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Abstract. The main thrust of these notes is 3-fold: (1) An analysis of certain
K(π, 1)’s that arise from the connections between configuration spaces, braid
groups, and mapping class groups, (2) a function space interpretation of these
results, and (3) a homological analysis of the cohomology of some of these
groups for genus zero, one, and two surfaces possibly with marked points, as
well as the cohomology of certain associated function spaces.

An example of the type of results given here is an analysis of the space
k particles moving on a punctured torus up to equivalence by the natural
SL(2, Z) action.

1. Introduction

The main thrust of these notes is 3-fold:
(1) An analysis of certain K(π, 1)-spaces that arise from the connections between
configuration spaces, braid groups, and mapping class groups.
(2) A function space interpretation of these results, and
(3) A homological analysis of the cohomology of some of these groups for genus
zero, one, and two surfaces (possibly with marked points).

These notes address certain properties of configuration spaces of surfaces, such as
their connections to mapping class groups, as well as their connections to classical
homotopy theory that emerged over 15 years ago. These constructions have various
useful properties. For example, they give easy ways to compute the cohomology of
certain related discrete groups, as well as give interpretations of this cohomology
in terms of related mathematics.

In particular certain explicit models for Eilenberg-MacLane spaces of type K(π, 1)
are given for certain kinds of braid groups and mapping class groups. For example,
we recall the classical result that configuration spaces of surfaces that are neither the
2-sphere nor the real projective plane are K(π, 1) spaces. The analogous configura-
tion spaces for the the 2-sphere and the real projective plane are not K(π, 1)’s, but
this is remedied by considering natural actions of certain groups on these surfaces
and forming the associated Borel constructions.

For example, the group SO(3) acts on the 2-sphere by rotations. Hence, this
group acts on the configuration space. Thus, there is an induced action of S3,
the non-trivial double cover of SO(3), on these configuration spaces. A common
theme throughout these notes is the structure of the Borel construction for these
types of actions. For example, the case of the S3 Borel construction for the natural
action of S3 on points in the 2-sphere or the projective plane give K(π, 1) spaces
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whose fundamental group is the braid group of the 2-sphere or real projective plane
respectively. The resulting spaces are elementary flavors of moduli spaces and may
be described in elementary terms as spaces of polynomials. These were investigated
in [].

One feature of the view here is that when calculations “work”, they do so eas-
ily, and give global descriptions of certain cohomology groups. For example, the
cohomology of the genus zero mapping class group with marked points gives a
(sometimes) computable version of cyclic homology. Some concrete calculations
are given.

Also, in genus one, there is a version of a based mapping class group. In this case
the cohomology of these groups with all possible marked points admits an accessible
and simple description. In additon, the genus 2 mapping class group has a very
simple “configuration-like” description from which the torsion in the cohomology
follows at once. Some of this has found application to the integral cohomology of
Sp(4, Z), the 4× 4 integral matrices that preserve the symplectic form of R4. Most
of the work here is directed at calculating torsion in the integral cohomology.
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2. Configuration spaces

Throughout these notes, we will assume X is a Hausdorff space and furthermore
if X has a basepoint, we will assume it is non-degenerate. (This means that the
inclusion of the basepoint into the space is a cofibration. We will discuss this more
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when we need it.) We will frequently also assume that X is of the homotopy type
of a CW-complex.

We will use Xk to denote the Cartesian product of k copies of X . We will
be interested in studying certain “configuration spaces” associated to X , so let us
define these next.

Definition 2.1. Given a topological space X, and a positive integer k, let

F (X, k) = {(x1, . . . , xk) ∈ Xk : xi 6= xj for i 6= j}.
This is the k-configuration space of X.

So we see that elements in the k-configuration space of X , correspond to k
distinct, ordered points from X .

Now, it is easy to see that Σk, the symmetric group on k letters, acts on Xk

by permuting the coordinates. If we restrict this action to F (X, k), it is easy to
check that it is free (no nonidentity element fixes a point). Thus we can form the
quotient space

SF (X, k) = F (X, k)/Σk(1)

and the quotient map π : F (X, k) → SF (X, k) is a covering map. An element of
SF (X, k) is a set of k distinct (unordered) points from X .

Remark 2.2. We have of course that F (X, 1) = SF (X, 1) = X. (In these notes,
= will mean homeomorphic and we will use ≃ to stand for homotopy equivalent).

Remark 2.3. It is easy to see that F (−, k) defines a covariant functor from the
category of topological spaces and continuous injective maps, to itself. This is not
a homotopy functor. For example the unit interval, [0, 1], is homotopy equivalent
to a point. However F ([0, 1], 2) is a nonempty space while F (point, 2) is an empty
set.

Definition 2.4. Given a space X, we will find it convenient to let Qm denote a
set of m distinct points in X.

Notice that for k ≥ m ≥ 1 there is a natural map

πk,m : F (X, k) → F (X, m)

obtained by projecting to the first m factors.
This map is very useful in studying the nature of F (X, k) especially when X is

a manifold without boundary. This is due to the following fundamental theorem:

Theorem 2.5 (Fadell and Neuwirth). If M is a manifold without boundary (not
necessarily compact) and k ≥ m ≥ 1, then the map πk,m is a fibration with fiber
F (M − Qm, k − m).

We will use this theorem, to get our first insight into the nature of these config-
uration spaces.

Definition 2.6. A K(π, 1)-space X is a path connected space where πi(X) = 0 for
i ≥ 2 and π1(X) = π. It is well known, that the homotopy type of such a space
is completely determined by its fundamental group (recall all our spaces are of the
homotopy type of a CW complex).

Let us first look at configuration spaces for 2-dimensional manifolds. Our first
result, will be to show that most of these are K(π, 1)-spaces.
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Theorem 2.7. Let M be either R2 or a closed 2-manifold of genus ≥ 1 (not
necessarily orientable). F (M−Qm, k) has no higher homotopy for all k ≥ 1, m ≥ 0.
In other words F (M − Qm, k) is a K(π, 1)-space.

Proof. We will prove it by induction on k. First the case k = 1. If m = 0, we
just have to note that M = F (M, 1) is a K(π, 1)-space and for m ≥ 1, M − Qm ≃
bouquet of circles , and so is a K(F, 1)-space where F is a free group of finite rank.

So we can assume k > 1 and that the theorem holds for all smaller values. By
theorem 2.5, the map π(k,1) : F (M − Qm, k) → F (M − Qm, 1) is a fibration with
fiber F (M − Qm+1, k − 1). However, by induction both the base and the fiber of
this fibration are K(π, 1)-spaces, and so by the homotopy long exact sequence of
the fibration, we can conclude the total space is also a K(π, 1)-space and so we are
done.

�

It follows, from theorem 2.7, that for any closed 2-dimensional manifold M
besides the sphere S2 and the projective plane RP 2, the homotopy type of F (M, k)
is completely determined by its fundamental group. So our next goal should be to
understand that. It turns out there is quite a beautiful picture for the fundamental
group of a configuration space in terms of braids and we shall explore this in the
next section.

For now, let us state a lemma that can be used to ensure that a configuration
space is path connected so that one does not have to worry about base points when
talking about the fundamental group.

Lemma 2.8. Let M be a connected manifold (without boundary) such that M
remains connected when punctured at k − 1 ≥ 0 points. Then F (M, k) is path
connected. So in particular, if M is a connected manifold of dimension at least 2,
all of its configuration spaces are path connected.

Proof. The proof is by induction on k. When k = 1, it follows easily from the
hypothesis. So we can assume k > 1 and that we have proved it for smaller
values. Then by theorem 2.5, πk,1 : F (M, k) → F (M, 1) is a fibration with fiber
F (M−Q1, k−1). Thus by induction, both the base and the fiber are path connected
and hence so is the total space. �

3. Braid groups

Let I denote the unit interval [0, 1] ⊂ R. If X is a space, we can view X × {0}
as the bottom of the “cylinder” X × I, and similarly X × {1} as the top.

Let Ik be the space which consists of k disjoint copies of I where the copies are
labeled from 1 to k. Then let 0i ∈ Ii be the point in the ith copy of I corresponding
to 0 and similarly let 1i ∈ Ii be the point in the ith copy of I corresponding to 1.

Let E = (e1, . . . , ek) be an element in F (X, k), and let πI : X × I → I be the
projection map to the second factor. We are now ready to define what we mean by
a pure braid in X .

Definition 3.1. A pure k-stranded braid in X (based at E) is a continuous, one
to one map f : Ik → X × I which satisfies:
(a) πI ◦ f : Ik → I is the identity map on each component of Ik and
(b) f(0i) = (ei, 0), f(1i) = (ei, 1) for all 1 ≤ i ≤ k.
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Let us look at an example to make the formal definition above intuitively clear.
Let us take X = R2 and k = 3. We can picture X × I as the subspace of R3 where
the z-coordinate satisfies 0 ≤ z ≤ 1. The following is a typical picture of a pure
3-stranded braid of R2.

r r r

r r r

z=0

z=1

It is obvious from the picture, that we would like to say two braids are equivalent
if we can “deform” one to the other. Thus we define:

Definition 3.2. Let f0 and f1 be two pure k-stranded braids based at E. Then we
say f0 is equivalent to f1 if there exists a homotopy F : Ik × I → X × I between
them, such that F restricted to Ik × {t} is a pure k-stranded braid for all t ∈ I.

It is easy to see that the equivalence above, indeed gives an equivalence relation
on the set of all pure k-stranded braids of X .

Now let us explore the natural correspondence between pure k-stranded braids
based at E and loops in F (X, k) based at E.

One can view such a loop as a map θ : I → F (X, k) with θ(0) = θ(1) = E.
However, F (X, k) ⊆ Xk so we can take the components of the map θ to get maps
θi : I → X for 1 ≤ i ≤ k. We can then define fi : I → X × I by

fi(t) = (θi(t), t).

Finally we can take these maps and put them together to get a map f : Ik → X×I.
It is a routine exercise to check that the map f obtained is indeed a pure k-

stranded braid based at E and that this establishes a one to one correspondence
between loops in F (X, k) based at E and pure k-stranded braids of X based at E.

Similarly, it is easy to check that two such loops are (base point preserving)
homotopic if and only if the corresponding pure braids are equivalent. Thus we
see a one to one corespondence between π1(F (X, k); E) and PBk(X ; E), the set of
equivalence classes of pure k-stranded braids in X , based at E.

Of course this implies that PBk(X ; E) inherits the structure of a group from
π1(F (X, k); E), but of course, we can also describe this multiplication naturally on
the level of the braids.
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Given two braids f0 and f1, we can think of f0 as a braid between X × {0} and
X × { 1

2} and f1 as a braid between X × { 1
2} and X × {1}, and then f0 ∗ f1 is the

braid obtained by stacking the braid f1 on top of the braid f0 as illustrated in the
diagram below for the case X = R2 and k = 3. It also follows from the earlier
correspondence, that the inverse of a pure braid is just obtained by turning the
braid upside down.

f0

q q q

q q q

q q q

q q q

q q q

q q q

q q q

f0 ∗ f1

�
�

�
��*

H
H

H
HHj

z=1

z=0

z=1

z=0

z=1

f1

z=0

z = 1
2

Definition 3.3. We will call PBk(X ; E), the pure k-stranded braid group of X.
We will usually surpress the basepoint E when it is obvious and write PBk(X).

Remark 3.4. Notice of course that PB1(X) = π1(X) for any path connected space
X.

So we see that in general π1(F (X, k)) can be interpreted as the pure k-stranded
braid group PBk(X), and this will allow us to picture many relations among the
elements of this group.

We saw, in section 2 that there are many examples where configuration spaces
are K(π, 1)-spaces. This means that in these cases, there will be a very strong
connection between the configuration space and the corresponding pure braid group.
We will begin to exploit this correspondence in the next section.

Definition 3.5. π1(SF (X, k)) is called the k-stranded braid group of X and is
denoted Bk(X).

Recall that we have a covering map π : F (X, k) → SF (X, k), obtained by
forming the quotient space under the free action of Σk on F (X, k). Assuming that
F (X, k) is path connected, from covering space theory, this implies that we have
the following short exact sequence of groups:

1 → PBk(X) → Bk(X)
λ→ Σk → 1

Fixing E = (e1, . . . , ek) ∈ F (X, k), from covering space theory we can identify
elements of π1(SF (X, k); π(E)) with homotopy classes of paths in F (X, k) starting
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at E and ending at a point of F (X, k) in the same Σk-orbit of E. Using the same
correspondence that associated loops in F (X, k) with pure braids, we see that these
paths are naturally associated to k-stranded braids of X which start at the points
{e1, . . . , ek} at the bottom of X × I and end at the same set of points on the top,
but where it is possible that the points get permuted.

It is easy to check that there is a well defined multiplication on the equivalence
classes of these braids, just as before, which corresponds to the group structure of
π1(SF (X, k)). Thus Bk(X) is just the group of k-stranded braids in X (based at
some set of k distinct points) which are allowed to induce a permutation of the
points. The map λ in the short exact sequence above is just the map that assigns
to every braid, the permutation it induces on the k points. The pure braids are
hence exactly the elements in the kernel of this map.

Definition 3.6. Bk(R2) is called Artin’s k-stranded braid group and correspond-
ingly, PBk(R2) is called Artin’s k-stranded pure braid group. It follows from theo-
rem 2.7 that

F (R2, k) = K(PBk(R2), 1)

and
SF (R2, k) = K(Bk(R2), 1).

4. Cohomology of groups

4.1. Basic concepts. This section is provided to recall the relevant basic facts
about the cohomology of groups that we will need for the sequel. The reader is
encouraged to read when these results are needed and used.

Recall for every “nice” topological group G (Lie groups and all groups equipped
with the discrete topology are “nice”), we have a universal principal G-bundle,

EG
π→ BG

where EG is contractible and G acts freely on it. The isomorphism classes of princi-
pal G-bundles over any paracompact space X , are then in bijective correspondence
to [X, BG], the free homotopy classes of maps from X into BG. Furthermore, it is
well known that BG is unique up to homotopy equivalence.

Furthermore the correspondence G → BG can be made functorial, so for every
homomorphism of (topological) groups, λ : G → H we get a map B(λ) : BG → BH .
This map is always well defined up to free homotopy.

If G is discrete, then π is a covering map and BG is a K(G, 1)-space. Since
BG is unique up to homotopy equivalence, we may speak of the cohomology of a
(discrete) group by defining

H∗(G; M) = H∗((K(G, 1); M).

In general, we will also want to consider “twisted” coefficients in some G-module
M .

One can also define the cohomology of a group, purely in the language of homo-
logical algebra.

Definition 4.1. Given a group G, and a G-module M , we define

H∗(G; M) = Ext∗
ZG(Z, M)

and
H∗(G; M) = TorZG

∗ (Z, M)
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where ZG is the integral group ring of G, and Z is given the structure of a G-module
where every element of G acts trivially.

In other words, to calculate the cohomology of a group G, take any projective
resolution of Z over the ring ZG, apply HomZG(−, M) to it, and calculate the
cohomology of the resulting complex.

This definition, is equivalent to the topological one, see for example [B].

Remark 4.2. It is an elementary fact that for any G-module M , one has

H0(G; M) = MG = {m ∈ M | gm = m for all g ∈ G}.
MG is called the group of invariants of the G-module M .

Remark 4.3. It is also easy to see that one has

H0(G; Z) = Z

and

H1(G; Z) = Gab

where Gab is the abelianization of G.

4.2. Examples. Here are some basic calculations:
(a) Let G = Z/n be the cyclic group of order n. We can view Z/n as the nth roots
of unity in C and have it act on C∞ by coordinatewise multiplication. This action
restricts to a free action on S∞, the subspace of unit vectors whose coordinates are
eventually zero and the quotient space under this action is an infinite Lens space
which is a K(Z/n, 1).

One calculates:

Hk(Z/n; Z) =











Z/n if k > 0, k even

Z if k = 0

0 otherwise .

(b) let G = Fn be a free group of rank n. In this case, a bouquet of n circles is
a K(Fn, 1). Since this is 1-dimensional, it is easy to see that H∗(Fn; M) = 0 for
all ∗ > 1 and any coefficient M . Furthermore, H1(Fn; Z) is a free abelian group of
rank n.

4.3. Cohomological dimension. As we saw before, the free groups have the prop-
erty that H∗(G; M) = 0 when ∗ > 1, so we might say they have cohomological
dimension 1. In general we define:

Definition 4.4. The cohomological dimension of G is denoted cd(G). It is the
maximum dimension n such that H∗(G; M) 6= 0 for some G-module M . Of course,
if there is no such maximum n, we say cd(G) = ∞.

Thus we see the cohomological dimension of a nontrivial free group is one while
cd(Z/n) = ∞ for any n ≥ 2.

Again, there is also a more direct description of cohomological dimension using
homological algebra.

