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Abstract. Let B be a convex body in the plane. The purpose
of this paper is a systematic study of the geometric properties of
the boundary of B, and the consequences of these properties for
the distribution of lattice points in rotated and translated copies of
ρB (ρ being a large positive number), irregularities of distribution,
and the spherical average decay of the Fourier transform of the
characteristic function of B. The analysis makes use of two notions
of ”dimension” of a convex set. The first notion is defined in terms
of the number of sides required to approximate a convex set by
a polygon up to a certain degree of accuracy. The second is the
fractal dimension of the image of the Gauss map of B. The results
stated in terms of these quantities are essentially sharp and lead
to a near complete description of the problems in question.

1. Introduction

Suppose B ⊂ R2 is a convex body: a convex compact set with non
empty interior. Many classical problems in analysis, geometry, and
number theory are stated in terms of basic properties of such sets. For
example, we may consider the difference between the number of lattice
points inside the dilated set ρB and its area, i.e. the discrepancy

Dρ(B) = card
(
ρB ∩ Z2

)− ρ2 |B|
where |·| denotes the area. Among the many natural questions we can
ask about this problem (see the section on lattice points below) is,
how does the geometry of B affect the growth rate of the discrepancy
function? As we shall see, there are results that do not distinguish
among various convex sets. However, we shall also see that the behavior
of the above discrepancy functions corresponding to different convex
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sets may vary dramatically, and that this behavior may be described
in terms of natural and readily computable geometric quantities.

The above question on lattice points has a consequence in the study
of irregularities of distribution. Suppose P = {zj}N

j=1 is a distribution

of N points in the unit square U = [0, 1]2 treated as the torus T2. Let
B be a convex body in U with diameter smaller than 1. Assume ε ≤ 1,
t ∈ T2. Then certain sharp upper estimates for the discrepancy

D(P , ε, t) =
N∑

j=1

χεB−t(zj)−N ε2 |B|

can be obtained from related estimates for lattice points (by a suitable
trick we shall reduce to the case when N is a square, which in turns is
an easy corollary).

At the heart of the lattice point and the irregularities of distribution
problems is the Fourier transform of the characteristic function of B.
Our approach is to study the effect of the geometric properties of B on
the decay rate of the Fourier transform of the characteristic function
of B and its variants. We shall then use this analysis to obtain precise
information about the discrepancy functions described above.

How should we distinguish among the various convex planar sets?
The lattice point problem suggests one natural approach. It was ob-
served by Gauss that Dρ(B) . ρ, since the boundary of B is one-
dimensional. Consider the case when B is a unit square with sides
parallel to the axis. When ρ is an integer, the boundary of ρB contains
≈ ρ integer lattice points, thus showing that this estimate cannot be
improved. However, if B is a disc, the boundary of ρB “curves away”
from the integer lattice. In fact, it is known (see [16]) that the esti-
mate for Dρ(B) in this case is much better. These two examples suggest
that the curvature of the boundary may be the key distinguishing fac-
tor among convex sets. The boundary of the square has no curvature,
which leads to a poor discrepancy estimate, where the boundary of the
disc has everywhere non-vanishing curvature, and the estimate for the
discrepancy function is considerably better.

The notion of curvature alluded to in the previous paragraph is the
standard geometric, or Gaussian, curvature, defined as the determinant
of the differential of the Gauss map which maps each point on the
boundary of a convex set to the unit normal at that point. It turns
out that the geometric curvature alone does not capture the relevant
properties of convex planar sets fully. To see this, let us return to
the case of the unit square. While it is true that the discrepancy
function is terrible if the sides of the square are parallel to the axes,
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the discrepancy function becomes practically non-existent, even better
than the discrepancy function for the disc, if the square is rotated
by a sufficiently irrational angle (see [14]). In fact, it is precisely the
“flatness” of the squares that keeps its boundary from hitting hardly
any lattice points when it is rotated. This suggests that for “most”
rotations, convex sets with “flat” boundaries behave better as far as
discrepancy functions are concerned.

In this paper we consider the rotated and translated copies σ−1 (ρB)−
t (where σ ∈ SO(2), t ∈ T2) of the dilated body ρB (here ρ is a large
positive number) and we study the L1 mean

∫

T2

∫

SO(2)

∣∣Dρ(σ
−1(B)− t)

∣∣ dσ

of the discrepancy

Dρ(σ
−1(B)− t) = card

((
ρσ−1(B)− t

) ∩ Z2
)− ρ2 |B| .

The reason for choosing the L1 mean among other Lp means will be
clear soon. Let us also say that in many cases, averaging makes a
discrepancy problem easier. For example, Gauss circle problem is a
basic and unsolved problem, while one can obtain (see e.g. [15] or [8])
a sharp result averaging in L2 over translations of the discs and using
only Parseval identity and some properties of Bessel functions.

Let us go back to the geometry of B. The above observations can be
exploited in a number of ways. If “flatness” is good, then B, i.e. the
family of rotated copies of B, is better if B is close to being a polygon.
This means that B is good if it can be approximated by a polygon with
relatively few sides (the construction we are going to describe has been
studied in [19] and [23], see also [26]). We choose an arbitrary point on
the boundary of B and draw a chord to another point on the boundary
of B in such a way that the maximum distance from the chord to the
boundary of B is ρ−1. Roughly speaking, if the number of sides of the
above inscribed polygon is . ρα, we say that dimension of B is at least
α (we shall explain later why for most of the paper we prefer not to
consider the infimum of the α’s). Note that B is a polygon if and only
if we can choose α = 0, and if B is a circle then, α = 1/2 works.

We can also take the following “dual” point of view. If B is close to
a polygon, then its boundary ∂B has relatively few normals. A more
precise way of saying this is that the area of the δ-neighborhood of the
image of ∂B under the Gauss map is . δ1−d. If B is a disc, we can
only take d = 1. On the other hand, we can choose d = 0 if an only if
B is a polygon. As another example, let B be a polygon with infinitely
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many sides the normals of which have apertures in the sequence n−β,
β > 0, it is easy to see that in this case we can take d = (1 + β)−1.

