PARABOLIC MANDELBROT SET. Friday, May 28, 2021 8:45 AM

§ 1. Moduli Space M2.

$$f(z) = p(z) , p(z), q(z) \in \mathbb{C}[z], (p(z), q(z)) = 1.$$

$$d = \max \{ dig(p(z)), deg(q(z)) \}.$$

$$Rat_{d} := \left\{ p(z) = p(z) \mid digree d \right\}$$

We want d=2. If p(z) = a=2+b=+c, q(z)=d=2+e=+f.

Result (pizi,
$$q(zi)$$
) = dut $\begin{cases} a & b & c & o \\ o & a & b & c \\ d & e & f & o \end{cases} \neq 0$

Ratz \cong $\{(a:b:c:d:e:f)\in \mathbb{CP}^5 \mid \text{Result}(a?4bz+c,d?4ez+f) \neq o\}$ Ly Eariski open set.

We can regard f as a dyn. syst. on \hat{C} = Riemann sphere. PGL(2,C) (\cong Rat,) acts on Rat, by conjugation.

$$\hat{C}$$
 \hat{C} \hat{C}

We say that f is (holomorphically) conjugate to g if they belong to the same probit., i.e., $\exists \phi \in PGL(2,C) \leq \xi$. $g = \xi^{g}$. $(\xi \sim g)$.

M := Rat2/

$$\mathcal{M}_2:= \text{Rat}_2/_{\sim}$$
.

A warring PGL (2,C) is not free: $\phi(z)=-z$ outs trivially on add funct. M_2 could have singularities.

Thm. (Milnor) M2 = C2.

Sketch of the sketch.
$$f(z) = \neq (\Rightarrow) \xrightarrow{d \ge 1 + 6 \ge 1} = \ge$$

 λ_1, λ_2 and $\lambda_3 \sim n$ multipliers of the fixed its. Felatz. $\frac{3}{11} (T + \lambda_1) = \sum_{i=0}^{3} \sigma_i(i) T^{3-i}.$

 $\nabla_{1}(\xi) = \lambda_{1} + \lambda_{2} + \lambda_{3}$

σ2 (4) = λ, λ,+ λ, λ, λ, λ, λ,

 $T_3(\xi) = \lambda_1 \lambda_2 \lambda_3$.

Lemma. Let $f \in Rat_d$, $d \geqslant 2$, s.t. $\lambda_p \neq 1$, $\forall P \in \mathcal{F}(x(f))$, then $\frac{1}{1-\lambda_p} = 1$.

Assume $\lambda_{1}, \lambda_{2}, \lambda_{3} \neq 1$. $\Rightarrow \frac{1}{1-\lambda_{1}} + \frac{1}{1-\lambda_{2}} = 1$ $\Leftrightarrow (1-\lambda_{2}(1-\lambda_{3}) + (1-\lambda_{1})(1-\lambda_{3}) + (1-\lambda_{1})(1-\lambda_{2}) = (1-\lambda_{1})(1-\lambda_{2})(1-\lambda_{3})$ $\Leftrightarrow 2-\lambda_{1}-\lambda_{2}-\lambda_{3}+\lambda_{1}\lambda_{2}\lambda_{3}=0$ $-\sigma_{1}(4)$ $\sigma_{3}(4)$ Lemma (Normal Forms) $f \in Rat_2$, $\lambda_1, \lambda_2, \lambda_3$ multi- of its fixed pts. (a) If $\lambda_1\lambda_2 \neq 1$, then there exists $\phi \in PGL(2,C)$ s.t.

$$\tau: \operatorname{Rat}_2 \longrightarrow \mathbb{C}^2$$

$$+ \longmapsto (\sigma_i(\xi), \sigma_2(\xi)).$$

If
$$f,g$$
 s.t. $\tau(f) = \tau(g) \Rightarrow \tau_c(f) = \tau_c(g)$, $i = 1,2$.
 $\Rightarrow f$ and g have the same multipliers.
 $\Rightarrow f \sim g$

Surjectivity also follows from the lemma.

$$4(t_{\phi}) = 4(t)$$

§2. Per,(1)-

Def. For each nel, let fer, (n) c M2 be the set of conjugacy classes [f] of maps with a fixed pt. with multiplier n.