Definition 4.5. Given a ring R, a projective resolution of a R-module M is a
exact sequence of R-modules

· · · → Pn → · · · → P1 → P0 → M → 0
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where the Pi are projective R-modules. If Pn 6= 0 and Pk = 0 for k > n we say the
resolution has length n.

Definition 4.6. Given a ring R and an R-module M , we define projR(M), the
projective dimension of M , as the mimimum length of a projective resolution of M .
Of course, it is possible projR(M) = ∞.

Proposition 4.7. For any group G,

cd(G) = projZG(Z)

Proof. See [B]. �

Remark 4.8. Given a G-module M , and a subgroup H ≤ G, we can regard M as
a H-module in the obvious way. It is easy to check that if M is a free (projective)
ZG-module, then M is also a free (projective) ZH-module.

Proposition 4.9. For any group G, and subgroup H ≤ G we have cd(H) ≤ cd(G).
Thus if cd(G) < ∞, G is torsion-free.

Proof. It is easy to check that a projective resolution of Z over ZG restricts to
a projective resolution of Z over ZH . So the first statement follows. If G has
nontrivial torsion it contains Z/n for some n ≥ 2 and the second statement follows
from the first as cd(Z/n) = ∞. �

It is an elementary result that the only group that has cohomological dimension
equal to zero is the trivial group. On the other hand we have seen that any nontrivial
free group has cohomological dimension 1. It is a deep result of Stallings and Swan
that the converse is also true, i.e.,

cd(G) ≤ 1 ⇐⇒ G is a free group.

Thus we can think of cd(G) as measuring how far a group G is from being free. If
cd(G) < ∞, at least it is torsion-free, as we have seen.

We also have the following topological picture of cohomological dimension, given
by the following proposition, whose proof can be found in [B].

Proposition 4.10. Let the geometric dimension of G, denoted by geod(G), be the
minimum dimension of a K(G, 1)-CW-complex. Then we have geod(G) = cd(G)
except possibly for the case where cd(G) = 2 and geod(G) = 3.

Remark 4.11. Whether the exceptional case cd(G) = 2 and geod(G) = 3 can
occur is unknown. The conjecture that cd(G) = geod(G) in general is known as the
Eilenberg-Ganea conjecture.

We will also need the following basic theorem on subgroups of finite index whose
proof can be found in [B].

Theorem 4.12. Let G be a torsion-free group and H a subgroup of finite index.
Then cd(G) = cd(H).

4.4. FP∞ groups.

Definition 4.13. A group G is of type FPn if there is a projective resolution
{Pi}∞i=0 of Z over ZG such that Pj is finitely generated for j = 0, . . . , n. A group
G is of type FP∞ if it is of type FPn for all n.
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It is elementary to show that every group is FP0 and that a group is of type
FP1 if and only if it is finitely generated. So we can think of FPn for higher n as
strengthenings of the condition that G be finitely generated.

It is also true that if G is finitely presented, then G is of type FP2. For a long
time, it was conjectured the converse was true but Bestvina and Brady provided a
counterexample - a group that is FP2 but not finitely presented.

Remark 4.14. It follows immediately, that if G is of type FPn then for any G-
module M , which is finitely generated as an abelian group, we have Hi(G; M) and
Hi(G; M) finitely generated for all i ≤ n.

One has the following topological picture:

Proposition 4.15. A finitely presented group G is of type FPn if and only if there
exists a K(G, 1)-CW-complex such that the n-skeleton is finite. If G is finitely
presented, then it is of type FP∞ if and only if there exists a K(G, 1)-CW-complex
such that the n-skeleton is finite for all n.

Definition 4.16. A group is of type FP if it is of type FP∞ and has finite co-
homological dimension. This happens exactly when there is a projective resolution
{Pi}∞i=0 of Z over ZG which has finite length and such that each Pi is finitely
generated.

If we are given such a finite projective resolution, it does not necessarily mean
that we can find a finite length resolution using free modules of finite rank. Thus
we define:

Definition 4.17. A group is of type FL if there is a resolution of finite length for
Z over ZG using finitely generated free modules.

Again, we have a more concrete topological picture.

Proposition 4.18. Let G be a finitely presented group. Then G is of type FP if
and only if there exists a finitely dominated K(G, 1)-CW-complex. Similarly, G is
of type FL if and only if there exists a finite K(G, 1)-CW complex.

Thus for example Fn is FL as we can take K(Fn, 1) to be the bouquet of n
circles.

We will also find the following proposition useful:

Proposition 4.19. If we have a short exact sequence of groups

1 → Γ0 → Γ → Γ1 → 1

then if Γ0 and Γ1 are of type FP (respectively FL) then so is Γ.

Definition 4.20. If a group G is of type FP , we define χ(G), the Euler charac-
teristic of G to be the Euler characteristic of a K(G, 1). This makes sense since
H∗(G; Z) is finitely generated in each dimension, and is zero for ∗ > cd(G).

The following proposition recalls well-known facts about subgroups of finite in-
dex.

Proposition 4.21. If G is a torsion-free group, and H is a subgroup of finite index.
Then G is of type FP if and only if H is. Furthermore in this case,

χ(H) = |G : H |χ(G).
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4.5. The five lemma. We state a refined form of the five lemma here as a con-
venient quick reference. The reader can supply the usual diagram chasing proof if
they feel inclined!

Lemma 4.22. Given a commutative diagram of (not neccessarily abelian) groups
and homomorphisms:

H1 −−−−→ H2 −−−−→ H3 −−−−→ H4 −−−−→ H5




y

µ1





y

µ2





y

µ3





y

µ4





y

µ5

G1 −−−−→ G2 −−−−→ G3 −−−−→ G4 −−−−→ G5

where the rows are exact, the following is true:

(a) If µ2, µ4 are monomorphisms and µ1 is an epimorphism then µ3 is a monomor-
phism.

(b) If µ2, µ4 are epimorphisms and µ5 is a monomorphism then µ3 is an epimor-
phism.

(c) If µ1, µ2, µ4 and µ5 are isomorphisms, then so is µ3.

4.6. The Lyndon-Hochschild-Serre (LHS) spectral sequence. For any short
exact sequence of groups

1 → N
i→ G

π→ Q → 1

and G-module M , we have a E2-spectral sequence abutting to H∗(G; M) and whose
E2 term is given by

Ep,q
2 = Hp(Q; Hq(N ; M)).

Of course, there is also a similar spectral sequence in homology. (Here, recall that
in general, Hq(N ; M) is a nontrivial Q-module where the Q action is induced by
the conjugation action of G on N .)

This spectral sequence has a topological origin, for if you have such an exact
sequence of groups, then

BN
Bi→ BG

Bπ→ BQ

is a fibration, and the LHS-spectral sequence is nothing more than the Serre spectral
sequence for this fibration, possibly using twisted coefficients.

5. Polyfree groups

Definition 5.1. A normal series for a group G is a sequence of subgroups

1 = G0 ≤ G1 ≤ · · · ≤ Gn = G

where each Gi is normal in G. Γi = Gi/Gi−1 is referred to as the ith factor for
1 ≤ i ≤ n. The length of a normal series is the number of nontrivial factors.

Definition 5.2. A polyfree group is a group which has a normal series where all
the factors are finitely generated free groups. Such a normal series will be refered to
as a polyfree series and the rank of the kth factor will be called dk, the kth exponent.

Remark 5.3. Apriori, we do not know whether every polyfree series of a given
polyfree group will have the same length, nor do we know if the exponents may vary
with the polyfree series chosen. We will return to this point shortly.
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Our interest in polyfree groups stems from the fact that many of the pure braid
groups we have considered up to now, are polyfree.

Theorem 5.4. Let M be equal to R2 or a closed 2-manifold of genus g ≥ 1. Then
PBk(M−Qm) is polyfree for any m, k ≥ 1. (Notice that we do have to puncture the
manifold at least once in general). Furthermore there is a polyfree series of length
k where the rank of the ith factor is equal to 2g + m − 1 − i + k for 1 ≤ i ≤ k.
(These formulas also work for M = R2 if we set g = 1

2).

Proof. As usual, we will induct on k. For k = 1, F (M − Qm, k) = M − Qm is a
K(F2g+m−1, 1) where F2g+m−1 is a free group of rank 2g+m−1. Thus the theorem
follows easily in this case. So we may assume k > 1 and that the theorem is proven
for smaller values of k. Then by theorem 2.5, we have

πk,k−1 : F (M − Qm, k) → F (M − Qm, k − 1)

is a fibration with fiber F (M − Qm+k−1, 1). Since these spaces have trivial π2 by
theorem 2.7, we get a short exact sequence of groups

1 → F2g+m−2+k → PBk(M − Qm) → PBk−1(M − Qm) → 1.

By induction PBk−1(M −Qm) has a polyfree series of length k−1 with the claimed
exponents and so it follows from the short exact sequence of groups above, that
PBk(M − Qm) has a polyfree series of length k. It is an easy exercise which will
be left to the reader, to check that the factors have the ranks claimed. �

Remark 5.5. For k ≥ 2, by considering the map πk,1 : F (R2, k) → F (R2, 1) = R2

we see that

F (R2, k) = R2 × F (R2 − Q1, k − 1)

so it follows that PBk(R2) = PBk−1(R2 − Q1) and so the pure k-stranded Artin
braid group is polyfree with a polyfree series of length k − 1 given by the theorem
above.

So now we have a lot of motivation to study the class of polyfree groups. Let us
begin with some elementary results. First recall the following classical theorem of
P. Hall:

Theorem 5.6 (P. Hall). If

1 → N → G → Q → 1

is a short exact sequence of groups, with N and Q finitely presented, then G is
finitely presented.

Proof. See e.g. [R] �

Proposition 5.7. Suppose G is a polyfree group with a polyfree series of length n.
Then:
(a) cd(G) ≤ n and in particular G is torsion-free.
(b) G is of type FL.
(c) G is finitely presented.
(d) If the exponents for the polyfree series satisfy dk ≥ 2 for all 1 ≤ k ≤ n then G
has trivial center.
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Proof. We will induct on n, the length of the polyfree series. If n = 1, then G is
free of rank d1. The theorem then follows readily once we note that a free group of
rank d1 ≥ 2 has trivial center. (Since for example it is a nontrivial free product.)

So we can assume n > 1 and that we have proved the proposition for all smaller
n. Let 1 = G0 ≤ G1 ≤ · · · ≤ Gn = G be the given polyfree series. Notice we have
a short exact sequence

1 → Gn−1 → G
π→ Fdn

→ 1

and that Gn−1 is polyfree with a series of length n− 1. Thus by induction Gn−1 is
FL and finitely presented and hence so is G by theorem 5.6 and proposition 4.19.
So we have proven (b) and (c).

For (d), if we assume dk ≥ 2 for all k then by induction Gn−1 has trivial center
and of course so does Fdn

. Now if c ∈ G is a central element, then it is easy to
see that π(c) will be central in Fdn

and hence trivial. Thus c ∈ Gn−1 and so c is a
central element in Gn−1 which finally lets us conclude c = 1. Thus we have proven
(d).

So it remains only to prove (a). By induction, cd(Gn−1) ≤ n − 1. Now suppose
M is any G-module. Then we can apply the LHS-spectral sequence to the short
exact sequence above. Now Ep,q

2 = Hp(Fdn
; Hq(Gn−1; M)) is zero if either p > 1 or

q > n−1, as cd(Gn−1) ≤ n−1. Thus we see there can be no nontrivial differentials
in this spectral sequence and so E2 = E∞.

However this spectral sequence converges to H∗(G; M) and so we can conclude
easily that H∗(G; M) = 0 for ∗ > n. Since this holds for any G-module M , we can
conclude cd(G) ≤ n. �

Remark 5.8. Given a polyfree group G with a polyfree series of length n, propo-
sition 5.7 guarantees the existance of a resolution of Z over ZG of length less than
or equal to n, using finitely generated, free ZG-modules.

A nice resolution of this sort was constructed in [DCS] using Fox free derivatives
in the case where the polyfree group satisfies an extra splitting condition which we
will consider later. The naturality of this resolution was also exploited to recover
many interesting representations which we will also look at later.

Next we consider subgroups of finite index in a polyfree group.

Proposition 5.9. Let G be a polyfree group with a polyfree series of length n and
let H be a subgroup of finite index in G. Then H is polyfree with a polyfree series
of length n.

Proof. We proceed by induction on n. If n = 1 then G is a nontrivial free group of
finite rank. It follows then from the Nielsen-Schreier theorem (see [R]) that H is
also free of finite rank and so this case follows.

So we may assume n > 1 and that we have proved the proposition for smaller
values. Let 1 = G0 < G1 < · · · < Gn = G be the polyfree series for G. Then if we
set Hi = Gi ∩ H for 0 ≤ i ≤ n, it is easy to check 1 = H0 < H1 < · · · < Hn = H is
a normal series for H . Furthermore, if Hi/Hi−1 → Gi/Gi−1 is the map induced by
inclusion of H in G, it is easy to check this map is a well defined monomorphism
(injection) of groups. On the other hand the image of this map has finite index in
Gi/Gi−1 as Gi/Hi injects (as sets) into the finite set G/H via the map induced
by inclusion. Thus we see each Hi/Hi−1 can be viewed as a subgroup of finite
index in the nontrivial finitely generated free group Gi/Gi−1 and hence is itself a
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nontrivial free group of finite rank, again by the Nielsen-Schreier theorem. Thus
1 = H0 < H1 < · · · < Hn = H is a polyfree series for H of length n. �

Remark 5.10. An arbitrary subgroup of a free group of finite rank need not have
finite rank and so we see that arbitrary subgroups of a polyfree group need not be
polyfree.

Now let us show that for any given polyfree group G, all polyfree series for G
have the same length. First we will need a technical lemma. Let F2 be the field
with two elements.

Lemma 5.11. Let G be a polyfree group with a polyfree series 1 = G0 < G1 <
· · · < Gn = G of length n. Then there exists a subgroup T of finite index such that
Hn(T ; F2) 6= 0. Furthermore, T contains G1 and χ(T ) = χ(G1)χ(T/G1). Thus
χ(G) = χ(G1)χ(G/G1).

Proof. As usual we will proceed by induction on n. If n = 1, G is a nontrivial free
group of finite rank. Thus we can take T = G = G1 as H1(G; F2) = Hom(G; F2)
is nonzero. (The statement about Euler characteristics follows as χ(1) = 1.)

So we can assume n > 1 and that we have proved the lemma for smaller n. Then
notice that G/G1 has a polyfree series of length n − 1.

Now G acts by conjugation on G1 and hence on the finite vector space

H1(G1; F2) = Hom(G1, F2).

If we let K be the kernel of this action on H1(G1; F2), then K is normal and of
finite index in G and furthermore G1 ⊆ K.

Now K/G1 ⊆ G/G1 is a subgroup of finite index and so by proposition 5.9, K/G1

is polyfree with a polyfree series of length n − 1. So, by hypothesis, we may find
T/G1 with Hn−1(T/G1; F2) 6= 0 and T a subgroup of K of finite index. However
T/G1 ⊆ G/G1 and so cd(T/G1) ≤ n − 1 by proposition 5.7. So if we look at the
LHS-spectral sequence for the short exact sequence

1 → G1 → T → T/G1 → 1

we see that Ep,q
2 = Hp(T/G1; H

q(G1; F2)) is zero if p > n − 1 or q > 1 and En−1,1
2

is nonzero. (Here we use that T ⊆ K so that E∗,∗
2 = H∗(T/G1; F2) ⊗ H∗(G1; F2).)

It is easy to see that we must have En−1,1
2 = En−1,1

∞ and so we can conclude
Hn(T ; F2) is nonzero. T is obviously of finite index in G so it only remains to prove
the statement about χ(T ).

In the spectral sequence above, the E2 term has Euler characteristic

χ(G1)χ(T/G1).

On the other hand the E∞ term abuts to H∗(T ; F2) which has Euler characteristic
χ(T ) and so the equality χ(T ) = χ(G1)χ(T/G1) follows from the general fact
that the Euler characteristic remains constant on each page of the LHS-spectral
sequence. Thus our induction on n goes through.

Finally the equality χ(G) = χ(G1)χ(G/G1) follows from the previous one which
had T instead of G, theorem 4.21, and the fact that the index of T in G is the same
as the index of T/G1 in G/G1.

�
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Proposition 5.12. Let G be a polyfree group with a polyfree series of length n and
exponents dk, 1 ≤ k ≤ n. Then cd(G) = n and so every polyfree series of G has
length n. Furthermore χ(G) =

∏n
k=1(1 − dk).

Proof. By proposition 5.7, we have cd(G) ≤ n. On the other hand, by lemma 5.11,
we have a subgroup T of G of finite index, such that cd(T ) ≥ n. Thus the first part
follows as cd(G) = cd(T ) by proposition 4.12.

Now let us prove the formula for χ(G) by induction on n. For n = 1, it follows
as a bouquet of d1 circles is a K(G, 1). So as usual we can assume n > 1 and that
we have the formula for smaller n.