Introducing the infima α∗ and d∗ (note that d∗ is the upper Minkowski
dimension of the image of the Gauss map) we have α∗ ≤ d∗/ (d∗ + 1)
and we can also prove that this bound is best possible. On the other
hand we can show that α∗ can be as close to 0 as we want, even when
d∗ is away from 0.

This paper is structured as follows. We shall first describe the main
analytic idea, the effect of the geometry of a convex set on the average
decay of the Fourier transform of the characteristic function of B. We
shall also prove that polygons provide the fastest possible decay. We
shall then apply our estimates to the distribution of lattice points in
convex domains and the problem of irregularities of distribution.

In this paper most of the ideas used to prove the results on the
average decay are new, while almost all the applications to lattice points
and irregularities of distribution are straightforward.

We conclude the introduction by noting that a notion of a dimen-
sion of a convex set may be applicable and natural in a number of
interesting problems in analysis and combinatorics. For example, the
Falconer distance conjecture says that if the Hausdorff dimension of a
planar set is greater than 1, then the set of Euclidean distances among
the points of this set has positive Lebesgue measure. However, if the
Euclidean distance is replaced by the “taxi-cab” (l1) metric, the con-
jecture is clearly false, and in fact the set is required to have Hausdorff
dimension 2 before the same conclusion on the distance set possible.
It is reasonable to ask whether distances induced by convex sets with
“intermediate dimension” provide examples of intermediate behavior
in the Falconer Distance Problem. We hope to address this and other
issues of this type in a subsequent paper.

1.1. Lp average decay of the Fourier transform. The study of the
decay of the Fourier transform

χ̂B(ξ) =

∫

B

e−2πiξ·xdx

as |ξ| → ∞ is a classical subject. When ∂B has strictly positive curva-

ture, then |χ̂B(ξ)| . |ξ|−3/2. However, when ∂B contains points where
the Gaussian curvature vanishes the above inequality is no longer true.
For example, when B is a polygon and Θ = (cos θ. sin θ), then χ̂B(ρΘ)
decays as ρ−1 in some directions and as ρ−2 in most directions. In such
cases it is useful to study the Lp spherical average decay of χ̂B, given
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by

(1.1) ‖χ̂B(ρ·)‖Lp(Σ1)

where Σ1 is the unit circle and 1 ≤ p ≤ ∞. Here a basic result is
Podkorytov’s theorem

(1.2) ‖χ̂B(ρ·)‖L2(Σ1) . ρ−3/2,

(see [19]) where no regularity assumption on the boundary ∂B is re-
quired.

Throughout this paper X . Y will mean that X ≤ cY, with c
depending only on the body B under consideration. Moreover we shall
always assume ρ ≥ 2.

The study of (1.1) turns out to have applications to several problems,
such as the distribution of lattice points in large convex domains ([20],
[25], [7], [8]), irregularities of distribution ([17], [7]), summations of
multiple Fourier expansions ([9], [5], [6]), and estimates for generalized
Radon transforms ( [21]).

The paper [8] contains the following rather complete study of (1.1)
under the additional assumption that ∂B is piecewise smooth. When
p = 2, (1.2) says that the rate of decay of (1.1) is independent of the
shape of B. When 2 < p ≤ ∞, any order of decay between the one
of the disc and the one of the polygon is possible. On the other hand,
when 1 ≤ p < 2, a convex body with piecewise smooth boundary
behaves either like a disc or like a polygon. In particular, when P is a
polygon we have the sharp bound

(1.3) ‖χ̂P (ρ·)‖L1(Σ1) . ρ−2 log ρ,

and when B has piecewise smooth boundary, but it is not a polygon,
we have the sharp bound

(1.4) ‖χ̂B(ρ·)‖L1(Σ1) . c ρ−3/2.

Actually, (1.4) is sharp whenever ∂B contains at least one point where
the Gaussian curvature exists and is different from zero.

The above dichotomy pointed out in [8] is no longer valid for ar-
bitrary convex bodies. The existence of “chaotic” decays has been
pointed out in [8, p.553] using an abstract argument on convex sets.
Unfortunately, that argument is not constructive, nor does it provide
non-trivial explicit bounds for the average decay.

The main analytic tool of this paper is the Lp average decay for
arbitrary convex planar bodies when 1 ≤ p ≤ 2. In essence, we shall
consider the L1 average decay and the L2 average decay. The results
for intermediate exponents can be essentially obtained by interpolation.
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Roughly speaking, the L2 average decay is a ”all cats are grey in the
dark” phenomenon, where the decay does not distinguish among the
different convex bodies. On the other hand, the L1 average decay
determines, in a sense, how close a convex set is to a polygon.

1.2. Inscribed polygons. We introduce the following notation. For
any Θ = (cos θ, sin θ) and any small δ > 0 let

Kθ = max
x∈B

x ·Θ(1.5)

r(B, δ, θ) = {y ∈ B : y ·Θ = Kθ − δ} .

We say that the chord r(B, δ, θ) is of height δ and we use it to define
the following inscribed polygon (see also [19] or [23]).

Definition 1. Let B be a convex planar body. Choose any chord of
height δ and name it ch1. Move counterclockwise constructing a finite
sequence of consecutive chords of height δ until you reach ch1. Then,
if necessary, replace the last chord by one consecutive to ch1 (hence of
height not greater than δ). In this way we get a polygon inscribed in B
and we denote it by PB

δ . Of course PB
δ depends on the choice of ch1

and we should write PB
δ (ch1), however, none of our results depends on

ch1 and, by a small abuse, we shall always speak about ”the” inscribed
polygon PB

δ . We denote by MB
δ be the number of sides of PB

δ .

It has been proved in [23] that MB
δ . δ−1/2. Our first result is the

following.

Theorem 2. Let B be a convex planar body and assume MB
ρ−1 . ρα

(where 0 < α < 1/2, the cases α = 0 and α = 1/2 being covered by
(1.3) and (1.2) respectively). Then

(1.6) ‖χ̂B(ρ·)‖L1(Σ1) . ρα−2 log ρ.

Moreover, for any 0 < α < 1/2, there exists a convex planar body B
such that MB

ρ−1 . ρα and, for any ε > 0,

lim sup
ρ→+∞

ρ−α+2+ε ‖χ̂B(ρ·)‖L1(Σ1) > 0.

