[\alpha, \beta]$, by the Cayley-Hamilton theorem above.

The following is immediate.
Corollary 2.7. Let K be an extension of \mathbb{Q}. Then the set of all elements in K that are integral over \mathbb{Z} is a ring.

Again let $A \subseteq B$. The set B^{\prime} of elements of B that are integral over A is a ring. We call this ring B^{\prime} the integral closure of A in B.

Definition 2.8. Let K be a number field (a finite extension of \mathbb{Q}). The ring of integers of K is the integral closure of \mathbb{Z} in K. We denote is as \mathcal{O}_{K}.

Ask if people have seen localization.
Definition 2.9. We say that a domain B is integrally closed if it is integrally closed in its field of fractions.

Proposition 2.10. Let $A \subseteq B$, where A and B are domains. The ring B is integrally closed over A if and only if B is integrally closed in its field of fractions.

Proof. Exercise.
Example 2.11. Any unique factorization domain is integrally closed. (Exercise.)

Let's do a preview of what properties we want rings of integers to have. First let's recall some features of \mathbb{Z} :
(1) \mathbb{Z} is Noetherian.
(2) \mathbb{Z} is 1 -dimensional.
(3) \mathbb{Z} is a unique factorization domain.
(4) \mathbb{Z} is a principal ideal domain.

Recall what a Noetherian ring is.
Definition 2.12. A ring R is Noetherian if every ideal is finitely generated as an R-module. Equivalently, R is if every ascending chain of ideals terminates.

Incidentally, we will later see that the conditions (1) and (2) are often equivalent in the situations we examine.

The rings \mathcal{O}_{K} will have the properties that
(1) \mathcal{O}_{K} is Noetherian.
(2) \mathcal{O}_{K} is 1-dimensional.
(3) \mathcal{O}_{K} has unique factorization for ideals.
(4) \mathcal{O}_{K} is locally a principal ideal domain.
(5) It is possible that \mathcal{O}_{K} is not a unique factorization domain and that it is not a principal ideal domain.
In fact, any subring B of a number field K that is integral over \mathbb{Z} will be Noetherian and 1-dimensional. That is the Krull-Akizuki theorem which we will eventually prove.

We used the work "locally" above. Let's define it.