Again by lemma 5.11, we have χ(G) = χ(G1)χ(G/G1) = (1− d1)χ(G/G1). The
formula now follows readily once we observe that G/G1 has a polyfree series of
length n − 1 with exponents d2, . . . , dn and so by induction,

χ(G/G1) =

n
∏

k=2

(1 − dk).

�

Remark 5.13. So from what we have seen, all polyfree series for a given polyfree
group G, have the same length which is equal to cd(G). However the exponents of
different polyfree series need not be the same.

For example we saw that PB4(R2) = PB3(R2 − Q1) is polyfree with exponents
(3, 2, 1) by theorem 5.4. However it is known that this group also admits a polyfree
series with exponents (5, 2, 1) (see [DCS]).

However
∏n

k=1(1− dk) is independent of the polyfree series chosen as it is equal
to χ(G) as we have seen.

6. Configuration spaces for the 2-sphere

We have seen in theorem 2.7 that for any closed 2-dimensional manifold M
besides the sphere S2 and the projective plane RP 2, F (M, k) is a K(PBk(M), 1).
Thus the configuration space is a good model for the pure braid group of M . Now
let us see what we can say in the case where M is S2 or RP 2. Let us first look at
S2. First note that SO(3) acts naturally on R3 and this action preserves the unit
sphere S2. Hence SO(3) acts naturally on F (S2, k) for any k via a diagonal action.
We will describe these configuration spaces now up to homotopy equivalence (which
will be denoted by ≃). In fact we will find homotopy equivalences which preserve
the SO(3) actions.

Proposition 6.1.

F (S2, k) ≃











S2 if k = 1, 2

SO(3) if k = 3

SO(3) × F (S2 − Q3, k − 3) if k > 3.

Furthermore, there are homotopy equivalences which are equivariant with respect
to the natural SO(3) actions on F (S2, k) and the action of SO(3) on itself by left
multiplication. (Here SO(3) acts on SO(3) × F (S2 − Q3, k − 3) by acting entirely
on the left factor via left multiplication.)

Proof. The k = 1 case is trivial so let us look at the k = 2 case first. By theorem 2.5,
π : F (S2, 2) → F (S2, 1) = S2 is a fibration with contractible fiber F (S2 −Q1, 1) =
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R2. Thus π is a homotopy equivalence and it is trivial to see it is equivariant with
respect to the natural actions of SO(3) on F (S2, 2) and S2.

Now let us look at the case where k = 3. Again by theorem 2.5, there is a
fibration

π : F (S2, 3) → S2

obtained by projecting onto the first factor.
Fix a point p1 ∈ S2. Let F = π−1(p1), the fiber over the point p1. Then again

by theorem 2.5, since F = F (S2 − Q1, 2) there is a fibration

π̂ : F → (S2 − Q1) = R2

with fiber S2 − Q2, obtained by projecting onto a factor.
Since the base space of the fibration π̂ is contractible, we conclude that

F = R2 × (S2 − Q2) ≃ S1.

Now we will define a map λ : SO(3) → F (S2, 3). Fix p̄ = (p1, p2, p3) ∈ F (S2, 3).
Specifically, we will take p1 = (0, 0, 1), p2 = −p1 and p3 = (1, 0, 0). Then we can
set

λ(α) = (α(p1), α(p2), α(p3))

for all α ∈ SO(3).
It is easy to see that λ is a SO(3)-equivariant, continuous map from SO(3) to

F (S2, 3). We now want to show it is a homotopy equivalence. Let I denote the
isotropy group of the point p1 ∈ S2 under the SO(3) action. Then I is isomorphic
to SO(2) as a topological group and λ|I maps I into F .

Claim 6.2. The map λ|I : I → F is a homotopy equivalence.

Proof. The action of I on S2 is given by rotation about the z-axis fixing p1 which
can be thought of as the north pole of S2. Notice that since we chose p2 = −p1,
any element of I will also fix p2 (which is the south pole). Recall we had a fibration
π̂ : F → S2 − {p1} and let us set F ′ = π̂−1(p2), the fiber above the point p2. We
saw above that F ′ = S2 − {p1, p2} ≃ S1 and that the inclusion of F ′ into F is a
homotopy equivalence.

Now notice, that λ|I actually maps I into F ′ since any element of I fixes p2. If
we let αθ denote the element of I which corresponds to rotation through an angle
θ, then the loop {αθ : 0 ≤ θ ≤ 2π} gets mapped by λ to the generator of π1(F

′).
Thus we see that λ|I : I → F ′ is a homotopy equivalence since both I and F ′ are
homotopic to S1 and λ is surjective on the π1 level. Hence λ|I : I → F is a homotopy
equivalence since the inclusion of F ′ into F is a homotopy equivalence. �

Now one can check easily that we get the following commutative diagram:

I −−−−→ SO(3)
f−−−−→ S2





y

λ|I





y
λ





y
Id

F −−−−→ F (S2, 3)
π−−−−→ S2

where Id is the identity map and f(α) = α(p1) for α ∈ SO(3). Furthermore,
each row is a fibration. Comparing the long exact sequence in homotopy for the
two fibrations, one sees that the vertical maps induce an isomorphism on homo-
topy groups on the base and fiber levels of these fibrations and hence (by the five
lemma) also on the level of total spaces. Thus, λ : SO(3) → F (S2, 3) induces an
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isomorphism on homotopy groups and hence is a homotopy equivalence and so we
have the result for the case k = 3.

Now for the final case when k > 3. Let p̄ = (p1, . . . , pk) ∈ F (S2, k) extend
(p1, p2, p3) chosen in the previous case. Then again we can define a map

λ : SO(3) × F (S2 − {p1, p2, p3}, k − 3) → F (S2, k)

by

λ(α, (a4, . . . , ak)) = (α(p1), α(p2), α(p3), α(a4), . . . , α(ak))

for α ∈ SO(3) and (a4, . . . , ak) ∈ F (S2 − {p1, p2, p3}, k − 3).
It is easy to see that this map is continuous and SO(3)-equivariant under the

SO(3)-actions described in the statement of this lemma. Furthermore, we get the
following commutative diagram:

π−1(Id) −−−−→ SO(3) × F (S2 − {p1, p2, p3}, k − 3)
π−−−−→ SO(3)

Id





y
λ





y
λ





y

π−1
k,3(p1, p2, p3) −−−−→ F (S2, k)

πk,3−−−−→ F (S2, 3)

where as usual Id stands for an identity map and π is projection onto the first
factor. Furthermore both rows are fibrations. We have seen that the vertical map
on the base level is a homotopy equivalence and also trivially the vertical map on
the fiber level is also a homotopy equivalence and so it follows that λ is indeed a
homotopy equivalence (by looking at the long exact sequences in homotopy for the
fibrations, and using the five-lemma). So this concludes the proof of the lemma. �

Proposition 6.1 has the following immediate corollary:

Corollary 6.3.

PBk(S2) =











1 if k = 1, 2

Z/2Z if k = 3

Z/2Z × PBk−3(R2 − Q2) if k > 3

Notice that F (S2, k) is never a K(π, 1)-space due to the higher homotopy in
SO(3) and S2. However, we will see in the next subsection, that one can perform
a natural construction to F (S2, k) for k ≥ 3 and obtain a useful K(π, 1)-space.

6.1. The Borel Construction. We will now recall a very important construction.
First some elementary definitions:

Definition 6.4. If G is a topological group with identity element e, then a (left) G-
space is a space X together with a continuous map µ : G×X → X which satisfies:
(a) g1 · (g2 · x) = (g1g2) · x and
(b) e · x = x
for all g1, g2 ∈ G, x ∈ X. (Here we use the notation g · x for µ(g, x) and e denotes
the identity element of G). Of course, similarly there is a notion of right G-space
where the action is on the right instead of on the left.

Definition 6.5. Keeping the notation above, we say a G-space X is free if g ·x = x
implies that g = e.
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Recall that for a “nice” topological group G, there is a universal G-bundle:

G → EG → BG

where EG is a contractible free (right) G-space.

Definition 6.6. Given a (left) G-space X, one can perform the Borel construction:

EG ×G X = EG × X/ ∼

where ∼ is the equivalence relation generated by (tg, x) ∼ (t, gx) for all t ∈ EG, x ∈
X, g ∈ G.

Remark 6.7. It is easy to see from this definition, that EG×G G = EG ≃ ∗. Here
G is viewed as a left G-space via left multiplication on itself and we are using the
standard notation of ∗ to denote a space which consists of a single point.

The next lemma collects some well-known elementary facts about the Borel con-
struction:

Lemma 6.8. Let G be a topological group and X be a G-space then

π1 : EG ×G X → BG = EG/G,

the map induced by projection onto the first factor, is a bundle map with fiber X.
Furthermore, if X is a free G-space, then the map

π2 : EG ×G X → X/G,

induced by projection onto the second factor is a bundle map with fiber EG. Since
EG is contractible, this implies π2 is a (weak) homotopy equivalence.

Let G1, G2 be two topological groups and let µ : G1 → G2 be a homomorphism
of topological groups. Suppose further that you are given a µ-equivariant map

f : X1 → X2,

where Xi is a left Gi-space for i = 1, 2. In other words, f satisfies:

f(g · x) = µ(g) · f(x)

for all g ∈ G1, x ∈ X1.
Furthermore recall, from the functoriality of the construction of the universal

principal G-bundle, one has the map E(µ) : EG1 → EG2 which is also µ-equivariant
which induces the map B(µ) : BG1 → BG2 on the level of the quotient spaces.

Thus one can look at

E(µ) × f : EG1 × X1 → EG2 × X2.

It is easy to check that this map respects the equivalence relations used in forming
the respective Borel constructions and thus one gets a map:

E(µ)×̄f : EG1 ×G1
X1 → EG2 ×G2

X2.

There is a commutative diagram in this context that is very useful. We state it
as the next lemma.
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Lemma 6.9. Given µ : G1 → G2 a homomorphism of topological groups and
f : X1 → X2 a µ-equivariant map one has the following commutative diagram:

X1 −−−−→ EG1 ×G1
X1 −−−−→ BG1





y

f





y

E(µ)×̄f





y

B(µ)

X2 −−−−→ EG2 ×G2
X2 −−−−→ BG2

where each row is a fiber bundle. So in particular, if B(µ) and f are weak homotopy
equivalences, then so is E(µ)×̄f .

Proof. It is a routine exercise to check that the diagram commutes. The last sen-
tence then follows once again from the five lemma applied to the long exact se-
quences in homotopy for the two bundles. �

Lemma 6.9 gives us a convenient way to restate part of the results of proposi-
tion 6.1.

Proposition 6.10. For k ≥ 3 one has that

ESO(3) ×SO(3) F (S2, k) = K(PBk−3(R
2 − Q2), 1).

Here we are using the natural action of SO(3) on F (S2, k) described before. (We
are using the convention, that PB0(X) denotes the trivial group.)

Proof. Fix k ≥ 3, then from proposition 6.1, one has a SO(3)-equivariant homotopy
equivalence

λ : SO(3) × Y → F (S2, k).

where we have denoted F (S2 − Q3, k − 3) by Y for convenience. (This means that
Y is a point when k = 3.)

Applying lemma 6.9 using Id : SO(3) → SO(3) as µ, and λ as the equivariant
map, one sees immediately that since B(µ) and λ are homotopy equivalences, then

E(Id)×̄λ : ESO(3) ×SO(3) (SO(3) × Y ) → ESO(3) ×SO(3) F (S2, k)

is a (weak) homotopy equivalence. However,

ESO(3) ×SO(3) (SO(3) × Y ) = (ESO(3) ×SO(3) SO(3)) × Y

= ESO(3) × Y

≃ Y

by remark 6.7 and the contractibility of ESO(3). Theorem 2.7 then gives us the
desired result. �

Now notice the following. If X is a left G-space, then F (X, k) is also a G-space
via a diagonal action (as any group action takes distinct points to distinct points).
On the other hand Σk acts on F (X, k) on the right by permuting coordinates. It
is easy to see that the Σk-action on F (X, k) commutes with the G-action. Thus if
we look at the Σk action on EG×F (X, k) where Σk acts purely on the right factor
by permuting coordinates, then it is easy to check that this action descends to an
action of Σk on the Borel construction EG ×G F (X, k). It is also routine to check
that this action of Σk on the Borel contruction is still free and that

(EG ×G F (X, k))/Σk = EG ×G SF (X, k)

where recall that SF (X, k) denotes F (X, k)/Σk.
We summarize this useful fact in the following remark:
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Remark 6.11. Let G be a topological group and let X be a left G-space then there
is a natural Σk-covering map:

EG ×G F (X, k)
π→ EG ×G SF (X, k)

where the natural diagonal actions of G on F (X, k) and SF (X, k) are used to form
the Borel constructions.

Remark 6.11 and proposition 6.10 have the following immediate corollary:

Corollary 6.12. ESO(3) ×SO(3) SF (S2, k) is a K(π, 1) space for all k ≥ 3.

One bad thing about the Borel constructions so far, is that although they pro-
duced K(π, 1) spaces, these spaces did not have PBk(S2) as their fundamental
group. We will now fix this point.

If a topological group G has a universal cover G̃ (which we always assume is

connected), then it is elementary to show that G̃ has the structure of a topological

group such that the covering map µ : G̃ → G is a homomorphism of topological
groups. G̃ is called the covering group of G.

Now given a (left) G-space X , X can also be viewed as a G̃-space via µ. Thus
the identity map of X is µ-equivariant in our previous terminology. It then follows
from lemma 6.9 that we have the following commutative diagram where each row
is a fibration:

X −−−−→ EG̃ ×G̃ X −−−−→ BG̃




y
Id





y

E(µ)×̄Id





y

B(µ)

X −−−−→ EG ×G X −−−−→ BG

We wish to study the vertical map in the middle. To do this, we need to look
at the vertical maps on the sides first. It is obvious that the identity map is a
homotopy equivalence, so let us first look at B(µ). Recall the following elementary
remarks:

Remark 6.13. For any topological group G, BG is always path connected and
πn(BG) ∼= πn−1(G) for n > 1.

Proof. We have the universal principal G-bundle EG → BG. The result follows
immediately from the long exact sequence in homotopy for this fibration and the
contractibility of EG. �

Remark 6.14. A covering map π : X̃ → X induces isomorphisms between πn(X̃)
and πn(X) for all n > 1.

It follows from these remarks that µ : G̃ → G induces isomorphisms between the
higher homotopy groups (πn for n > 1) and hence that B(µ) induces isomorphisms

in πn for all n 6= 2. (Here recall that we insist that G̃ and hence also G is path
connected.) Of course it induces the zero map on the π2 level as

π2(BG̃) = π1(G̃) = 0.

With this knowledge of B(µ) and by using the usual argument of applying the
five-lemma to the vertical maps between the long exact sequences in homotopy for
the two fibrations, one finds easily that E(µ)×̄Id induces an isomorphism in πn for



CONFIGURATION SPACES AND BRAID GROUPS 21

all n 6= 1, 2. Using the refined form of the five-lemma (stated in lemma 4.22), it
also follows easily that E(µ)×̄Id induces a monomorphism on the π2 level.

This is the main step in proving the following useful lemma:

Lemma 6.15. Let G be a path connected, topological group. Let G̃ be the universal
covering group with µ : G̃ → G the covering map. Furthermore suppose X is a
G-space. Then E(µ)×̄Id induces isomorphisms

πn(EG̃ ×G̃ X) ∼= πn(EG ×G X)

for all n 6= 1, 2 and a monomorphism

π2(EG̃ ×G̃ X)
1−1→ π2(EG ×G X).

Furthermore,

π1(EG̃ ×G̃ X) ∼= π1(X)

Proof. We have already proved everything besides the final isomorphism listed. To
prove this, look at the fiber bundle

X → EG̃ ×G̃ X → BG̃.

Now we saw, in the paragraph preceding the lemma, that π2(BG̃) = 0, but one also
has

π1(BG̃) ∼= π0(G̃) = 0.

Using this, it is easy to obtain our desired result from the long exact sequence in
homotopy for the fiber bundle above. �

Now it is a well known fact that S̃O(3) is S3, the group of unit quarternions,
which is topologically a 3-sphere. Thus applying lemma 6.15 to this group and
using proposition 6.10 and corollary 6.12, one easily obtains:

Corollary 6.16.

ES3 ×S3 F (S2, k) = K(PBk(S2), 1)

and

ES3 ×S3 SF (S2, k) = K(Bk(S2), 1),

for k ≥ 3.

Thus, once again we see that the configuration space provides a good model (this
time using a Borel construction) for the (pure) braid group of the underlying space.

Thus the only surface whose configuration space we have not studied yet is RP 2.
We will do this now, in the next section.