All the proofs will be given in the last section of the paper.

Before going on, we want to discuss the above theorem. The first
step in the proof is to show that

∫ 2π

0

|χ̂B(ρΘ)| dθ .
∫ 2π

0

∣∣∣χ̂P B
ρ−1

(ρΘ)
∣∣∣ dθ.



CONVEX BODIES AND FOURIER TRANSFORMS 7

(see definition 1). We are therefore reduced to estimating the average
decay for a polygon with . ρα sides. The second step simply consists
in recalling that the implicit constant in (1.3) depends on the number
of sides of the polygon P , and that after reading the proofs in [7] or [8]
one can rewrite (1.3) in the following way,

(1.7)

∫ 2π

0

|χ̂P (ρΘ)| dθ ≤ cNρ−2 log ρ

where N is the number of sides of the polygon P , and the constant c
is absolute (there is no loss of generality assuming that the length of
the boundary ∂P is ≤ 1). Putting ρα in place of N we then get (1.6).

At this point one should expect to have gotten a poor result using
the trivial estimate (1.7). The counterexample in the theorem shows
that it is not so.

1.3. The image of the Gauss map. At every point of ∂B there is
a left and a right tangent, therefore a left (−) and a right (+) outward
normal. Let π± : ∂B → Σ1 be the map sending each point in ∂B to
the left/right normal. Also let

(1.8) ∆B = π−(∂B) ∪ π+(∂B).

We identify Σ1 with the interval [0, 2π). For every θ ∈ [0, 2π) we denote
with d(θ, ∆B) the distance between θ and ∆B. For a given small δ, let

(1.9) ∆B
δ =

{
x ∈ [0, 2π) : d(x, ∆B) < δ

}

be the δ-neighborhood of ∆B.

Theorem 3. Let 0 < d < 1. Assume

(1.10)
∣∣∆B

δ

∣∣ . δ1−d,

then

(1.11) ‖χ̂B(ρ·)‖L1(Σ1) . ρ
d

d+1
−2.

Moreover there exists a convex body B satisfying
∣∣∆B

δ

∣∣ . δ1−d and such
that

lim sup
ρ→+∞

ρ−
d

d+1
+2+ε ‖χ̂B(ρ·)‖L1(Σ1) > 0

for any ε > 0.

The proof will be given in the last section.

Remark 4. Again, the cases d = 0 and d = 1 are covered by (1.3) and
(1.2) respectively.
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Remark 5. We point out that the infimum of the numbers d such that∣∣∆B
δ

∣∣ . δ1−d is just the upper Minkowski dimension of ∆B. That is the
number

d∗ = lim sup
δ→0

(
log1/δ

(∣∣∆B
δ

∣∣ /δ
))

.

It is therefore possible to restate Theorem 3 in a form like “Assume
d > d∗, then (1.11) holds”. However we prefer to keep the original
statement in Theorem 3 for the following two reasons. First, the L.H.S.
in (1.10) is the quantity which actually arises in the proof. Second, we
do not want to confuse naturally different objects, such as the polygons
with finitely many sides and certain polygons with infinitely many sides
(e.g. with an exponentially decreasing sequence of slopes) which share
d∗ = 0 with the polygons with finitely many sides. For similar reasons
we did not introduce the infimum α∗ of the α’s in Theorem 2. On the
contrary, we shall introduce α∗ and d∗ in the following section in order
to get a more neat comparison.

1.4. Comparing the previous arguments. For any B we denote by
d∗ the Minkowski dimension of ∆B (see the above remark). We also
denote by α∗ the infimum of the α’ such that MB

ρ−1 ≤ cαρα. We have
the following theorem.

Theorem 6. Let B be a convex planar body. Then

α∗ ≤ d∗

d∗ + 1
.

Moreover there exists B for which the equality sign holds

The proof will be given in the last section.

Remark 7. Theorem 6 exhibits an upper bound for α∗ in terms of
d∗. A lower bound in terms of d∗ does not exists in general, since we
can construct a family of convex bodies with the same d∗ > 0 but α∗

arbitrarily close to 0.

The proof will be given in the last section.
The situation is different if we add geometric assumptions on B.

Theorem 8. Suppose B is inscribed in a disc (i.e. B is the convex
hull of a subset of a circle). Then α∗ = d∗/2.

The proof will be given in the last section.
The circle in the previous statement can be replaced by a closed

convex smooth curve with everywhere positive Gaussian curvature.
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Remark 9. By appealing to Theorem 2 and Theorem 6 we immediately
get the following inequality, which is slightly weaker than the one in
Theorem 3:

‖χ̂B(ρ·)‖L1(Σ1) . ρ
d

d+1
−2+ε.

1.5. A lower bound for all convex bodies. The main results in
this paper deal with “intermediate” cases between polygons and con-
vex bodies having a smooth convex arc in the boundary. These cases
turn out be extreme. Indeed Podkorytov’s theorem is a uniform (with
respect to the choice of B) upper bound, while the following theorem
gives a uniform lower bound for the L1 average decay of the Fourier
transform.

Theorem 10. Let B be a convex body in R2, then

lim sup
ρ→+∞

ρ2 log−1 ρ ‖χ̂B(ρ·)‖L1(Σ1) > 0 .

The proof will be given in the last section.

2. Applications

2.1. Lattice points. Let B be a planar convex body, let σ ∈ SO(2),
and t ∈ T2. We consider the discrepancy

(2.1) Dρ(B) = card
(
ρB ∩ Z2

)− ρ2 |B|
where |·| denotes the area. The results in the previous section and some
arguments in [20], [25], [7], and [8] allow us to obtain several upper and
lower bounds for averages of the discrepancy (2.1) over rotations or
rotations and translations. As a first example, it has been proved in
[15], [25], and [7] that, for a polygon P , (1.3) implies

∫

SO(2)

∣∣Dρ(σ
−1(P ))

∣∣ dσ . log2 ρ.

As another example, one can use (1.2) to show that for any convex
planar body B

(2.2)

{∫

T2

∫

SO(2)

∣∣Dρ(σ
−1(P )− t)

∣∣2 dσdt

}1/2

. ρ1/2.