Want Per, (1)

$$f(z)=\underbrace{0z^2+bz+c}_{dz^2+ez+f}$$
 $P-H \Rightarrow 2deg(z)-2=\underbrace{\sum_{p\in C}(e_{p}-1)}_{p\in C}$

Ls 2 cnt. pts. with mult.

$$f'(z) = \frac{(ae-bd)z^2 + (2af-2cd)z + (bf-ce)}{(dz^2 + ez + f)^2}$$

 $\alpha + \infty$ cnt. \Rightarrow (ae-bd) $\alpha^2 + (2\alpha f - 2cd) \propto + (bf - ce) = 0$

 $\Delta = 4(af^2-abef+ace^2-2acdf+b^2df-bcde+c^2d^2)=4$ Result(p,q) +0

x= 00, take \$(2) = 1/2.

$$A = \infty$$
, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

 $A = \infty$, take $\Phi(z) = \sqrt{z}$.

K=K 75 also not double.

~ P has · at most 3 foxed pts. · exactly 2 critical pts.

FACT: xeFix(+), \(\lambda = \) <=> \(\lambda \) has multiplicity >2. (x + \omega)

So ferrate has a fixed pt. with multip. 1, then

at most 2 fixed ats.

at xady 2 ant. pts.

Want: Per, (1) = of [PA] /AEC), PA(Z)= Z+1/2+A

Take $\phi \in PGL(2,\mathbb{C})$ sending the crit. pts. to ± 1 and the fixed pt. with mult. = 1 to ∞ .

• (
$$\infty$$
 fixed) $\lim_{z\to\infty} \frac{dz}{dz} + 6z + c = \infty \Rightarrow [d=0]$

· (±1 ont.) f(z) = aez2+2afz+(bf-ce)

$$(\pm 1 \text{ ont.}) \quad f'(x) = \underline{\alpha} e_{x}^{2} + \lambda a_{1}^{2} + (b_{1}^{2} - ce)$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad (-1 \text{ ont.}) \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad | f(x) = 0 \quad | f(x) = 0$$

$$e(\alpha - c) + f(\lambda a_{1}^{2} b) = 0 \quad | f(x) = 0 \quad$$

§3. Parabolic Mandel boot Set.

Def. The Fatou set FCF) of f is defined to be the cet of points in Q for which switch when 11 it is con al Homber & 2nd is mounted in 11.

Def. The Fatou set $F(\xi)$ of f is defined to be the cet of points in \hat{C} for which exists whood V it. the seq of iterates f^n is normal in V. The Juria set $J(\xi)$ is its complement $J(\xi) = C \cdot F(\xi)$.

PMK: F(f) open, J(f) compact.

Thm. Ø = 7(4) = \$ (4) = \$ (5(4)) and T(4) = \$ (3(4)).

Sketch. ϕ conformal $\hat{C} \rightarrow \hat{C}$ so $df^n k ^n$ conv. uniformly on \mathcal{U} to so me limit $f_s(x)$ the require $f_s(x)$ conv. unif. on $\phi(\mathcal{U})$ to (f_s, ϕ) .

Thm. 4(F(4)) = F(4) = 2'(F(4)), 4(J(4))=J(4)=2'(J(4)).

FACT: J(f) disconnected (=) the crit pts. are in the same Fatou comp. containing a fixed pt. in its chasure on numbrisher in Dulis.

Put My := { [f] & Per(()) | J(f) is connected } for x & Duliy.

- · ter,(0) = \(\frac{2}{2} + \cdot \) (c∈ \(\cdot \) \Rightarrow \(\cdot \) (set.
- 12/41, any rat. map is quasi-conformally conj. to 5 (relynomial-like) with a tixed pt. with 12/41.
- $\lambda=1$. \rightarrow $M_A=$ parabolic Mandelbrot Set.

Conjecture (Milnor) M, homeomorphic to Mo. - D Petersen & Roesch.

Milnor. M, is connected.