7. Configuration spaces for the real projective plane

7.1. Orbit configuration spaces. In our study of the configuration spaces of
RP 2, we will find the concept of an orbit configuration space quite useful. These
were introduced by M. Xicoténcatl and are defined as follows:

Definition 7.1. Let G be a group and X a G-space. Then

FG(X, k) = {(x1, . . . , xk) ∈ Xk|xi, xj are in different G orbits if i 6= j}.
FG(X, k) is called the k-fold orbit configuration space of X.
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Remark 7.2. Thus we see that FG(X, k) is the space of k-tuples of points which
lie in distinct G orbits of X. Note that FG(X, 1) = X and F1(X, k) = F (X, k) for
the action of the trivial group 1 on X.

We will now prove some elementary but useful properties of these orbit configu-
ration spaces. First some necessary definitions.

Definition 7.3. Given two groups G1 and G2, a left G1-space X is said to have a
compatible G2 action if
(a) X is a left G2-space.
(b) For every g1 ∈ G1, g2 ∈ G2, x ∈ X, there exists g′1 ∈ G1 such that

g2 · (g1 · x) = g′1 · (g2 · x).

If it is always possible to take g′1 = g1, we say that the two actions commute.

Remark 7.4. Notice that if a G1-space X has a compatible G2 action then the
G2 action takes G1-orbits to G1-orbits and hence induces a G2 action on X/G1.
(To guarantee the continuity of this action, one should assume that G2 is locally
compact, Hausdorff so that G2 × X → G2 × X/G1 is a quotient map. This holds
for all Lie groups and hence discrete groups.)

Remark 7.5. The most important examples of compatible actions are:
(a) commuting actions.
(b) When G1 = G2 = G and both groups act in the same way on X. These are
compatible actions as

g2 · (g1 · x) = (g2g1g
−1
2 ) · (g2 · x)

and so we can take g′1 = g2g1g
−1
2 .

Lemma 7.6. If X is a G1-space which supports a compatible G2-action, then there
is a natural Gk

2 action on FG1
(X, k) defined via

(g1, . . . , gk) · (x1, . . . , xk) = (g1 · x1, . . . , gk · xk)

for all (g1, . . . , gk) ∈ Gk
2 and (x1, . . . , xk) ∈ FG1

(X, k). Notice of course, this also
gives a G2 action on FG1

(X, k) obtained by precomposing the above action with the
diagonal homomorphism ∆ : G2 → Gk

2 which sends g to (g, · · · , g).

Proof. The proof follows easily from remark 7.4 and is left to the reader. �

¿From lemma 7.6, we see that there is always a natural action of Gk on FG(X, k).
If the original G-action on X is reasonable, we can say something about this Gk-
action on FG(X, k):

Proposition 7.7. If π : X → X/G is a principal G-bundle, there is a map

π̄ : FG(X, k) → F (X/G, k)

which is a principal Gk-bundle, where

π̄(x1, . . . , xk) = (π(x1), . . . , π(xk))

and the Gk action on FG(X, k) is that which is described in lemma 7.6.
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Proof. First notice that by taking a k-fold product we get a principal Gk-bundle

Gk → Xk ×π→ (X/G)k.

Then we can take the pullback of this bundle with respect to the inclusion map
i : F (X/G, k) → (X/G)k and hence get the commutative diagram:

Gk −−−−→
Id

Gk





y





y

E −−−−→ Xk





y
π̄





y

×π

F (X/G, k) −−−−→
i

(X/G)k

Thus the left hand column is also a principal Gk-bundle and the reader can easily
check from the definition of a pullback (see [Bre]), that E is naturally identified
with FG(X, k) and that with this identification, π̄ has the form stated above and
the Gk action on E = FG(X, k) is that which is described in lemma 7.6. �

Remark 7.8. Recall, that when G is discrete, a principal G-bundle is the same
thing as a regular cover with covering group G. With this, it follows easily from
proposition 7.7, that if G is a finite group and X a free G-space, then there is a
covering map

π : FG(X, k) → F (X/G, k)

with covering group Gk.

Proposition 7.7 shows us immediately how orbit configuration spaces can help
us understand the configuration space of RP 2. To see this, we can take S2 as a
Z/2Z-space where the nontrivial element of Z/2Z is acting via the antipodal map.
Then proposition 7.7 gives us the following covering map

(Z/2Z)k → FZ/2Z(S2, k)
π→ F (RP 2, k).

Thus we need to study FZ/2Z(S2, k). To do this, we will need to use the analogue
of the Fadell-Neuwirth theorem (theorem 2.5) for orbit configuration spaces. We
will state and prove this analogue next.

Definition 7.9. Given a free G-space X, we will use the notation Ok to denote
the disjoint union of k distinct G-orbits. Notice X − Ok is hence also a G-space.

Theorem 7.10. Let G be a finite group and X be a free G-space. Suppose further
that X is a connected manifold without boundary with dimension ≥ 1. Then for all
n > k, there are fibrations

FG(X − Ok, n − k) → FG(X, n)
π→ FG(X, k)

where π is projection onto the first k factors.

Proof. Once one has verified that π is a fibration, it is an easy exercise to see that
the fiber is as described in the statement of this theorem. Thus, we will only show
that π is a fibration.

Since the composition of fibrations is a fibration, it is enough to show that π is a
fibration in the case when n = k+1, since an arbitrary projection from FG(X, n) to
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FG(X, k) can be broken up as a composition of maps of this sort. Thus, we assume
that n = k + 1 from now on.

Let the order of G be s and write G = {g1, . . . , gs}. Define λ : FG(X, k) →
F (X, sk) by

λ(x1, . . . , xk) = (g1x1, g2x1, . . . , gsx1, g1x2, . . . , gsx2, . . . , g1xk, . . . , gsxk).

The following diagram commutes:

F (M − Qks, 1) −−−−→ F (M, ks + 1)
µ−−−−→ F (M, ks)

x




Id

x



λ̄

x




λ

FG(M − Ok, 1) −−−−→ E
µ̄−−−−→ FG(M, k)

Here the top row is a fibration by theorem 2.5, where µ is projection onto the first
ks factors. The bottom row is the pullback of this fibration under the map λ.

Thus µ̄ is a fibration. It remains only to show that the pullback E is naturally
homeomorphic to FG(M, k + 1). Recall that

E = {(x, y) ∈ FG(M, k) × F (M, ks + 1)|λ(x) = µ(y)}.
Define θ : FG(M, k + 1) → FG(M, k) × F (M, ks + 1) by

θ(x1, . . . , xk+1) = ((x1, . . . , xk), (g1x1, . . . , gsx1, . . . , g1xk, . . . , gsxk, xk+1)).

It is easy to check that in fact θ : FG(M, k + 1) → E.
Now, θ : FG(M, k + 1) → E has an inverse given by

((x1, . . . , xk), (g1x1, . . . , gsxk, xk+1)) → (x1, . . . , xk, xk+1).

Thus, θ is our desired homeomorphism and furthermore µ̄ ◦ θ : FG(X, k + 1) →
FG(X, k) is indeed projection onto the first k coordinates. This is a fibration as µ̄
is. Thus the theorem is proven. �

(The authors would like to thank Dan Cohen for informing us about the nice
proof above. Previous proofs consisted of going through the proof of theorem 2.5
carefully and doing the necessary modifications, which is considerably more messy.)

7.2. Application of orbit configuration spaces to F (RP 2, k). First, we need
to study FZ/2Z(S2, k).

Lemma 7.11. Let S2 be given a Z/2Z action via the antipodal map.
Then FZ/2Z(S2 − On, k) is a K(π, 1) space for all n, k ≥ 1.

Furthermore π1(FZ/2Z(S2−On, k)) is a polyfree group of cohomological dimension
k and it has a polyfree series with exponents

(2(n + k − 1) − 1, . . . , 2(n + 1) − 1, 2(n + 0) − 1).

Proof. We will prove this lemma by induction on k. First the case when k = 1.
Here we have that

FZ/2Z(S2 − On, 1) = S2 − On = R2 − Q2n−1 = K(F2n−1, 1).

Thus the result follows as F2n−1, the free group on 2n − 1 generators, is polyfree,
of cohomological dimension one with the stated exponent.

So without loss of generality, k > 1 and we can assume the theorem is proven
for numbers smaller than k.



CONFIGURATION SPACES AND BRAID GROUPS 25

Now by theorem 7.1, we have a fibration

FZ/2Z(S2 − On+k−1, 1) → FZ/2Z(S2 − On, k) → FZ/2Z(S2 − On, k − 1).

By induction, the fiber and the base space are K(π, 1) spaces and hence, by the
long exact sequence in homotopy, so is the total space.

Furthermore, on the level of fundamental groups, the long exact sequence in
homotopy for the fibration above gives us a short exact sequence of groups:

π1(FZ/2Z(S2 − On+k−1, 1)) → π1(FZ/2Z(S2 − On, k)) → π1(FZ/2Z(S2 − On, k − 1)).

By induction, the base (quotient) group is polyfree, of cohomological dimension
k − 1, with exponents:

(2(n + k − 2) − 1, . . . , 2(n + 0) − 1)

and also the fiber group (kernel) is a free group of rank 2(n + k − 1) − 1. ¿From
this, the properties of π1(FZ/2Z(S2 −On, k)) stated in the lemma, follow easily. �

Unfortunately, lemma 7.11 does not tell us anything about FZ/2Z(S2, k) directly

- the lemma only applies if at least one Z/2Z-orbit has been removed from S2. We
have to do some genuine geometric analysis to go any further, so let us analyze
FZ/2Z(S2, 2) and show it is homotopy equivalent to SO(3) in a nice way.

First, let us notice that if we view S2 as the unit vectors in R3, then FZ/2Z(S2, 2)
is naturally identified as the space of pairs of linearly independent unit vectors of
R3.

Thus, inside of FZ/2Z(S2, 2) is the subspace

U = {(x, y)|x is orthogonal to y and x, y ∈ S2}
of pairs of orthogonal unit vectors. Notice that U can be naturally identified with
the unit tangent bundle of S2 (We will not need this fact).

SO(3) acts naturally on S2 and this action commutes with the antipodal map,
thus by lemma 7.6, SO(3) acts diagonally on FZ/2Z(S2, 2).

It is easy to see that this action preserves the subspace U . In fact, even more
is true. Let ei be the ith standard unit vector of R3 for i = 1, 2, 3. Then given
(x, y) ∈ U , since there are elements of O(3) mapping (e1, e2, e3) to any other given
orthonormal basis, it is easy to see that there is an element of SO(3) mapping
(e1, e2) to (x, y). In fact this element is unique as any element of SO(3) mapping
(e1, e2) to (x, y) would have to map e1 × e2 = e3 to x × y and so is determined on
a basis. (Here × stands for the cross product in R3.)

Thus we see that the SO(3) action on U is transitive and free and hence U =
SO(3). Furthermore, the SO(3) action on U corresponds to the left multiplication
action on SO(3) under this correspondence.

Proposition 7.12. The inclusion i : U → FZ/2Z(S2, 2) is a SO(3)-equivariant
homotopy equivalence. Furthermore U = SO(3), with SO(3)-action given by left
multiplication.

Proof. We have already proven the final sentence of the proposition in the preceding
paragraph. It remains only to show that i is a homotopy equivalence.

We will need a bit of notation. For x, y ∈ Rn, let x · y denote the dot product of
x and y. Let ‖ x ‖= √

x · x denote the norm of x.
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Now we construct R : FZ/2Z(S2, 2) × I → FZ/2Z(S2, 2) as follows:

R(x, y, t) = (x,
y − t(x · y)x

‖ y − t(x · y)x ‖).

Notice R is well defined as y is not a multiple of x. The following properties of R
follow easily:
(a) R(x, y, 0) = (x, y) for all (x, y) ∈ FZ/2Z(S2, 2),
(b) R(x, y, 1) ∈ U ,
(c) R(x, y, t) = (x, y) for all (x, y) ∈ U, t ∈ I.
(d) R(αx, αy, t) = αR(x, y, t) for all (x, y) ∈ FZ/2Z(S2, 2), t ∈ I, α ∈ O(3). Here

O(3) is acting diagonally on FZ/2Z(S2, 2) in the natural way.

Properties (a)-(c) tell us that U is a strong deformation retract of FZ/2Z(S2, 2)
which is all we need to finish the proof of the proposition. Property (d) says in fact,
that there is a strong deformation through SO(3)-equivariant maps of FZ/2Z(S2, 2)
to itself.

(Notice, that R, is in effect, performing a Gram-Schmidt orthogonalization pro-
cess globally.) �

Corollary 7.13. If FZ/2Z(S2, 2) is given the diagonal SO(3) action induced from

the natural action of SO(3) on S2 then ESO(3) ×SO(3) FZ/2Z(S2, 2) is (weakly)
contractible.

Proof. Proposition 7.12 shows that i : U = SO(3) → FZ/2Z(S2, 2) is a SO(3)-
equivariant homotopy equivalence. By lemma 6.9, it follows that

Id×̄i : ESO(3) ×SO(3) U → ESO(3) ×SO(3) FZ/2Z(S2, 2)

is a (weak) homotopy equivalence.
On the other hand,

ESO(3) ×SO(3) U = ESO(3) ×SO(3) SO(3) = ESO(3) ≃ ∗

�

This was the crucial ingredient to the following proposition:

Proposition 7.14. If FZ/2Z(S2, k) is given the diagonal SO(3)-action induced from

the natural SO(3) action on S2 then ESO(3)×SO(3) FZ/2Z(S2, k) is a K(π, 1)-space
for all k ≥ 2.

Proof. We will prove this by induction on k. The case k = 2 was proven in corol-
lary 7.13 so assume k > 2 and that we have proven the proposition for smaller
numbers.

Let π : FZ/2Z(S2, k) → FZ/2Z(S2, 2) be projection onto the first 2 factors. Notice
that π is SO(3)-equivariant.

By theorem 7.1, π is a fibration with fiber FZ/2Z(S2−O2, k−2) which is a K(π, 1)-
space by lemma 7.11. Thus π induces an isomorphism in πi for i 6= 1, 2. However
π2(FZ/2Z(S2, 2)) = π2(SO(3)) = 0 so in fact in the long exact sequence for the

fibration above, the boundary map from π2(FZ/2Z(S2, 2)) to π1(fiber) necessarily
vanishes and π is an isomorphism on the π2 level also.
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By lemma 6.9, we have the following commutative diagram

FZ/2Z(S2, k) −−−−→ ESO(3) ×SO(3) FZ/2Z(S2, k) −−−−→ BSO(3)




y

π





y
Id×̄π





y
Id

FZ/2Z(S2, 2) −−−−→ ESO(3) ×SO(3) FZ/2Z(S2, 2) −−−−→ BSO(3)

where each row is a fibration. In the preceding paragraph, we saw that π induced
isomorphisms in πi for all i 6= 1. Thus by the refined form of the five lemma
given in lemma 4.22, we see that Id×̄π induces a monomorphism in πi for all
i 6= 1. Since πi(ESO(3) ×SO(3) FZ/2Z(S2, 2)) = 0 for all i this lets us conclude

that πi(ESO(3) ×SO(3) FZ/2Z(S2, k)) = 0 for all i 6= 1 which is what we set out to
prove. �

Now we are finally ready to study the configuration space F (RP 2, k). Recall we
had the covering map:

(Z/2Z)k → FZ/2Z(S2, k)
π→ F (RP 2, k).

As before, SO(3) acts diagonally on FZ/2Z(S2, k) using the natural action of SO(3)

on S2. Of course, SO(3) also acts naturally on RP 2 viewed as the space of lines
in R3. Hence, SO(3) acts diagonally on F (RP 2, k). Furthermore, it is easy to see,
that the covering map π above is SO(3)-equivariant with respect to these actions.
(For k = 1, π is just the map taking a unit vector, to the line it spans.)

Being a covering map, π induces isomorphisms in πi for all i 6= 1, and a monomor-
phism in π1. We have the usual commutative diagram

FZ/2Z(S2, k) −−−−→ ESO(3) ×SO(3) FZ/2Z(S2, k) −−−−→ BSO(3)




y

π





y
Id×̄π





y
Id

F (RP 2, k) −−−−→ ESO(3) ×SO(3) F (RP 2, k) −−−−→ BSO(3)

where each row is a fibration.
¿From the five lemma (lemma 4.22), it follows easily that Id×̄π induces an epi-

morphism in πi for i 6= 1. Thus from proposition 7.14, it follows that ESO(3)×SO(3)

F (RP 2, k) is a K(π, 1)-space. This is the result we wanted in this section and we
state it as:

Theorem 7.15. ESO(3) ×SO(3) F (RP 2, k) is a K(π, 1)-space if k ≥ 2 and fur-
thermore

ES3 ×S3 F (RP 2, k) = K(PBk(RP 2), 1)

and

ES3 ×S3 SF (RP 2, k) = K(Bk(RP 2), 1).

Here, the SO(3) action is induced from the natural action of SO(3) on RP 2 viewed
as the space of lines in R3. The S3 action is obtained from the SO(3) action using
that S3 is the universal covering group of SO(3).