(See e.g. [15] or [8]). Note that (2.2) is false without the integration in
t, as the case of a disc and Hardy’s Ω-result (see [16]) show.

Again we focus on the case p = 1 and we have the following result,
which follows easily from Theorem 2 and some known arguments (see
e.g. [15], [25] or [7]).
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Theorem 11. Let B be a planar convex body such that MB
ρ−1 . ρα

(0 < α < 1/2). Then

(2.3)

∫

T2

∫

SO(2)

∣∣Dρ(σ
−1(B)− t)

∣∣ dσdt . ρ
2α

2α+1 log ρ.

Moreover, for every such α there exists a body B satisfying

lim sup
ρ→+∞

ρ−α+ε

∫

T2

∫

SO(2)

∣∣Dρ(σ
−1(B)− t)

∣∣ dσdt > 0,

for any ε > 0.

The proof will be given in the last section.

Remark 12. The cases α = 0 and α = 1/2 are known, see e.g. [7]
and [8] respectively.

2.2. Irregularities of distribution. Suppose P = {zj}N
j=1 is a distri-

bution of N points in the unit square U = [0, 1]2 treated as the torus
T2. Let B be a convex body in U with diameter smaller than 1. Assume
ε ≤ 1, σ ∈ SO(2), t ∈ T2. The study of the discrepancy

D(P , ε, σ, t) =
N∑

j=1

χεσ−1B−t(zj)−N ε2 |B|

has a long history (see e.g. the references in [2] and [17, ch. 6]). A
typical result is the following theorem, due to Beck [1] and Montgomery
[17, ch. 6] (see also [7]).

Theorem 13. Let B be a convex body in U = [0, 1]2 with diameter
smaller than 1. Then there exists c > 0, such that for every distribution
P = {zj}N

j=1 in U .

{∫ 1

0

∫

SO(2)

∫

T2

|D(P , ε, σ, t)|2 dt dσ dε

}1/2

& N1/4.

The above result is sharp since Beck and Chen [3] proved the follow-
ing upper bound.

Theorem 14. Let B be a convex body in U = [0, 1]2 with diameter
smaller than 1. Then there exists c > 0 such that for every positive
integer N there exists a distribution P of N points such that

(2.4)

{∫ 1

0

∫

SO(2)

∫

T2

|D(P , ε, σ, t)|2 dt dσ dε

}1/2

. N1/4.
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The above upper bound can be improved after replacing the L2 norm
with the L1 norm. Indeed, Beck and Chen [4] proved the following
result.

Theorem 15. Let P be a convex polygon in U = [0, 1]2 with diameter
smaller than 1. Then there exists c > 0 such that for every positive
integer N there exists a distribution P of N points such that

(2.5)

∫ 1

0

∫

SO(2)

∫

T2

|D(P , ε, σ, t)| dt dσ dε . log2 N.

The following result follows easily from Theorem 11, [7] and [8]. The
case α = 0 provides a different proof of (2.5). In the same way one
can get a different proof of the L2 result in (2.4) too. We point out
that appealing to lattice point results does not work for Lp norms when
p > 2 and the body is a polygon (see [11]).

Theorem 16. Let B be a convex body in U = [0, 1]2 with diameter
smaller than 1 and such that MB

ρ−1 . ρα. Then for every positive integer
N there exists a distribution P of N points satisfying

∫

T2

∫

SO(2)

|D(P , σ, t)| dσdt .





log2 N when α = 0

N
α

1+2α log N when 0 < α < 1/2

N1/4 when α = 1/2

where D(P , σ, t) = D(P , 1, σ, t).

The proof will be given in the last section.

3. Proofs

The following known result (see e.g. [10], [19], [8]) will be used
throughout the paper.

Lemma 17. Let B be a convex body in R2. Following the notation in
(1.5) we have

|χ̂B(ρΘ)| . ρ−1
[∣∣r(B, ρ−1, θ)

∣∣ +
∣∣r(B, ρ−1, θ + π)

∣∣] ,

where |·| denotes the length of the chord.

We define

d̃(θ, ∆B) = min
(
d(θ, ∆B), d(θ + π, ∆B)

)

and we deduce the following lemma.
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Lemma 18. For every θ /∈ ∆B we have

|χ̂B(ρΘ)| . 1

ρ2d̃(θ, ∆B)
.

Proof. Let θ /∈ ∆B (say θ = −π/2). Assume that ∂B passes
through the origin and B lies in the upper half plane. It follows that in
a neighborhood of the origin ∂B is the graph of a non negative convex
function, say y = ϕ(x), satisfying ϕ(0) = 0 and ϕ′(0−) < 0 < ϕ′(0+),
where ϕ′(0−) and ϕ′(0+) denote the left and the right derivative at
the origin respectively. Let

E =
{
(x, y) ∈ R2 : y > ϕ′(0−)x and y > ϕ′(0+)x

}
.

By convexity B ⊂ E and therefore

∣∣r(B, ρ−1, θ)
∣∣ 6 1

ρϕ′(0+)
+

1

ρ |ϕ′(0−)| 6 2

ρ min (ϕ′(0+), |ϕ′(0−)|) .

To complete the proof it is enough to observe that

min (ϕ′(0+), |ϕ′(0−)|) ≈ d(θ, ∆B)

and to apply the previous lemma.
¥

The following Lemmas will be needed in the proof of Theorem 2.

Lemma 19. Let R ≥ 1, 0 < β < π/4. Assume Rβ < 1/2. Denote by
C = C(β, R) the convex hull of the set

{R exp (iθ) : −β ≤ θ < β} ∪ {P} ,

where the point P has distance 1 from the points Re±iβ and satisfies
|P | ≤ R. Then there exist positive constants c1 and c2 such that if
Rρβ2 > c1 then we have

|χ̂C(ρΘ)| > c2R
1/2ρ−3/2

for every |θ| ≤ β/2.

Proof. Integrating by parts, we reduce to estimating

(3.1) ρ−1

∫

∂C

n(x) ·Θ exp (2πiρΘ · x) dx.