Proof. Most of the theorem was proven in the preceding paragraph. The only
thing remaining is the statement about the S3 Borel constructions which follows
immediately from lemma 6.15 and remark 6.11. �
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Remark 7.16. ¿From the fibration,

F (RP 2, k) → ES3 ×S3 F (RP 2, k) → BS3

and the fact that ES3 ×S3 F (RP 2, k) is a K(π, 1)-space, we see easily that

πn(F (RP 2, k)) ∼= πn+1(BS3) ∼= πn(S3)

for n ≥ 2.
Thus, F (RP 2, k) has the same higher homotopy as the 3-sphere.

This completes our analysis of F (M, k) for 2-manifolds M without boundary.
The conclusion is that these are always K(PBk(M), 1)-spaces except when M is
S2 or RP 2. However in these cases, there is an associated Borel construction which
is a K(PBk(M), 1).

For now, these results might seem to be a pretty formal analysis of the homo-
topy type of the configuration spaces of surfaces - however we will see their true
power when we begin talking about labeled configuration spaces, and the “classical”
connection of these labeled configuration spaces with loop spaces.

Furthermore, Borel constructions will provide a crucial tool in connecting the
braid groups we have studied, to mapping class groups, another important class of
groups associated to surfaces, which we will introduce and study later on in these
notes.

8. Mapping class groups

Let M denote an orientable surface and let Top(M) be the group of orientation
preserving homeomorphisms of M. We make it a topological group by giving it the
compact open topology.

Let Qk be a set of k distinct points in M and let Top(M, Qk) be the topological
subgroup of Top(M) which leaves the set Qk invariant.

Recall the standard isotopy lemma, (see [?])

Lemma 8.1 (Isotopy Lemma). Let M be a connected smooth manifold of dimension
strictly bigger than one. Then for (x1, . . . , xk), (y1, . . . , yk) ∈ F (M, k), there exists a
diffeomorphism φ : M → M such that φ is isotopic to the identity and φ(xi) = (yi)
for 1 ≤ i ≤ k.

¿From the isotopy lemma, there is an orientation preserving homeomorphism of
M carrying one set of k distinct points Qk to any other set of k distinct points
Q′

k, and thus Top(M, Qk) is conjugate to Top(M, Q′
k) in Top(M) and so we will

sometimes write Top(M, k) when the points are understood.
We will also look at PTop(M, Qk), the topological subgroup of Top(M, Qk) con-

sisting of homeomorphisms which actually fixe the points of Qk pointwise. Thus
PTop(M, Qk) is the kernel of the natural homomorphism from Top(M, Qk) → Σk

induced by sending a homeomorphism leaving the set Qk invariant to the permuta-
tion it induces on those points. Again, we will write PTop(M, k) when the points
Qk are understood.

Recall that if M is a surface then the inclusion of the group of orientation
preserving diffeomorphisms Diff+(M) → Top(M) is a homotopy equivalence.
Some of the motivation for considering PTop(M, k) is described next.
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Properties of these subgroups frequently correspond to a lifting question relat-
ing branched covering spaces. Namely given a branched cover N → M which is
branched over a finite set Qk, information about Top(M, k) gives information about
Top(N). That is, homeomorphisms of M which leave the branch set invariant lift
(in possibly more than one way) to homeomorphisms of N .

One direction of these notes is to obtain information concerning Top(M, k) in
order to obtain information about Top(N). This approach is carried out in a few
cases in these notes for the specific examples of surfaces of genus 0,1, and 2. This
approach dates back to Hurwitz, and has been exploited in [BH], [?]; these classical
methods have proven to be useful also for cohomological analysis.

In a few of the applications, pointed versions of these constructions are useful.
For example, the cohomology of the ”pointed mapping class group” for a genus 1
surface with marked points (to be defined below) has a clean cohomological de-
scription. The analogous description without the assumption of ”pointed maps”
has a technically more complicated description. This structure is analogous to the
behavior of certain function spaces. That is, the space of pointed maps from a
circle to a space X, the loop space ΩX is frequently accessible from a homological
point of view. At the same time, the space of free maps from a circle to X, the free
loop space ΛX , is frequently more delicate.

Mapping class groups, in some cases, reflect similar behavior as we will see later
when we study the pointed mapping class group for punctured copies of genus zero,
one, and two surfaces.

Recall given a topological group G, the path components pi0(G) form a (discrete)
group where the group structure is induced from G.

Definition 8.2. Let M be a closed orientable surface of genus g. The mapping
class group Γk

g = π0(Top(M, Qk)).

The pure mapping class group PΓk
g is the kernel of the natural homomorphism

Γk
g → Σk, induces by sending a homeomorphism to the permutation it induces a

the points Qk.

Definition 8.3. Let M be a closed orientable surface of genus g, Qk a set of k
distinct points of M and p a fixed point in M − Qk.

The pointed mapping class group Γk,1
g is the group of path components of the

orientation preserving homeomorphisms which (1) preserve the point p, and
(2) leave the set Qk invariant.

The pure pointed mapping class group PΓk,1
g is the kernel of the natural homo-

morphism Γk,1
g → Σk.

The group Top(M) acts on the configuration space of points in M , F (M, k),
diagonally. A ”folk theorem” that has been useful gives (1) there are natural
K(π, 1)′s obtained from the associated Borel construction (homotopy orbit spaces)
for groups acting on configuration spaces, and
(2) these configuration spaces are analogous to homogeneous spaces in the sense
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that they are frequently homeomorphic to a quotient of a topological group by a
closed subgroup.

Namely, let G be a subgroup of Top(M), and consider the diagonal action of G
on F (M, k) together with the homotopy orbit spaces

EG ×G F (M, k)

and

EG ×G F (M, k)/Σk.

Lemma 8.4. Assume that M is a nonempty manifold of dimension at least 1.
Then Top(M, k) and PTop(M, k) are closed subgroups of Top(M).

Proof. Given any point f in the complement of Top(M, k) in Top(M), there is at
least one mi ∈ Qk that is taken to a point outside Qk. The open set of continuous
functions that carry mi to M − Qk in the complement of Top(M, k) in Top(M)
is a neighbourhood of f . Thus it follows that the complement of Top(M, k) in
Top(M) is open and the lemma follows for Top(M, k). The proof for PTop(M, k)
is similar. �

Consider the natural evaluation map Top(M) → F (M, k) given by Top(M)
acting on the point (m1, m2, ..., mk). Since the isotropy group of the Top(M) action
on F (M, k) at (m1, . . . , mk) is the group Top(M, k), there is an induced map

ρ : Top(M)/Top(M, k) → F (M, k).

By the isotopy lemma, ρ is onto and hence a continuous bijection.
In the next theorem, we will show among other things, that in fact the map

ρ above is a homeomorphism. Thus configuration spaces of surfaces are “homoge-
neous spaces” of suitable topological groups. (The quotation marks about the word
homogeneous space is due to the fact that Top(M) is only a topological group, not
a Lie group).

The theorem will be proven from a construction in Steenrod’s book ”The topol-
ogy of fibre bundles”. Namely, consider

H → G → G/H

where H is a closed subgroup of G, and the map G → G/H admits ”local cross-
sections”. Then the induced map BH → BG is the projection map in a fibre
bundle with fibre given by the space of left cosets G/H . [Steenrod, page 30]

The definition of ”local cross-sections” is given as follows: Let H be a closed
subgroup of G with natural quotient map p : G → G/H and let x ∈ G/H . A local
cross-section of p : G → G/H at x is a continuous function f : V → G where V is
an open neighborhood of x in G/H satisfying pf(x) = x for all x ∈ V . [Steenrod,
page 30].

Theorem 8.5. Assume that M is an orientable surface without boundary. Then

(1) There is a principal fibration

Top(M, k) → Top(M) → Top(M)/Top(M, k).



CONFIGURATION SPACES AND BRAID GROUPS 31

(2) The map

ρ : Top(M)/Top(M, k) → F (M, k)

is a homeomorphism.
(3) The homotopy theoretic fibre of the natural map BTop(M, k) → BTop(M)

is F (M, k), and ETop(M)×Top(M)F (M, k) is homotopy equivalent to BTop(M, k).

The proof of Theorem 8.5 depends on the next lemma. Here, let Dn denote the
standard n-disk, i.e., the points in Rn of euclidean norm at most 1 with interior
denoted Do,n with (0, 0, ..., 0) the origin in Dn. The map θ in the next lemma was
quite useful in the article by Fadell and Neuwirth [FN] while the formula here was
written explicitly in [X].

Lemma 8.6. (1) There is a continuous map
θ : Do,n × Dn → Dn

such that θ(x,−) fixes the boundary of Dn pointwise, and θ(x, x) =
(0, 0, ..., 0) for every x in Do,n.

(2) If M is a surface without boundary, then there exists a basis of open sets U
for the topology of F (M, k) together with local sections

φ : U → Top(M) such that the composite

U
φ→ Top(M) → Top(M)/Top(M, k)

ρ→ F (M, k)

is a homeomorphism onto U .
(3) The natural map ρ : Top(M)/Top(M, k) → F (M, k) is a homeomorphism.

Proof. Define α : Do,n → Rn by the formula α(x) = x/(1 − |x|), and so α−1(z) =
z/(1 + |z|).

For a fixed element q in Do,n, define γq : Dn → Dn by the formula

(1) γq(y) = y for y in the boundary of Dn, and
(2) γq(y) = α−1(y/(1 − ||y||) − q/(1 − |q|) for y in Do,n.

Define θ : Do,n × Dn → Dn by the formula θ(q, y) = γq(y). Notice that θ is
continuous, and θ(q, q) = (0, 0, ..., 0), and so part (1) of the lemma follows.

To prove part (2), consider a point (p1, p2, ..., pk) in F (M, k) together with dis-
joint open discs Do,2(p1), D

o,2(p2), ...., D
o,2(pk) where Do,2(pi) is a disc with center

pi. ( There is a choice of homeomorphism in the identification of each open disc
with an open coordinate patch of M; this choice will be suppressed here.) Let U be
the open set in F (M, k) given by the product Do,2(p1) × Do,2(p2) × ... × Do,2(pk).
The sets U give a basis for the topology of F (M, k) which depend on the choice of
the discs Do,2(pi). Define φ : U → Top(M) by the formula φ((y1, y2, ..., yk)) = H
for H in Top(M) where (y1, y2, ..., yk) is in U = Do,2(p1)×Do,2(p2)× ...×Do,2(pk),
and H is the homeomorphism of M given as follows.

(1) H(x) = x if x is in the complement in the union of the
∐

1≤i≤k Do,2(pi),
and

(2) H(x) = θ(pi, x) if x is in Do,2(pi).
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Clearly H is in Top(M). Notice that φ is continuous if an only if the adjoint of
φ, adj(φ) : U × M → M is continuous as all spaces here are locally compact, and
Hausdorff. But then continuity follows at once from the first part of the lemma as
adj(φ)(x, y) = y for y in the boundary of any of the discs Do,2(pi). The second
part of the lemma follows.

To finish the third part of the lemma, it must be checked that the natural map
ρ : Top(M)/Top(M, k) → F (M, k) is a homeomorphism. Notice that part 2 of
the lemma gives local sections φ : U → Top(M). Thus consider the composite
λ : U → Top(M)/Top(M, k) given by the composite pφ where p : G → G/H is
the natural quotient map. Notice that λ : U → λ(U) is a continuous bijection, and
λ(U) = φ−1(U). Thus λ(U) is open, and the map φ is open. Thus ρ is open, and
hence a homeomorphism. The lemma follows.

�

Next, the proof of Theorem 8.5 is given.

Proof. By Lemmas 8.6, and 8.4, Top(M, k) is a closed subgroup of Top(M), and
local sections exist for Top(M) → Top(M)/Top(M, k) . Thus there is a principal
fibration Top(M, k) → Top(M) → Top(M)/Top(M, k), and the first part of the
theorem follows.

Furthermore, the natural evaluation map Top(M) → F (M, k) factors through
the quotient map Top(M) → Top(M)/Top(M, k). There is the induced map
ρ : Top(M)/Top(M, k) → F (M, k) which, by lemma 1.4 , is a homeomorphism,
and part 2 of the theorem follows.

The third statement in the theorem follows from a construction in N. Steenrod’s
book [S], at the foot of page 30. Namely, consider H → G → G/H where H is a
closed subgroup of G, and the map G → G/H admits ”local cross-sections”, then
BH → BG is the projection map in a fibre bundle with fibre given by the space
of left cosets G/H . �

As a consequence of Theorem 8.5, we can describe some of the Borel constructions
we have looked at in previous sections as K(π, 1) spaces where the group π is given
by certain mapping class groups.

Theorem 8.7. (1) If q ≥ 3, the spaces ESO(3)×SO(3)F (S2, q), and ESO(3)×SO(3)

F (S2, q)/Σq are respectively K(PΓq
0, 1), and K(Γq

0, 1).
(2) If M = S1 × S1, and q ≥ 2, the spaces ETop(M) ×Top(M) F (M, q), and

ETop(M) ×Top(M) F (M, q)/Σq are respectively K(PΓq
1, 1), and K(Γq

1, 1).
Furthermore, in these cases ETop(M)×Top(M) F (M, q) is homotopy equiv-

alent to ESL(2, Z)×SL(2,Z)F (S1×S1−{(1, 1)}, q−1) where SL(2, Z) acts

on S1 × S1 − {(1, 1)} by the formula

(2)

(

a b
c d

) (

u
v

)

= (uavb, ucvd)
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for

(3)

(

u
v

)

in S1 × S1.
(3) If M is a surface of genus g without boundary ( possibly with punctures ),

and g ≥ 2, the spaces ETop(M) ×Top(M) F (M, q) and ETop(M) ×Top(M)

F (M, q)/Σq are respectively K(PΓq
g, 1), and K(Γq

g, 1).
(4) Let M be a closed orientable surface of genus g with x a point of M, and N

= M −{x}. The spaces ETop(N)×Top(N) F (N, q), and ETop(N)×Top(N)

F (N, q)/Σq are respectively K(PΓq,1
g , 1), and K(Γq,1

g , 1).

Proof. Notice that Lemma 2 gives that the fundamental group of ETop(M)×Top(M)

F (M, q) is isomorphic to π0(Top(M, k) = PΓk
g . Similarly, the fundamental group

of ETop(M) ×Top(M) F (M, q)/Σq is Γk
g The main task is now to determine when

ETop(M) ×Top(M) F (M, q) is a K(π, 1). If the genus of M is at least 2, then the
resulting space is a K(π, 1), however, if the genus is 0, or 1, there are some small
modifications described below.

A theorem of Smale [Smale] gives that the natural map SO(3) → Diff+(S2) is
a homotopy equivalence. Thus the natural maps SO(3) → Diff+(S2) → Top(S2)
as well as the maps induced on the level of the Borel constructions ESO(3)×SO(3)

F (S2, q) → ESO(3)×Top(S2)F (S2, q) are homotopy equivalences. Since ESO(3)×SO(3)

F (S2, q) is a K(π, 1 for q ≥ 3 ( See section ?? in these notes . ), the result for part
(1) follows from the above lemma.

To prove part(2) of the theorem, notice that a result of Earle, and Eells [EE], no-
tice that there is an exact sequence of groups 1 → Diff0(S

1×S1) → Diff+(S1×
S1) → SL(2, Z) → 1 where Diff0(S

1 × S1) is homotopy equivalent to S1 × S1

and so BDiff0(S
1 × S1) is homotopy equivalent to CP∞ × CP∞. Furthermore,

the map S1 × S1 → Diff0(S
1 × S1) given by rotations is a homotopy equivalence

by [EE]. Thus the Borel construction EG ×G S1 × S1 is K(SL(2, Z), 1) where G
= Diff+(S1 × S1).

Consider the Borel construction EG×GF (S1×S1, q) together with the projection
to EG ×G F (S1 × S1, 1) having fibre F (S1 × S1 − Q1, q − 1). Recall that EG ×G

F (S1×S1, 1) is K(SL(2, Z), 1), and observe that the action of SL(2, Z) on F (S1×
S1 −{(1, 1)}, q− 1) is the diagonal natural action of SL(2, Z) on S1 ×S1 −{(1, 1)}
where {(1, 1)} is the identity element in S1 × S1 with the following action:

(4)

(

a b
c d

) (

u
v

)

= (uavb, ucvd).

Thus, if q ≥ 2, the fibre and base of the projection EG ×G F (S1 × S1, q) →
EG×G F (S1 × S1, 1) are K(π, 1)′s. Thus EG×G F (S1 × S1, q) is also a K(π, 1) if
q ≥ 2, and part (3) follows.
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To prove part (3), notice that by [EE],each path component of Diff+(M) is con-
tractible if M is of genus g ≥ 2. Thus both BTop(M), and F (M, k) are Eilenberg-
Mac Lane spaces of type K(π, 1).

Part(4) is analogous as BTop(M) is a K(π, 1) where N = M −{x}. The theorem
follows.