The boundary ∂C consists of two segments and an arc. In order to
control the latter we reduce to the oscillatory integral

∣∣∣∣
∫ Rβ

−Rβ

exp

(
iρ

t2

R

)
dt

∣∣∣∣ =

∣∣∣∣Rβ

∫ 1

−1

exp
(
iρRβ2u

)
du

∣∣∣∣ > cR1/2ρ−1/2
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for ρRβ2 large enough. The two segments have length 1 and their
contribution in (3.1) is O (ρ−2).

¥

Lemma 20. Let R > 1 and 0 < β < π/4. Assume Rβ < 1
2
. For any

N ≥ 1 let B = B(β, R, N) be the convex hull of the set

{R exp(2πikβ/N), k = −N, . . . , N} ∪ {P}
where, as before, the point P has distance 1 from the points Re±iβ and
satisfies |P | ≤ R. Then there exist absolute constants c1, c2, and c3

such that whenever ρ ≥ 2 and

(3.2)
c1

β2
≤ Rρ ≤ c2

β2

N2

log2 N

we have, for any −β/2 ≤ θ ≤ β/2,

|χ̂B(ρΘ)| ≥ c3R
1/2ρ−3/2.

Proof. Let C = C(β, R) be as in Lemma 19. By (3.2) and Lemma
19 we have

|χ̂C(ρΘ)| ≥ cR1/2ρ−3/2

when −β/2 ≤ θ ≤ β/2.
We now study the Fourier transform χ̂C\B. We claim that

(3.3)
∣∣χ̂C\B(ρΘ)

∣∣ ≤ cβρ−1 log N

N
R

uniformly in θ. Indeed C\B is the union of 2N “lunes” `1, . . . , `2N

(each lune is a convex set bounded by a segment in B and by a portion
of the arc in C, see Figure 1) and, for any θ,

χ̂C\B(ρΘ) = f̂(ρ),

where f = fθ is defined by

f(s) =
∣∣C\B ∩ {

ξ ∈ R2 : ξ ·Θ = s
}∣∣

=
2N∑

k=1

∣∣`k ∩
{
ξ ∈ R2 : ξ ·Θ = s

}∣∣

=
2N∑

k=1

fk(s).

Note that, for any given s, the above sum contains at most two terms.
It is enough to consider one of them, i.e. we assume 0 ≤ θ ≤ π.
Moreover we reduce to studying the case 0 ≤ θ < β/N , the other cases

being similar. In order to bound f̂(ρ) we estimate the total variation
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Vf of the function f(s), which is the length of the vertical segment in
the kth lune. Now observe that

Vfk
≤ cβN−1k−1R.

whenever k ≥ 1 (see Figure 1).

Θ0

k/N∼
  /Νβ

~R    N  sin  (  k/N)
-2 -1

-2
~R    Nβ

2

ββ
2

β

P

Figure 1

Summing on k (there are N terms when θ = 0 and N +1 terms when
0 < θ < β/N) we get (3.3).

Finally, for suitable choices of c1 and c2 in (3.2) we get

|χ̂B(ρΘ)| ≥ |χ̂C(ρΘ)| −
∣∣χ̂B\C(ρΘ)

∣∣

≥ c3R
1/2ρ−3/2 − c4βρ−1 log N

N
R

≥ c5ρ
−3/2R1/2.

¥

Proof of Theorem 2. We start with the upper bounds in (1.6).

Let PB
ρ−1 be as in Definition 1. Let P̃B

ρ−1 be the smallest polygon having

sides parallel to that of PB
ρ and containing B. It is not difficult to see

that for ρ sufficiently large
∣∣r(B, ρ−1, θ)

∣∣ .
∣∣∣r(P̃ρ, cρ

−1, θ)
∣∣∣
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where again the implicit constant depends only on B. By Lemma 17
we have

|χ̂B(ρΘ)| . ρ−1
∣∣r(B, ρ−1, θ)

∣∣

. ρ−1
∣∣∣r(P̃ρ−1 , cρ−1, θ)

∣∣∣ .

Hence, by the proof of (1.7) in [7] or [8],

ρ−1

∫ 2π

0

∣∣∣r(P̃ρ−1 , cρ−1, θ)
∣∣∣ dθ ≤ cMB

ρ−1ρ−2 log (ρ) ≤ cρ−2+α log (ρ)

thereby proving (1.6).
We now show that (1.6) is essentially sharp. Let B = B(β, R, N)

be as in Lemma 20 and consider the sets Bh = B(βh, Rh, Nh), h =
1, 2, 3, . . ., where, for any small ε > 0,

Rh = 2(1−2α)h, βh = 2h(2α−1−ε), Nh = 2hα.

We denote by γh the union of the Nh sides and by ζh the arc where
they are inscribed. Observe that

(3.4)
+∞∑

h=n0

βhRh < π/4.

for a suitable n0.

B

1

1

h

Figure 2

We recall that each Bh has the shape in Figure 2, i.e. it is a convex
polygon consisting of two sides of length 1 and of Nh sides coming
from a regular polygon of large radius Rh. Let Eh be the rotated and
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translated copy of every Bh so that, moving counterclockwise, En0 =
Bn0 and two consecutive Eh’s have disjoint interior and share a side (of
length 1), while the union of the arcs ζh’s is a convex piecewise smooth
curve. We write

(3.5) B =

(
h−1⋃
j=n0

Ej

)
∪ Eh ∪

( ∞⋃

j=h+1

Ej

)
= Ẽh ∪ Eh ∪ E#

h .

By the condition (3.4) B is a convex set. Let now ρh = 2h. Let ph =∑h
j=n0

βj. Being (3.2) satisfied, Lemma 19 implies

|χ̂Dh
(ρhΘ)| ≥ cR

1/2
h ρ

−3/2
h = c2−h(α+1)

for

(3.6) ph +
1

3
βh < θ < ph +

2

3
βh.

We then estimate the contribution of the convex sets Ẽh and E#
h using

Lemma 18. Indeed, since θ satisfies (3.6) we obtain, for any h,∣∣∣χ̂ eEh
(ρhΘ)

∣∣∣ +
∣∣∣χ̂E#

h
(ρhΘ)

∣∣∣ ≤ cβ−1
h ρ−2

h .

We then have
∫ 2π

0

|χ̂B(ρhΘ)| dθ ≥
∫ ph+ 2

3
βh

ph+ 1
3
βh

|χ̂B(ρhΘ)| dθ

≥
∣∣∣c1βhR

1/2
h ρ

−3/2
h − c2ρ

−2
h

∣∣∣
≥ ∣∣c12

h(α−ε−2) − c22
−2h

∣∣
≥ c3ρ

−2+α−ε
h .

To complete the proof we estimate MB
ρ−1 . Given ρ ≥ 2, let H satisfy

2H ≤ ρ < 2H+1. Here we split

(3.7) B =

(
H⋃

j=n0

Ej

)
∪

(
+∞⋃

j=H+1

Ej

)
= Ba ∪Bb.

Observe that the first term is a polygon with
∑H

j=n0
Nj . 2Hα sides.

Now consider that for any convex polygon Q and any δ the number MQ
δ

cannot exceed the number of sides of Q. Therefore the contribution of
Ba to MB

ρ−1 is . 2Hα = ρα. As for Bb we note that the length of

∪+∞
j=H+1ζj is comparable to the length of ζH , while the chords of height

ρ−1 are longer, since ∪+∞
j=H+1ζj comes from flatter arcs. Therefore there

are fewer chords than for ζH . We have therefore proved that MB
ρ−1 . ρα.
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¥

Proof of Theorem 3. Let Ωρ = ∆B
ρ−1/(d+1) . In order to estimate

I(ρ) =

∫ 2π

0

|χ̂B(ρΘ)| dθ

we write

I(ρ) =

∫

Ωρ

|χ̂B(ρΘ)| dθ +

∫

[0,2π]\Ωρ

|χ̂B(ρΘ)| dθ = I1 + I2.

To estimate I1 we use the Cauchy-Schwarz inequality, the fact that∣∣∆B
δ

∣∣ . δ1−d, and (1.2):

I1 ≤ |Ωρ|1/2

{∫ 2π

0

|χ̂B(ρΘ)|2 dθ

}1/2

. ρ(d−1)/(2d+2)ρ−3/2

= cρ−2+ d
d+1 .

In order to estimate I2 we use Lemma 18

I2 .
(d+1)−1 log ρ∑

k=0

∫

∆B
2−k\∆B

2−k−1

c

ρ2d̃(θ, ∆B)
dθ

. ρ−2

(d+1)−1 log ρ∑

k=0

2k
∣∣∆B

2−k

∣∣

. ρ−2

(d+1)−1 log ρ∑

k=0

2k2−k(1−d)

. ρ−2

(d+1)−1 log ρ∑

k=0

2kd

= cρ−2+ d
d+1 .

In order to give a counterexample we use the body B constructed in
the proof of Theorem 2. Again we consider the sets Bh = B(βh, Rh, Nh),
h = 1, 2, . . ., where now

Rh = 2h 1−d
1+d , βh = 2h( d−1

d+1
−ε), Nh = 2h d

d+1 ,
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while ρh = 2h. Arguing as in the proof of the previous theorem we get,
for every h,

ρ
2− d

1+d
+ε

h

∫ 2π

0

|χ̂B(ρhΘ)| dθ ≥ c.

To complete the proof it is enough to show that
∣∣∆B

δ

∣∣ . δ1−d. We

identify ∆B
δ with a subset of [0, π/2] and we observe that

∆B
δ ∩

[ ∑
j≤H−1

βj,
∑
j≤H

βj

]

consists of NH points at distance βH/NH . Given δ > 0, we choose H
so that

βH

NH

≤ δ <
βH−1

NH−1

,

hence

βH ≤
(

βH

NH

)1−d

≈ δ1−d

We now split B = Ba ∪Bb as in (3.7). The contribution of Ba to
∣∣∆B

δ

∣∣
is

δ
∑
j≤H

Nj ≈ δNH ≈ βH . δ1−d,

while the contribution of Bb to
∣∣∆B

δ

∣∣ is bounded by

∑
j>H

βj . βH . δ1−d.

¥

The following proof follows an argument in [23].
Proof of Theorem 6. Let chj be a side of PB

ρ−1 having endpoints
xj and yj. Assume that moving counterclockwise along the boundary
of B the point xj comes before yj. Denote with ϕj the direction of the
right normal in xj and with ψj the direction of the left normal in yj.
First observe that

(3.8) |chj| |ϕj − ψj| & ρ−1.

((3.8) follows by convexity when |ϕj − ψj| ≥ π/4 and by a trigonomet-
ric computation when |ϕj − ψj| < π/4) Let α > α∗. Summing up and
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applying Hölder inequality we get

ρ−αMB
ρ−1 .

∑
j

|chj|α |ϕj − ψj|α

≤
{∑

j

|chj|
}α {∑

j

|ϕj − ψj|
α

1−α

}1−α

≤ |∂B|α
(∑

j

|ϕj − ψj|
α

1−α

)1−α

.

where the sum is on the MB
ρ−1 sides of the polygon Pρ−1 . It remains

to show that
∑

j |ϕj − ψj|
α

1−α is bounded by a constant independent of
Pρ−1 . Let

Zk =
{
j : 2−kπ < |ϕj − ψj| ≤ 21−kπ

}
.

Now observe that if j ∈ Zk then the interval (ϕj, ψj) ⊆ ∆B
2−kπ

. Now
choose d such that d∗ < d < α

1−α
. Then

2−kπ card(Zk) ≤
∣∣∆B

2−kπ

∣∣ . 2−k(1−d),

so that card(Zk) . 2kd and therefore

∑
j

|ϕj − ψj|
α

1−α ≤
+∞∑

k=0

∑
j∈Zk

|ϕj − ψj|
α

1−α

.
+∞∑

k=0

2kd2−k α
1−α

=
+∞∑

k=0

2−k( α
1−α

−d)

< +∞.

The sharpness of the inequality α∗ ≤ d∗
d∗+1

follows from the common
counterexample in the proof of Theorem 2 and Theorem 3.