�

Recall the definition of the pointed mapping class group: The pointed mapping
class group Γk,1

g is the group of path components of the orientation preserving
homeomorphisms which (1) preserve the point p in the surface, and (2) leave a set
of k other distinct points in M invariant, π0(Top(M, {p}, Qk). The pure pointed
mapping class group PΓk

g is the kernel of the natural homomorphism Γk,1
g → Σk.

Corollary 8.8. (1) If q ≥ 1, then the fundamental group of
ETop(M) ×Top(M) F (M, q + 1)/{1 × Σq}
is isomorphic to Γq,1

g .
(2) If M is of genus zero, and q ≥ 2, then ETop(M)×Top(M)F (M, q + 1)/{1 ×

Σq} is a K(Γq,1
0 , 1).

(3) If M is of genus one, and q ≥ 1, then ETop(M)×Top(M) F (M, q + 1)/{1 ×
Σq} is a K(Γq,1

g , 1).
Furthermore if q ≥ 1, then ETop(M)×Top(M)F (M, q) is homotopy equiv-

alent to ESL(2, Z)×SL(2,Z)F (S1×S1−{(1, 1)}, q−1) where SL(2, Z) acts

on S1 × S1 − {(1, 1)} by the formula
(4) If M is of genus at least two, and q ≥ 1, then ETop(M)×Top(M)F (M, q + 1)/{1 ×

Σq} is a K(Γq,1
g , 1).

Proof. Consider ETop(M)×Top(M)F (M, q + 1)/{1 × Σq together with the natural
projection to ETop(M) ×Top(M) M with fibre F (M − Q1, q)/Σq. Thus the space
ETop(M)×Top(M) is BTop(M, 1) by Theorem 1.2 . Furthermore, the Top(M, 1)-
action on F (M − Q1, q)/Σq is induced by the natural diagonal action on M − Q1.
Hence the fundamental group is Γq,1

g . The hypotheses on the number of points q
gives that the resulting spaces are K(π, 1)′s by Theorem 1.2.

To finish the proof of the corollary, it suffices to notice that ETop(M) ×Top(M)

F (M, q) is homotopy equivalent to ESL(2, Z)×SL(2,Z) F (S1 × S1 −{(1, 1)}, q− 1)

where SL(2, Z) acts on S1 × S1 − {(1, 1)} where M is of genus 1 by the above
remarks.

�

9. The Thom construction

9.1. Basic definitions. In this section, we will be working in the category of
pointed spaces and maps. Recall the basic definitions:

Definition 9.1. A pointed space is a space X together with a fixed basepoint ∗ ∈ X.
A map f : X → Y between two pointed spaces is said to be a pointed map if f(∗) = ∗.
A homotopy F between two pointed maps f, g : X → Y is said to preserve basepoints
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if F (∗×I) = ∗ and we write f ≃∗ g. If f and g are homotopic but not necessarily by
a homotopy that preserves basepoints, we write f ≃ g and say f is freely homotopic
to g.

We recall some basic constructions. See [Bre] for proofs of the basic properties
of these constructions.

Definition 9.2. Given two pointed spaces X and Y , X ×Y can be made a pointed
space by taking (∗, ∗) as basepoint. Define

X ∨ Y = {(x, y) ∈ X × Y such that either x = ∗ or y = ∗}.
X ∨ Y is called the wedge product of X and Y and is a pointed space consisting of
the spaces X = X × ∗ and Y = ∗ × Y attached at the basepoint (∗, ∗).

Definition 9.3. Given two pointed spaces X and Y ,

X ∧ Y = X × Y/X ∨ Y

is called the smash product of X and Y and is itself a pointed space where we set
the equivalence class of X ∨ Y as the basepoint.

The following lemma collects some useful facts about the wedge and smash prod-
ucts. The proof of these facts is left to the reader and can be found in introductory
texts like [Bre] or [Spa].

Lemma 9.4. Let Top∗ denote the category of pointed spaces and maps. We will
write X =∗ Y if X and Y are isomorphic in this category. Then
(a) −∨− and −∧− are functors from Top∗ to itself, which are covariant in both en-
tries. If f : X1 → X2 and g : Y1 → Y2 are two pointed maps we will denote the maps
given by these functors as f ∨g : X1 ∨Y1 → X2 ∨Y2 and f ∧g : X1∧Y1 → X2 ∧Y2.
(b) −∨− equips the isomorphism classes of objects in Top∗ with the structure of a
commutative monoid with identity where the identity is the point space ∗. In other
words:
(i) X ∨ Y =∗ Y ∨ X
(ii) (X ∨ Y ) ∨ Z =∗ X ∨ (Y ∨ Z)
(iii) X ∨ ∗ =∗ X.
(c) − ∧ − equips the isomorphism classes of objects in Top∗ with a commutative
multiplication structure, which together with ∨ gives a commutative semiring struc-
ture on Top∗. (A semiring is something which satisfies all the axioms of a ring
except the existance of additive inverses.) In other words:
(i) X ∧ Y =∗ Y ∧ X
(ii) (X ∧ Y ) ∧ Z =∗ X ∧ (Y ∧ Z)
(iii) X ∧ S0 =∗ X where S0 = {0, 1} with 0 as the basepoint.
(iv) (X ∨ Y ) ∧ Z = (X ∧ Z) ∨ (Y ∧ Z).
(d) ∨ and ∧ are homotopy functors, i.e., if f ≃∗ f ′ and g ≃∗ g′ then we have
f ∨ g ≃∗ f ′ ∨ g′ and f ∧ g ≃∗ f ′ ∧ g′.

Remark 9.5. The reader should be careful in interpreting the semiring structure
in lemma 9.4 since the objects of Top∗ do not form a set. However, in practice,
this is not a problem as we can always confine ourselves to a suitable set of objects
if we wish to use the semiring structure. The reader can check for example, that the
“subsemiring” generated by S0 is naturally identified with the semiring of natural
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numbers. In fact, if we confine ourselves to objects in Top∗ where the Euler char-
acteristic χ is defined, and where we can identify H̃∗(X ∧Y ) as H∗(X ×Y, X ∨Y ),
then the map taking X to χ(X) − 1 is a semiring morphism to the integers.

Definition 9.6. We use X(k) to stand for the kth power of the pointed space X
under the smash product multiplication. It is understood then that X(0) = S0 and
X(1) = X. Notice that, for k ≥ 1, we have

X(k) = Xk/F

where F = {(x1, . . . , xk) ∈ Xk such that xi = ∗ for some i}, is the so called fat-
tened wedge. Notice that the symmetric group Σk acts on Xk by permuting coor-
dinates and that this action preserves F . Thus this induces a natural action of Σk

on X(k) which fixes the basepoint.

Definition 9.7. Given a space X, the unreduced suspension of X, denoted SX,
is the quotient space obtained from X × I by identifying X × {0} to a point and
X × {1} to another point.
Given a pointed space X, the reduced suspension of X, is defined as

ΣX = X × I/(X × {0} ∪ ∗ × I ∪ X × {1}).
and is given the equivalence class of ∗ × I as the basepoint.

Remark 9.8. We will identify the 1-sphere S1 as the quotient space formed from
[0, 1] where we identify 0 and 1 to form a common basepoint. With this, it is easy
to see that

S1 ∧ X =∗ ΣX.

Thus (S1)(k) = Sk for all k ≥ 0.

Definition 9.9. A well pointed space X is a pointed space where the inclusion
∗ → X is a cofibration. Recall that for such a space, the reduced and unreduced
suspensions are homotopy equivalent. (See [Bre] or [Spa]). Any CW -complex X is
well pointed if we take the basepoint to be an element of the zero skeleton X(0).

9.2. The Thom construction. We now introduce an important construction.
Let M be a free right Σk-space and X be a well pointed space. Then from the
final remark in definition 9.6, there is a natural Σk action on X(k) which fixes the
basepoint. Thus we can form

M ×Σk
X(k) = M × X(k)/ ∼,

where (mσ, x̄) ∼ (m, σx̄) for all σ ∈ Σk, x̄ ∈ X(k) and m ∈ M .
As in the Borel construction, one can easily show that as the Σk action on M is

free, the map

π : M ×Σk
X(k) → M/Σk,

obtained by projecting on the first factor, is a fiber bundle with fiber X(k). Fur-
thermore π has a section σ : M/Σk → M ×Σk

X(k) defined by σ(m̄) = (m, ∗) where

∗ is the basepoint of X(k). (This section is well defined as ∗ is fixed under the Σk

action on X(k).)
Given a field F, we will now set out to find H∗(M ×Σk

X(k); F). To do that using
the spectral sequence for the fiber bundle described above, we see that we first need
to describe H∗(X(k); F). So let us do that now.
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Recall that if the inclusion of A into X is a cofibration, then we have a natural
isomorphism H∗(X, A; F) ∼= H̄∗(X/A; F) where the bar signifies reduced cohomol-
ogy. (See for example [Bre]).

Now if X and Y are well pointed spaces, then the inclusion of X ∨Y into X ×Y
is a cofibration?

Thus H∗(X×Y, X∨Y ; F) ∼= H̄∗(X∧Y ; F). On the other hand, it is easy to argue
that the long exact sequence in reduced cohomology for the pair (X × Y, X ∨ Y )
degenerates into split short exact sequences:

0 → H∗(X × Y, X ∨ Y ; F) → H̄∗(X × Y ; F)
i∗→ H̄∗(X ∨ Y ; F) → 0

Thus H̄∗(X ∧ Y ; F) is algebra isomorphic to the kernel of i∗. We are able to get
a complete description of this kernel via the Künneth Theorem in the case when
one of the spaces has finite dimensional F-cohomology in each dimension. (We need
this condition, to apply the cohomology version of Künneth’s theorem - see [Bre]).

Using this, one easily describes the cohomology algebra of the smash product in
terms of the cohomology algebras of the original spaces. We state the result as a
lemma and leave the completion of the details of its proof to the reader.

Lemma 9.10. If X, Y are path connected, well pointed spaces and at least one of
them has finite dimensional F-cohomology in each dimension, then H̄∗(X ∧Y ; F) ∼=
H̄∗(X ; F)⊗ H̄∗(Y ; F) as F-algebras (without identity element).

It follows from lemma 9.10 that for a path connected, well pointed space X ,
one has H̄∗(X(k); F) is isomorphic to the tensor product of k copies of the algebra
H̄∗(X ; F) with itself.

Definition 9.11. Given a graded F-algebra A with A0 = 0 (so A does not have
an identity element), we define Tk(A) to be the F-algebra with identity obtained
in the following way. We first take the tensor product of k-copies of A. This has
nothing in degree zero. Finally, we include a 1-dimensional vector space in degree
zero generated by an identity element.

Thus we can restate our results as H∗(X(k); F) ∼= Tk(H̄∗(X ; F)).
Fix a label space X . Now as we mentioned before, there is a natural left Σk

action on X(k) induced from the left Σk action on Xk given by σ · (x1, . . . , xk) =
(xσ(1), . . . , xσ(k)).

Since cohomology is a contravariant functor, it is easy to check that we get a right
Σk action on H∗(Xk; F). Let us describe this action using the Künneth theorem
to identify H∗(Xk; F) as the tensor product of k copies of H∗(X ; F). It is easy to
check that an element of the form 1 ⊗ . . . α · · · ⊗ 1 where α is in the ith spot gets
taken under σ ∈ Σk to a similar element where α is in the σ−1(i)th spot. (To check
this note that such elements correspond nicely to elements in the cohomology of
the k-fold wedge product of X where the statement is clear.)

This describes the right Σk action on H∗(Xk; F) completely as elements of the
form 1⊗ . . . α · · ·⊗1 generate this cohomology as an algebra and Σk acts via algebra
maps.

It is convenient, to switch this right Σk action to a left Σk action via a standard
procedure. Given a right action of a group G on some object X , one obtains a left
action of G on X by defining

g · x ≡ x · g−1.
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Doing this the left action of Σk on H∗(Xk; F) sends 1 ⊗ . . . α · · · ⊗ 1 where α is
in the ith spot to the corresponding element where α is in the σ(i)th spot under
σ ∈ Σk.

Thus we have in general that

σ · (α1 ⊗ · · · ⊗ αk) = ±ασ(1) ⊗ · · · ⊗ ασ(k).

The ± sign occurs because of the grading as the following example illustrates:
Let k = 2 and σ = (1, 2), then

σ · (α ⊗ β) = σ · (α ⊗ 1 ∪ 1 ⊗ β)

= (σ · (α ⊗ 1)) ∪ (σ · (1 ⊗ β))

= (1 ⊗ α) ∪ (β ⊗ 1)

= (−1)|α||β|(β ⊗ 1) ∪ (1 ⊗ α)

= (−1)|α||β|(β ⊗ α)

Of course, this description of the left Σk action on H∗(Xk; F) restricts to a
description of the left Σk action on H∗(X(k); F) ∼= Tk(H̄∗(X ; F)).

One of the main cases we will be looking at is when X is Sd, the d-sphere. In
this case, we can make the sign in the left Σk action on H∗(X(k); F) explicit.

Definition 9.12. A representation of Σk on a F-vector space is said to be trivial
if every element acts as the identity map of the vector space.

The sign representation of Σk is a one dimensional F-vector space where the
even elements of Σk act as multiplication by 1 while the odd elements of Σk act as
multiplication by −1.

Notice that if the characteristic of F is two, then the sign representation is ac-
tually trivial.

First note, that the reduced cohomology of Sd is zero except in degree d where
it is one dimensional generated by α say.

Thus H̄∗((Sd)(k); F) is zero except in degree kd where it is one dimensional
generated by T = α ⊗ · · · ⊗ α. (In fact in this case we know (Sd)(k) = Sdk but we
will not use that.)

Each element in Σk takes T to ±T . It is easy to see that if d is even, σ(T ) = T
for all σ ∈ Σk while if d is odd, σ(T ) = (−1)ǫ(σ)T where ǫ is the sign representation
of Σk into {−1, +1} ⊂ F∗. (F∗ stands for the group of nonzero elements of F.)

Thus we have shown the following useful proposition:

Proposition 9.13. As a left Σk-module, H̄∗((Sd)(k); F) is concentrated in degree
kd and in that degree it is
(a) A trivial one dimensional Σk-module if d is even.
(b) The one dimensional sign representation if d is odd.

Now let us calculate the cohomology of M ×Σk
X(k) where X = Sd. First recall

that we had a fiber bundle π : M ×Σk
X(k) → M/Σk with fiber X(k). Thus we

have a Serre spectral sequence with

Ep,q
2 = Hp(M/Σk; Hq(X(k); F))

abutting to Hp+q(M ×Σk
X(k); F). The reader is warned that the coefficients in

the E2-term are twisted. In fact from the cover M → M/Σk we get a short exact
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sequence of groups

π1(M) → π1(M/Σk)
λ→ Σk.

The action of π1(M/Σk) on the cohomology of the fiber is easily checked to be
given by the composition of λ and the Σk-action on H∗(X(k); F) described in the
previous paragraphs.

Recall that the fiber bundle π had a section σ. This means that in this spectral
sequence, no differentials will hit the horizontal line q = 0. Thus for general X ,
Ep,0

2 = Ep,0
∞ in this spectral sequence.

Now for X = Sd, we have E2 is concentrated on the horizontal lines q = 0 and
q = kd. Since we know no differential can hit the line q = 0, we conclude all
diffenrentials are zero in this spectral sequence and E∗,∗

2 = E∗,∗
∞ . Thus we conclude

for X = Sd, we have an isomorphism of vector spaces

H∗(M ×Σk
(Sd)(k); F) ∼= H∗(M/Σk; F) ⊕ H∗−kd(M/Σk; Hkd((Sd)(k); F))

where again recall that the last summand has a twisted coefficient.
The first summand above, is the part of H∗(M ×Σk

X(k); F) coming from the
image of π∗ or in other words coming from the image of our section. It can be
shown that the section above is a cofibration, so if we form M ⋊Σk

X(k) the space

obtained from M ×Σk
X(k) by collapsing the image of the section to a basepoint,

we conclude that

H̄∗(M ⋊Σk
(Sd)(k); F) ∼= H∗−kd(M/Σk; Hkd((Sd)(k); F))

as algebras. (Here we notice that in the E∞ term above, once we collapse the image
of the section to a basepoint, we lose the row q = 0 and hence there are no lifting
problems anymore since everything is concentrated in the row q = kd.)

This shows that the algebra structure of H̄∗(M ⋊Σk
(Sd)(k); F) is trivial, i.e., the

product of any two elements is zero.

10. Lie Algebras and Kohno-Falk-Randell Theory

The purpose of this section is to consider the functor from groups to Lie algebras
given by sending a group G to the Lie algebra obtained from the descending central
series for G.

The Lie algebras associated in this way to some pure braid groups as well as
the fundamental groups of orbit configuration spaces appear in several different
mathematical contexts.