¥

Proof of Remark 7. Let γ > 1 and β > 0. For n ≥ 1 let
xn = n−β and yn = n−βγ . Let B denote the convex hull of the infinite
points (xn, yn). We claim that the polygon Pρ−1 associated to B satisfies

MB
ρ−1 . ρ

1
γβ .
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(hence α∗ ≤ 1/γβ). Indeed, choose

ch1 = B ∩
{

(x, y) ∈ R2 : y =
1

ρ

}

as the first side of Pρ−1 . The number of sides of B located on the right
of ch1 is ≈ ρ1/γβ and the claim follows since for any polygon D with
finitely many sides and any ρ we have MD

ρ−1 ≤ # (sides of D). On the
other hand one checks that B satisfies

∣∣∆B
δ

∣∣ . δ1− 1
β(γ−1)+1

and the exponent is best possible (i.e. d∗ = 1/ (β(γ − 1) + 1))
If we now choose γ = 1 + 1/β we get d∗ = 1/2 and α∗ arbitrarily

small (since β can be large).
¥

Proof of Theorem 8. We show that α∗ = d∗/2 whenever B is
inscribed in a disc, namely when B is the convex hull of a subset of a
circle.

Let PB
ρ−1 be as in Definition 1 and assume α > α∗, hence MB

ρ−1 . ρα.

Let x1, x2, . . . be the vertices of PB
ρ−1 . See Figure 3.

B

P
B
ρ−1

Figure 3
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Let B1, B2, . . . be discs of radius ρ−1/2 centered at the above vertices.
Since B is the convex hull of a subset of a given circle C, there exists a
constant c such that, for any j, we are in at least one of the following
two cases:

either
i) cBj ∪ cBj+1 contains the arc in ∂B connecting xj and xj+1,
or
ii) the part of ∂B connecting xj and xj+1 and not contained in

cBj ∪ cBj+1 is a segment.
Indeed, assume that i) and ii) fail. Then the arc in ∂B connecting xj

and xj+1 must touch the unit circle C outside of the discs cBj or cBj+1,
at a point having distance ≈ ρ−1 from the side of PB

ρ−1 connecting xj

and xj+1. Now observe that this latter can be extended to a chord of
C at distance ≈ ρ−1 from ∂C. Then, for a suitable c, the disc cBj and
cBj+1 cannot be distinct.

The above implies that, for α > α∗,

∆B
ρ−1/2 ⊆ c1π

±
(

∂B ∩
(

cρα⋃
j=1

cBj

))

and therefore
∣∣∣∆B

ρ−1/2

∣∣∣ .
cρα∑
j=1

ρ−1/2 ≈ ρα−1/2 =
(
ρ−1/2

)1−2α
,

hence, in this case, d∗ ≤ 2α∗.
We now prove that α∗ ≤ d∗/2. Let α < α∗. Then there exists

a sequence ρk → +∞ such that MB
ρ−1

k

& ρα
k . We claim that there

exists ≈ ρα
k points in ∆B that are ≈ ρ

−1/2
k separated. Postponing for a

moment the proof of the claim, we conclude that
∣∣∣∆B

ρ
−1/2
k

∣∣∣ & ρ
α−1/2
k =

(
ρ
−1/2
k

)1−2α

which implies that the Minkowski dimension d∗ of ∆B cannot be smaller
than 2α and therefore d∗ ≥ 2α∗.

Proof of the claim.
Let chj, ϕj and ψj be as in the proof of Theorem 6 and define

Sa =
{

j : |ϕj − ψj| > ρ
−1/2
k

}

Sb =
{

j : |ϕj − ψj| ≤ ρ
−1/2
k

}
.

It is enough to prove that whenever j ∈ Sb we have |ϕj − ψj| & cρ
−1/2
k .

Since B is inscribed in a (unit) circle, a simple geometric argument
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shows that if |ϕj − ψj| ≤ ρ
−1/2
k , then the chord chj (which is a chord

of B of height ρ−1
k ) can be continued to a chord of the circle of height

≈ ρ−1
k and therefore of length ≈ ρ

−1/2
k . It follows that |chj| . ρ

−1/2
k

and (3.8) yields |ϕj − ψj| & cρ
−1/2
k for any j = 1, . . . , cρα.

¥

The following lemma will be needed in the proof of Theorem 10. The
proof depends on an easy modification of an argument in [27].

Lemma 21. Let B be a convex planar body containing a large disc
of radius r. Let g be a smooth non negative function supported in the
set {t + v}t∈B , |v|≤1 such that g(t) = 1 when t ∈ B and dist(t, ∂B) ≥
1.Then there exists a constant c, independent of r, such that

‖ĝ‖L1(R2) ≥ c log2 r .

Proof. We first need the following known inequality (see e.g. [24]

or [13]). Let h ∈ L1(R) satisfy ĥ ∈ L1(R), ĥ(u) = 0 for u ≤ 0. Then

(3.9)

∫ +∞

−∞
|h(x)| dx ≥ c

∫ +∞

1

1

u

∣∣∣ĥ(u)
∣∣∣ du.

A quick proof of (3.9) follows. Because of [12, p.584] we can as-

sume ĥ(u) ≥ 0. We then consider the odd real function s defined
by s(x) = −i (1− x)+ for x > 0, the Fourier transform of which is
ŝ(u) = (2πu− sin 2πu) /2π2u2.Then

∫ +∞

−∞
|h(x)| dx ≥

∣∣∣∣
∫ +∞

−∞
h(x)s(x)dx

∣∣∣∣

=

∣∣∣∣
∫ +∞

−∞
ĥ(u)ŝ(u)du

∣∣∣∣

≥ c

∫ +∞

1

ĥ(u)

u
du.

Observe that, through a translation, (3.9) implies the following fact.

Suppose ĥ(u) = 1 for u in an interval of length r, say [q, q + r] . More-

over ĥ(u) = 0 for u ≤ q − 1, then

(3.10)

∫ +∞

−∞
|h(x)| dx ≥ c log r.