In this section, a very useful tool for the analysis of these Lie algebras, obtained
by T. Kohno [?], and Falk, and Randell [?] is described. They used this tool to
analyze the beautiful case where G is the kth pure Artin braid group. This general
theory is described below along with several examples related to braid groups and
elliptic curves.

We begin by defining some preliminary group theoretic concepts.

Definition 10.1. Given two subgroups H, K of a group G, we define [H, K] to
be the subgroup of G generated by commutators [h, k] = h−1k−1hk where h ranges
over the elements of H and k ranges over the elements of K.

It is easy to check that [H, K] is normal (characteristic) in G if H and K are
normal (characteristic) in G. (Recall a subgroup of G is called characteristic if it
is invariant under every automorphism of G.)
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Definition 10.2. We define the descending central series of G,

G = Γ1(G) ≥ Γ2(G) ≥ .... ≥ Γn(G) ≥ . . .

inductively by G = Γ1(G) and Γn(G) = [G, Γn−1(G)] for n > 1.

The following proposition collects some elementary facts about this series, the
proofs of which are easy and left to the reader: [references: see Magnus, Karass,
Solitar, or Michael Vaughn-Lee]

Proposition 10.3. Let Γn(G) denote the nth term in the descending central series,
then:
(1) The group Γn(G) is a normal (in fact characteristic) subgroup of G.
(2) The quotient group En

0 (G) = Γn(G)/Γn+1(G) is abelian for all n ≥ 1.
(3) The map of sets given by the commutator <, >: G × G → G by defining

< x, y >= x−1y−1xy

induces a well-defined bilinear pairing

[·, ·] : En
0 (G) ⊗Z Em

0 (G) → En+m
0 (G)

which is alternating, i.e.,
[a, a] = 0

for all a, and satisfies the Jacobi identity, i.e.,

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0

for all a, b, c.
(4) Thus E∗

0 (G) is a quasi-graded Lie algebra in the sense that if a has degree n and
b has degree m, then [a, b] has degree n+m. The reader is warned that this notion of
quasi-graded Lie algebra is different from the notion of a graded Lie algebra typically
used in topology which is defined below for completeness.

Definition 10.4. A graded Lie algebra is a graded abelian group E∗ = ⊕i∈ZEi

together with a bilinear bracket [·, ·] : E∗ ⊗ E∗ → E∗ satisfying:

[a, b] = (−1)|a||b|[b, a]

and
(−1)|a||c|[[a, b], c] + (−1)|b||a|[[b, c], a] + (−1)|c||b|[[c, a], b] = 0

for all homogeneous a, b, c ∈ E∗. (Here |a| denotes the degree of a etc.)

The motivation for the definition of a graded Lie algebra given above is that the
homotopy groups {πn(X)|n ≥ 2} of a well-pointed space X fit together to give a
graded Lie algebra under the Whitehead product. (See [Bre].)

Consider the Lie algebra E∗
0 (G) obtained from the descending central series for

the group G as described in proposition 10.3. For each positive integer q, there is
a canonical graded Lie algebra E∗

0 (G)q obtained from E∗
0 (G), which will be useful

in the next section, and which is defined as follows.

Definition 10.5. Fix a positive integer q and let Γn(G) denote the nth stage of
the descending central series for G. Define

Ei
0(G)q =

{

En
0 (G) if i = 2nq

0 if i 6= 0 mod 2q

Finally define the Lie bracket on E∗
0 (G)q to be that induced from the one of E∗

0 (G).
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We are now ready to look at the main theorem of this section.

Theorem 10.6 (T. Kohno, Falk-Randell). Let

1 → A → B → C → 1

be a split short exact sequence of groups such that the conjugation action of C on
H1(A) is trivial.

Then there is a short exact sequence of Lie algebras

0 → E∗
0 (A) → E∗

0 (B) → E∗
0 (C) → 0

which is split as a sequence of abelian groups. (Thus there is an isomorphism of
abelian groups En

0 (A) ⊕ En
0 (C) ∼= En

0 (B) but this isomorphism need not preserve
the Lie algebra structure.)

Proof. This proof follows that of Falk-Randell [?] and Xicoténtcatl [?]. Consider
the extension

1 → A
j→ B

p→ C → 1

and let σ : C → B be a splitting for p. Observe that p(bσ(p(b−1))) = 1 for all
b ∈ B, so there exists a unique element a ∈ A with j(a) = b(σ(p(b−1))) for all b ∈ B.
Thus, there is a well-defined function (which is not necessarily a homomorphism)
τ : B → A defined by the formula τ(b) = j−1(bσ(p(b−1))).

Notice that the trivial action of C on H1(A) gives

(1) cac−1 = ax for a in A, and x in [A, A],
(2) [B, A] is a subgroup of [A, A], and
(3) [Γn(B), Γm(A)] is a subgroup of Γm+n(A), and
(4) τ(Γn(B)) is contained in Γn(A).

Since τ(Γn(B)) is contained in Γn(A), for all n, there is a well-defined induced
map of sets τ : En

0 (B) → En
0 (A) where τ is defined on an equivalence class of b by

the formula τ([b]) = τ(b) ( as τ(bv) = bv.σp((bv)−1)= τ(b).Γ where v and Γ are in
Γn+1(B).

Furthermore if b is in ker(p) ∩ Γn(B), then τ(b) = b. Thus τ restricts to a
function τ |ker(p)∩Γn(B) : ker(p) ∩ Γn(B) → Γn(A), and the homomorphism j :
Γn(A) → ker(p)∩ = Γn(B) is a group isomorphism. Thus, there is an exact
sequence of groups 1 → Γn(A) → Γn(B) → Γn(C) → 1 which is split by the
existence of σ.

Furthermore, if [b] is in the kernel of En
0 (p) : En

0 (B) → En
0 (C), then En

0 (τ [b]) =
[b]. Hence, there is a split short exact sequence 0 → En

0 (A) → En
0 (B) → En

0 (C) →
0. The theorem follows from the above.

�

The additive decomposition in theorem 10.6 may not necessarily preserve the
underlying Lie algebra structure. The Lie product is sometimes ”twisted”, and
quite interesting, as shall be seen in examples below. We will now look at some
examples which demonstrate that both hypotheses on the theorem are required
(The existance of the splitting on the sequence of groups and the trivial action on
homology.)
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Example 1: Let F [S] denote the free group on a set S. Then E∗
0 (F [S]) is

isomorphic to the free Lie algebra on S, denoted by L[AS ]. This is defined by
letting AS be the free abelian group with basis S, and then defining L[AS ] to be
the smallest sub-Lie algebra of the tensor algebra T [AS ] containing AS . [P. Hall,
W. Magnus, J. P. Serre ].

Example 2: Let G denote the kth pure Artin braid group Pk. Fix a free
abelian group Vk with basis given by elements Bi,j for 1 ≤ i < j ≤ k. Let Lk

denote the quotient of the free Lie algebra L[Vk] generated by Vk, modulo the
following “infinitesimal braid relations”:

(1) [Bi,j , Bs,t] = 0 if {i, j} ∩ {s, t} = φ,
(2) [Bi,j , Bi,t + Bt,j ] = 0 for 1 ≤ j < t < i ≤ k, and
(3) [Bt,j , Bi,j + Bi,t] = 0 for 1 ≤ j < t < i ≤ k.

Then E∗
0 (Pk) is isomorphic to Lk. [T. Kohno, Falk-Randell].

Example 3: Consider the orbit configuration space FG(M, k) where M = C,
the complex numbers. Let G be the standard integral lattice L = Z + iZ, act-
ing by translation on C. Then FL(C, k) is a K(π, 1) which is studied in [Co-
hen,Xicoténcatl]. Let FL(C, k) be defined as above. Picking a parametrized lattice
Z + ωZ gives an analogous orbit configuration space associated to an elliptic curve.
These will be addressed elsewhere.

(1) The symmetric group Σk acts on FL(C, k) and the orbit space FL(C, k)/Σk

is homeomorphic to the subspace of monic polynomials of degree k, p(z) ∈
C[z], with the property that the difference of any two roots of p(z), αi, αj ,
lies outside of the Gaussian integers.

(2) It is the complement on Ck of the infinite (affine) hyperplane arrangement

A = {Hσ
i,j | 1 ≤ j < i ≤ k, σ ∈ L}

where Hσ
i,j = ker(zi − zj − σ) and σ ranges over the lattice L.

(3) It is an L-cover of the ordinary configuration space of k points in the torus
T = S1 × S1. This is a special case of the results in [Xicoténcatl, thesis]
where it is proven that there exists a principal bundle

Lk → FL(C, k) → F (T, k).

(4) The space FL(C, k) is a K(π, 1)-space.
(5) The fibration FL(C, k) → FL(C, k − 1) has

(i) trivial local coefficients in homology, and
(ii) a cross-section.

(6) Thus by theorem 10.6, the Lie algebra attached to the descending central
series of π1(FL(C, k)) is additively isomorphic to the direct sum

⊕

1<i≤k L[i]

where L[i] is the free Lie algebra generated by elements Bσ
i,j for fixed i with

1 ≤ j < i ≤ k, and σ runs over the elements of the lattice L.
(7) The relations are

[Bσ
i,j , B

τ
k,i] = [Bτ

k,i, B
τ+σ
k,j ]

[Bσ
i,j , B

τ
k,j ] = [Bτ

k,j , B
τ−σ
k,i ]
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The next list of examples gives short exact sequences of groups such that the con-
clusion of the Kohno-Falk-Randell theorem fails, and where one of the hypotheses
in the theorem does not hold.

Example 4: Consider a split short exact sequence of groups

1 → A → B → C → 1

where both A and C are abelian.
Thus if n ≥ 2, both En

0 (A), and En
0 (C) are trivial. However, it may well be the

case that B is not abelian, for example if B is a nontrivial semi-direct product of
A and C, then E2

0 (B) will be non-trivial and hence is not the sum of E2
0(A) with

E2
0(C), thus spoiling the conclusion of the Kohno-Falk-Randell theorem. Notice

here that in this case C will act nontrivially on H1(A) = A.
The simplest example of this sort is given by taking the symmetric group on 3

letters Σ3 as B. If we take A to be the normal Sylow-3 group of order 3 and C to
be the group of order 2, the group extension formed by A, B and C is split, but the
action of C on the first homology group of A is non-trivial. In fact E2

0(Σ3) = Z/3Z.

Example 5: Next consider group extensions
1 → A → B → C → 1 where A = Z/2Z. Since the only automorphism of Z/2Z

is the identity, the action of C on H∗(A) is always trivial. If this extension fails to
split, then the conclusion of the Kohno-Falk-Randell theorem may be spoiled. For
example we may take A = C = Z/2Z and B = Z/4Z. Then E1

0(B) 6= E1
0 (A) ⊕

E1
0(C).
Another less trivial example is provided by non-abelian extraspecial 2-groups

where C = (Z/2Z)n. In this case E2
0(B) is again isomorphic to Z/2Z, but E2

0(A)⊕
E2

0(C) is the trivial group. Two more specific examples where B is non-abelian,
and C = (Z/2Z)2 are given by D8, the dihedral group of order 8, and Q8, the
quaternion group of order 8.

Example 6: Assume that the group C in the extension 1 → A → B → C → 1
is free. Then this extension is split. This setting gives infinite examples where the
conclusion of the Kohno-Falk-Randell theorem may be spoiled. A specific example
is given by C the free group generated by a finite set S of cardinality n, B is the
free group generated by the coproduct of the two non-empty sets S ∐ T where T
has cardinality 1 with B = F [S ∐ T ] and where the map p : B → C given by the
natural projection.

Then the above extension is split, but E1
0(A) is a countably infinitely generated

free abelian group, while E1
0(B) is a free abelian group of rank n+1. Thus the

natural map E1
0(A) → E1

0(B) has a kernel.

Example 7: If M is a punctured surface of genus greater than 0, and k ≥ 2
then the fibrations F (M, k) → F (M, k − 1) have sections, but the local coefficient
system is non-trivial ( as can be seen by inpsection of the relevant Dehn twist ).
Thus the Lie algebras attached to the descending central series for the pure braid
groups of these surfaces is not clear. One case above addresses this structure by
considering the group that is the kernel of the map

π1F (M, k) → π1M
k that is induce by the inclusion map.
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When M is a torus, the kernel of this last map satisfies the hypotheses for the
Kohno-Falk-Randell theorem. The resulting Lie algebra is given above [CX].

When M is any closed surface of genus at least one, it seems likely that this
kernel always satisfies the hypotheses of the Falk-Randell-Kohno theorem.

Let H denote the upper 1/2-plane, and let Γ be a subgroup of SL(2, Z) that
acts properly discontinuously on H . One might conjecture that the fundamental
groups of the orbit configuration spaces π1FΓ(H, k) satisfy the hypotheses of the
Kohno-Falk-Randell theorem, and thus the conclusion.

By [?], there is a short exact sequence of groups

1 → π1FΓ(H, k) → π1F (M, k) → π1(M
k) → 1

where H/Γ = M . The point of this is that the orbit configuration space has a
“nice” associated Lie algebra. The above extension tweezes apart two different
phenomona in these Lie algebras.

11. Loop spaces of configuration spaces, and Lie algebras

This section is about 2 possibly different constructions which are in fact the
same. The subject of this section is loop spaces of configuration spaces and their
relationship to the Lie algebra attached to the descending central series of the pure
braid group as described in the previous section. The purpose of this section is
to show that these Lie algebras, apart from a formal degree shift, are given by
the homotopy groups of configuration spaces for points in complex n-space, n > 1,
modulo torsion. This theorem, first proven in [?], and subsequently in [CG] is a
special case of a more general result , and which applies to further analogues of pure
braid groups. One example, the space of monic polynomials where the differences
of the roots lie ouside of the Gaussian integers provides another example, as well
as certain choices of orbit configuration spaces are also described below.

Some additional discussion ( no proofs !) are given concerning other related
constructions which exhibit properties like braid groups, and appear in the space of
loops on a configruation space. These loop spaces may be thought of as braids on a
manifold, or as trajectories of distinct particles moving through a time parameter
that start and quit in the same position.

These constructions also ”fit” into several dfferent contexts. One of which is that
these spaces admit interpretations in terms of Vassiliev invariants of braids, and
knots. This subject will not be addressed here; some information is given in [CG].
Indeed, one motivation for including this information here is that loop spaces of
configuration spaces keep track of paths of distinct particles parametrized by time
as they move through a manifold, and are essentially braids on a manifold. There
is a rich homological structure attached to these paths, as well as a close connection
to invariants of knots.

Recall the regrading of Lie algebras E∗
0 (G)m for m > 0 given in the previous

section where E∗
0 (G) denotes the Lie algebra attached to the descending central

series of a discrete group G.
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Theorem 11.1. If m ≥ 1, then the homology of the loop space of the configuration
space ΩF (R2m+2, k) is isomorphic to the universal enveloping algebra of the graded
Lie algebra E∗

0 (Pk)m. Furthermore,

(1) the image of the classical Hurewicz homomorphism π∗(ΩF (R2m+2, k)) →
H∗(ΩF (R2m+2, k)) is isomorphic to E∗

0 (Pk)m,
(2) the Hurewicz homomorphism induces an isomorphism of graded Lie algebras

π∗(ΩF (R2m+2, k))/torsion → PrimH∗(ΩF (R2m+2, k))
where Prim(.) denotes the module of primitive elements, and the Lie

algebra structure of the source is given by the classical Samelson product.

Namely, the homotopy groups of the loop space of the configuration space of k
points in an even dimensional euclidean space R2m+2, modulo torsion, admits the
structure of a graded Lie algebra induced by the classical Samelson product. That
Lie algebra is isomorphic to E∗

0 (Pk)m as described in the previous section.

Similar results apply to other analogues of pure braid groups. Further work of
[X], [DC], and the first author show that an analogous theorem holds for some other
groups that are ”close” to braid groups arising from some fibred K(π, 1) hyperplane
arrangements. Analogous results hold for ”orbit configuration spaces” for groups
acting freely on the upper 1/2-plane, and for some lattices acting on C [CX].

Here, consider FG(M, k) in the case when M = C, the complex numbers, and G is
the integral lattice L = Z+iZ, acting by translation on C. One of the consequences
of the theorem below is that the Lie algebra obtained from the fundamental group of
the associated orbit configuration space also gives the Lie algebra obtained form the
higher homotopy groups of the ”higher dimensional analogues” of this arrangement.
Two examples illustrating this behavior are [X], [DC], and are described here as
well as general theorem about analogous spaces.

Theorem 11.2. Let FL(C, k) be defined as above.

(1) The symmetric group Σk acts on FL(C, k) and the orbit space FL(C, k)/Σk

is homeomorphic to the subspace of monic polynomials of degree k, p(z) ∈
C[z], with the property that the difference of any two roots of p(z), αi, αj,
lies outside of the Gaussian integers.

(2) It is the complement in Ck of the infinite (affine) hyperplane arrangement

A = {Hσ
i,j | 1 ≤ j < i ≤ k, σ ∈ L}

where Hσ
i,j = ker(zi − zj − σ).

(3) It is an Lk-cover of the ordinary configuration space of k points in the torus
T = S1 × S1. This is a special case of the results in [?], which gives the
existence of a principal bundle

Lk −→ FL(C, k) −→ F (T, k).

(4) The space FL(C, k) is a K(π, 1).
(5) The fibration FL(C, k) → FL(C, k − 1) has (i) trivial local coefficients in

homology, and (ii) a cross-section.
(6) Thus the Lie algebra given by the associated graded for the descending

central series of π1(FL(C, k)) is additively isomorphic to the direct sum
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⊕

1<i≤k L[i] where L[i] is the free Lie algebra generated by elements Bσ
i,j

for fixed i with 1 ≤ j < i ≤ k, and σ runs over the elements of the lattice
L.

(7) The relations are
[Bσ

i,j , B
τ
k,i] = [Bτ

k,i, B
τ+σ
k,j ]

[Bσ
i,j , B

τ
k,j ] = [Bτ

k,j , B
τ−σ
k,i ]

(8) The integral homology of FL(C, k) is additively given by

H∗FL(C, ℓ) ∼= H∗(C1) ⊗ H∗(C2) ⊗ · · · ⊗ H∗(Ck−1)

where Ci is the infinite bouquet of circles
∨

|QL
i
| S

1 and QL
i as defined in

the beginning of next section.

Consider the ”orbit configuration space” FL(C × Rn, k) where L operates diag-
onally on C × Rn, and trivially on Rn.

Theorem 11.3. Assume that q ≥ 1.

(1) The loop space ΩFL(C × R2q, k) is homotopy equivalent to the product
∏

1≤i≤k−1

Ω(C × R2q − QL
i )

( although this product decomposition is not multiplicative ).
(2) The integral homology of ΩFL(C × R2q, k) is isomorphic to

⊗

1≤i≤k−1

H∗(Ω(C × R2q − QL
i ))

as a coalgebra.
(3) The Lie algebra of primitives is isomorphic to the Lie algebra given by

π∗(ΩFL(C × R2q, k))/torsion.
(4) The Lie algebra of of primitive elements in the homology of ΩFL(C×R2q, k)

is a direct sum of free (graded) Lie algebras
⊕

1<i≤k L[i] where L[i] is the
free graded Lie algebra generated by elements Bσ

i,j of degree 2q for fixed i
with 1 ≤ j < i ≤ k, and σ runs over the elements of the lattice L. The
relations are

[Bσ
i,j , B

τ
k,i] = [Bτ

k,i, B
τ+σ
k,j ]

[Bσ
i,j , B

τ
k,j ] = [Bτ

k,j , B
τ−σ
k,i ]

(5) The Lie algebras π∗(ΩFL(Cq, k)) modulo torsion, and E∗
0 (FL(C, k))q are

isomorphic as Lie algebras.

Some of these Lie algebras occur for comparatively general reasons as exemplified
by the next theorem. The following general theorem does not specifiy the structure
constants for the underlying Lie algebra, but shows that the Lie algebras addressed
above fit in a wider context.

Theorem 11.4. Assume that n ≥ 3. Let X(Rn, k) → X(Rn, k − 1) be a fibration
which satisfies the following properties:
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(1) The fibre of X(Rn, k) → X(Rn, k − 1) is Rn − Sk where Sk is a discrete
subspace of Rn of fixed (not neccessarily finite) cardinality depending on k.

(2) Each fibration X(Rn, k) → X(Rn, k − 1) admits a cross-section.
(3) The space X(Rn, 1) is Rn with n ≥ 3.

Then

(1) There is a homotopy equivalence ΩX(Rn, k) → ∏

1≤i≤k−1 Ω(Rn − Si).

(2) The homology of ΩX(Rn, k) is torsion free, and is isomorphic to
⊗

1≤i≤k−1 H∗(Ω(Rn − Si)) as a coalgebra.

(3) The module of primitives in the integer homology of ΩX(Rn, k) is isomor-
phic to
E∗

0 (π∗(ΩX(Rn, k))) modulo torsion as a Lie algebra.

In many examples which arise from fibre type arrangements, a similar conclusion
holds as that given in Theorem 1.1, and Theorem 1.3 part (5) above. Namely, there
are K(G, 1)′s in ”good” cases where π∗(ΩX(Rn, k)) modulo torsion is isomorphic
to E∗

0 (G)q . The last section of this article contains some speculation as to where,
and how these structures fit. It is a general theorem that if X is a 1-connected CW
complex, there is a functor Θ(X) = K(GX , 1) where GX is a filtered group such
that the associated graded Lie algebra tensored with the rational numbers gives
the so-called ”homotopy Lie algebra” for the loop space of the rationalization of X.
[CS]. This theorem admits some overlap with work of T. Kohno, and T. Oda [KO]
on the descending central series of the pure braid group of an algebraic curve.

12. Proof of the theorem 1.4

Recall that a multiplicative fibration with section is homotopy equivalent to a
product. Thus ΩX(Rn, k) is homotopy equivalent to ΩX(Rn, k−1)×Ω(Rn−Sk−1),
and the first part of the theorem follows by induction.

The second part of the theorem follows from the Künneth theorem, and part 1
of the theorem.

Since Rn − Sk−1 has the homotopy type of a (possibly infinite ) bouquet of
(n − 1)-spheres, the homology of its loop space follows from the Bott-Samelson
theorem. In this case, it is well-known that there are isomorphisms of Lie algebras
π∗(Ω(Rn − Sk−1)/torsion → PrimH∗(Ω(Rn − Sk−1).

Furthermore, the existence of sections implies that the Hurewicz homomorphism
π∗(ΩX(Rn, k) → PrimH∗(ΩX(Rn, k)) is a surjection. Since this map is an injec-
tion, the theorem follows.

13. Proof of Theorem 1.3

Consider the fibration with section FL(C × R2q, k) → FL(C × R2q, k − 1). The
fibre of this map is C × R2q − QL

k−1. By Theorem 1, the conclusions of Theorem
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3 all follow except possibly the last two which state the precise extension of Lie
algebras.

To finish, it suffices to prove parts (4), and (5) of the theorem by a direct com-
parison of the two Lie algebras π∗(ΩFL(C × R2q, k))/torsion, and E∗

0 (FL(C, k))q .

Thus define maps analogous to those in the proof of the relations for the Lie
algebra attached to the descending central series above: Fi : S2q+1 × S2q+1 →
FL(C × R2q, 3) by the formula

F1(z, w) = (q1, q1 + σ +
z

8
, q1 + τ +

w

16
)

F2(z, w) = (q1, q1 + σ +
z

8
, q1 + σ + τ +

z

8
+

w

16
).

Consider the loopings of these maps Ω(Fi) : Ω(S2q+1 × S2q+1) → Ω(FL(C ×
R2q, 3)). Notice that the fundamental cycles in degree 2q for the integer homol-
ogy of Ω(S2q+1 × S2q+1) commute. Thus it suffices to calculate the image of the
fundamental cycles in the homology of Ω(FL(C × R2q, 3)). This gives the precise
relations as stated in parts (4)-(5) of Theorem 3 which follows at once.

Consider the Lie algebra obtained from the descending central series for the group
G. For each strictly positive integer q, there is a canonical (and trivially defined)
graded Lie algebra E∗

0 (G)q attached to the one obtained from the descending central
series for G, and which is defined as follows.

(1) Fix a strictly positive integer q.
(2) Let Γn(G) denote the n-th stage of the descending central series for G.

(3) E2nq
0 (G)q = Γn(G)/Γn+1(G),

(4) Ei
0(G)q = {0}, if i is non-zero modulo 2q, and

(5) the Lie bracket is induced by that for the associated graded for the Γn(G).

The main theorem here is an interpretation of the results in [CG], and [FH]
concerning the homology of the loop space of configuration spaces.

Theorem 13.1. If m ≥ 1, then the homology of the loop space of the configuration
space ΩF (R2m+2, k) is isomorphic to the universal enveloping algebra of the graded
Lie algebra E∗

0 (Pk)2m. Furthermore, the following are satisfied.

(1) The image of the classical Hurewicz homomorphism π∗(ΩF (R2m+2, k)) →
H∗(ΩF (R2m+2, k)) is isomorphic to E∗

0 (Pk)2m,
(2) the Hurewicz homomorphism induces an isomorphism of graded Lie algebras

where where Prim(.) denotes the module of primitive elements with the Lie
algebra structure of the source induced by the classical Samelson product:

π∗(ΩF (R2m+2, k))/torsion → PrimH∗(ΩF (R2m+2, k))
(3) If q ≥ 1, the Euler-Poincare’ series for the homology of H∗(ΩF (Rq+2, n); Z)

is given as follows:
[(1 − tq)(1 − 2tq)....(1 − (n − 1)tq)]−1.
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Namely, the homotopy groups of the loop space of the configuration space of k
points in an even dimensional euclidean space R2m+2, modulo torsion, admits the
structure of a graded Lie algebra induced by the classical Samelson product. That
Lie algebra is isomorphic to E∗

0 (Pk)m, the Lie algebra that is ”universal” for the
Yang-Baxter-Lie relations.

The theorem above appears to be related to beautiful results of T. Kohno and
others [H,K,K2,FR,W] who consider the relationship between Vassiliev invariants
of braids as well as other structures. Kohno has recently considered the homology
of the loop space for configurations in R3. In particular, the universal enveloping
algebra of E∗

0 (Pk) regarded as a graded abelian group has Euler-Poincare’ series
given by [(1 − t)(1 − 2t)....(1− (n− 1)t)]−1 while the Euler-Poincare’ series for the
homology of H∗(ΩF (Rq+2, n); Z) is [(1 − tq)(1 − 2tq)....(1 − (n − 1)tq)]−1.

Given a fibre type arrangement X(k, Rn) with fibrations X(k, Rn) → X(k −
1, Rn) having sections with fibre given by Rn −S where S is a discrete set, consider
the graded Lie algebra E∗

0 (π1(X(k, R2)))q. A conjecture stated in [CX] suggests
that E∗

0 (π1(X(k, R2)))q is isomorphic to the Lie algebra of primitive elements in
the homology of ΩX(k, R2q+2) for many choices of X(k, Rn).

There is more to this story. Interesting examples are given by the pure braid
groups for ”orbit configuration spaces” in C∗. In particular, the ”orbit configuration
space” FG(M, k) is the space of ordered k tuples of points in M that lie on distinct
orbits of a free G action on M. Work of M. Xicoténcatl [X], and D. Cohen [C] imply
this conjecture for the associated pure braid groups for ”orbit configuration spaces”
in C∗.

Namely, this conjecture is correct for spaces FZ/qZ (Cn−{0}, k) where Z/qZ is a
finite cyclic group acting freely by rotations on Cn −{0}. If n > 1, the Lie algebra
obtained from the homotopy groups modulo torsion of the loop spaces for these
choices of ”orbit configuration spaces” is isomorphic to the Lie algebra obtained
from the descending central series for π1FZ/qZ (Cn − {0}) [C],[X].

Further work of M. Xicoténcatl, D. Cohen, and the first author shows that an
analogous theorem holds for some other groups that are ”close” to braid groups, and
arise from some fibred K(π, 1) hyperplane arrangements. Some similar results hold
for ”orbit configuration spaces” for groups acting freely on the upper 1/2-plane,
and for some lattices acting on C [CX].

There are related groups that share some common properties here. Let Homcoalg(T [v], H)
denote the set of coalgebra morphisms with source given by the tensor algebra over
the integers with a single primitive algebra generator v in degree 1. Furthermore,
the target H is a Hopf algebra with conjugation (antipode). Recall that this set is
naturally a group with multiplication induced by the coproduct for the source and
product for the target with inverses induced by the conjugation in H [MM].
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There are groups Homcoalg(T [v], H∗ΩF (M, k)) where M is a manifold for which
the homology of its’ loop space is torsion free. When M is euclidean space, this
group is not isomorphic to the pure braid group, but in this case the associated Lie
algebra resembles E∗

0 (Pk)q. The first approximation in this direction is as follows.

Theorem 13.2. [S]
If H is isomorphic to a tensor algebra generated by a rational vector space of

dimension q concentrated in a fixed even degree that is strictly greater than 0, S is
a set of cardinality q, and F [S]M is the Malĉev completion of F[S], then there is an
isomorphism of groups

F [S]M → Homcoalg(T [v], H).

A similar calculation gives the following.

Theorem 13.3. [CS] If m ≥ 1, the group Homcoalg(T [v], H∗ΩF (R2m+2, k)) is
filtered such that the associated graded is a graded Lie algebra which when tensored
with Q is isomorphic to E∗

0 (Pk)2m ⊗ Q

The group Homcoalg(T [v], H∗Ω(X)) accepts homomorphisms from the group of
homotopy classes of pointed maps [ΩS2, Ω(X)]. The point is that this construction
provides a group theoretic analogue of the classical Hurewicz homomorphism, and
that these groups are more primitive versions of homotopy groups. The actual
Hurewicz map is the induced map on the level of associated graded groups. In
addition, one obtains further braid-like groups by replacing euclidean space by
other manifolds M.

14. Proof of Theorem 1.1

The main theorem is essentially proven in [CG], and [?] except for the statement
about the module of primitives. In that article, there are maps constructed

Bi,j : Sn−2 → ΩF (Rn, k)
for k ≥ i > j ≥ 1 such that the image of the fundamental cycles in the homology

of ΩF (Rn, k) are (1) non-zero, and (2) the homology of ΩF (Rn, k) is generated by
these classes as a Hopf algebra. Furthermore, Samelson products of the generators
map to the analogous Lie element in the homology of ΩF (Rn, k) by the above
construction.

These relations arise as follows. Define maps

γi : Sn−1 × Sn−1 → F (Rn, 3)

by the following formulas where ‖u‖ = ‖v‖ = 1.

(i): γ1(u, v) = (0, u, 2v), and
(ii): γ2(u, v) = (0, 2u, v).

Next, recall that the class Ai,j is defined by the equation

Ai,j = π∗
i,j(ι)

where πi,j : F (Rn, k) → F (Rn, 2) denotes projection on the (i, j) coordinates and ι
is a fixed fundamental cycle for Sn−1 [?, ?].
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Lemma 14.1. If n ≥ 2, then

(1) γ∗
1A2,1 = ι ⊗ 1,

(2) γ∗
1A3,1 = 1 ⊗ ι,

(3) γ∗
1A3,2 = 1 ⊗ ι,

(4) γ∗
2A2,1 = ι ⊗ 1,

(5) γ∗
2A3,1 = 1 ⊗ ι, and

(6) γ∗
2A3,2 = ι ⊗ 1.

Proof. Since all the cases above are similar, one will be worked out. Notice that γ1

composed with the projection π1,2 is homotopic to first coordinate projection from
the product Sn−1 × Sn−1 to Sn−1. This suffices. �

Direct dualization gives the following lemma with the details of proof omitted.

Lemma 14.2. If n ≥ 2, then

(1) [Bi,j , Bs,t] = 0 if {i, j} ∩ {s, t} = φ,
(2) [Bi,j , Bi,t + (−1)nBt,j ] = 0 for 1 ≤ j < t < i ≤ k, and
(3) [Bt,j , Bi,j + Bi,t] = 0 for 1 ≤ j < t < i ≤ k.

The relations in Lemma 4.2 above are called the (graded) infinitesimal braid
relations.

If n = 2m+2 with n > 2, the loop space of of a finite bouquet of (n-1) spheres
is homotopy equivalent to a product of loop spaces of odd dimensional spheres by
the Hilton-Milnor theorem. Furthermore, the module of primitives for ΩS2k+1 is
given by a copy of the integers in degree 2k. Thus by the Hilton-Milnor theorem,
the module of primitives is given by the Lie algebra generated by the Bi,j .

The Lie algebra generated by the Bi,j is in the Hurewicz image as the Samel-
son product of two elements x, and y in homotopy map to the bracket [φ(x), φ(y)]
in homology where φ denotes the Hurewicz homomorphism. Thus the Hurewicz
homomorphism surjects to the module of primitives, and restricts to a monomor-
phism on the torsion free summand of homotopy groups. The kernel is precisely
the torsion in the homotopy as the homology is torsion free.

The theorem follows.

Remarks. There are analogous relations satisfied for the homology of the loop
spaces of many other configuration spaces of ordered k tuples of points in certain
manifolds M.

Define the ”extended infinitesimal braid relations” as follows:

(1) [Bi,j , xs] = 0 if {i, j} ∩ {s} = φ,
(2) [Bi,j , xi + xj ] = 0.

These relations are satisfied in the homology of the loop space of the configuration
space based on the manifold M given by the product R1×N . In this case, the loop
space splits as product where one factor is (ΩN)k, and the classes xi above arise
from a class in the i − th factor of ΩN . Details are given in [CG].
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