To prove the lemma we may suppose that B lies in the half plane
{(x, y) : x ≥ 1} as in Figure 4.
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C

(1,0)

Figure 4

Then, by (3.9) and (3.10),
∫

R

∫

R
|ĝ(ξ, η)| dξdη

=

∫

R

∫

R

∣∣∣∣
∫

R

{∫

R
g(x, y)e−2πiηydy

}
e−2πiξx dx

∣∣∣∣ dξdη

≥ c

∫

R

∫ +∞

1

1

x

∣∣∣∣
∫

R
g(x, y)e−2πiηydy

∣∣∣∣ dxdη

≥ c

∫ r

1

1

x

∫

R

∣∣∣∣
∫

R
g(x, y)e−2πiηydy

∣∣∣∣ dηdx

≥ c

∫ r

1

1

x
log x dx

= c log2 r

since, because of the convexity of B, we can assume that g(x, y) takes
value 1 inside a whole triangle such as the one in the previous picture.

¥

Proof Theorem 10. Arguing by contradiction we assume the ex-
istence of a positive continuous function ε(ρ) → 0 (as ρ → +∞), such
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that

(3.11)

∫ 2π

0

|χ̂B (ρΘ)| dθ ≤ ε(ρ)ρ−2 log ρ

for ρ ≥ 2. Let ϕ be a nonnegative radial cut-off function supported in
the unit disc, then the convolution

g = χρB ∗ ϕ

satisfies the assumptions in the previous lemma (ρB contains a disc of
radius ≈ ρ). Therefore, by (3.11)

log2 ρ ≤ c ‖ĝ‖L1(R2)

= cρ2

∫

R2

|χ̂B(ρx)ϕ̂(x)| dx

≤ cρ2

∫

R2

|χ̂B(ρx)| 1

1 + |x|dx

≤ cρ2

∫ +∞

0

u

1 + u

∫ 2π

0

|χ̂B(ρuΘ)| dθdu

= c

∫ +∞

0

s

1 + ρ−1s

∫ 2π

0

|χ̂B(sΘ)| dθds

≤ c

(
1 +

∫ +∞

2

ε(s) log s

s (1 + ρ−1s)
ds

)

≤ c

(
1 +

∫ ρ

2

ε(s) log s

s
ds + ρ

∫ +∞

ρ

ε(s) log s

s2
ds

)

= A(ρ).

To end the proof we observe that

A(ρ)

log2 ρ
→ 0

as ρ → +∞, by l’Hôpital’s rule.
¥

Remark 22. Using an induction argument as in [27], the above the-
orem can be extended to several variables so that, for any convex body
in Rn,

lim sup
ρ→+∞

ρn

logn−1 ρ

∫

Σn−1

|χ̂B(ρσ)| dσ > 0 .

Remark 23. To prove our theorem we have used an idea introduced in
[27] to get lower bounds for Lebesgue constants. Therefore our result
shows a relation between the study of Lebesgue constants and the L1
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spherical averages of Fourier transforms of characteristic functions.
However we see no general theorem relating one to the other. See [18]for
a related discussion with a number theoretic flavor.

Remark 24. The estimates of |r(B, δ, θ)| (see (1.5)) is a geometrical
problem which does not involve necessarily the Fourier transform. The
previous theorem and the inequality in Lemma 17 imply that, for any
convex planar body we have

lim sup
δ→0+

1

δ log (1/δ)

∫ 2π

0

|r(B, δ, θ)| dθ > 0.

The problem considered in the previous remark could be related to
the study of floating bodies (see e.g. [22]), where, in place of fixing δ,
one fixes the area (≈ δ |r(B, δ, θ)|) of the small part of B cutted away
by the chord r(B, δ, θ) in the direction Θ.

Proof of Theorem 11. Arguing as in [15] or [7] and applying
Theorem 2 and (1.2) we have

∫

T2

∫

SO(2)

∣∣Dρ(σ
−1(B)− t)

∣∣ dσdt

= ρ2

∫

T2

∫

SO(2)

∣∣∣∣∣
∑

m6=0

χ̂B(ρσm)e2πim·t
∣∣∣∣∣ dσdt

≤ ρ2

∫

T2

∫

SO(2)

∣∣∣∣∣∣
∑

06=|m|≤ρ(1−2α)/(1+2α)

χ̂B(ρσm)e2πim·t

∣∣∣∣∣∣
dσdt

+ ρ2

∫

T2

∫

SO(2)

∣∣∣∣∣∣
∑

|m|>ρ(1−2α)/(1+2α)

χ̂B(ρσm)e2πim·t

∣∣∣∣∣∣
dσdt

≤ ρ2
∑

0 6=|m|≤ρ(1−2α)/(1+2α)

∫

SO(2)

|χ̂B(ρσm)| dσ

+ ρ2





∫

SO(2)

∑

|m|>ρ(1−2α)/(1+2α)

|χ̂B(ρσm)|2 dσ





1/2
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. ρ2
∑

06=|m|≤ρ(1−2α)/(1+2α)

|ρm|−2+α log |ρm|

+ ρ2





∑

|m|>ρ(1−2α)/(1+2α)

|ρm|−3





1/2

. ρα

∫ ρ(1−2α)/(1+2α)

1

tα−1 log(ρt)dt + ρ1/2

{∫ +∞

ρ(1−2α)/(1+2α)

t−2

}1/2

. ρ2α/(1+2α).

The lower bound follows from Theorem 2 and the orthogonality ar-
gument in [7, p. 269].

¥

Proof of Theorem 16. We prove only the case 0 < α < 1/2.
Write N as a sum of four squares: N = j2 + k2 + `2 + m2 and let
a1, a2, a3, a4 ∈ [0, 1) be pairwise linearly independent on Z, so that,
e.g.,

a1 +
p

j
6= a2 +

q

k

for any choice of the integers p, q, j, k (j, k 6= 0). That is

(3.12)
(
a1 + j−1Z

) ∩ (
a2 + k−1Z

)
= ∅

when j 6= k. Let

Aj2 =

{(
a1 +

p

j
,
q

j

)}

p,q∈Z
∩ T2

and let us define Ak2 , A`2 , Am2 accordingly. Define

P = Aj2 ∪ Ak2 ∪ A`2 ∪ Am2 .

By (3.12) P has cardinality N . Since

card (P ∩ B)−N |B|
= card (Aj2 ∩B)− j2 |B|+ . . . + card (Am2 ∩B)−m2 |B| ,

it is enough to prove that, say,∫

T2

∫

SO(2)

∣∣card (Aj2 ∩ (σ(B) + t))− j2 |B|
∣∣ dθdt . N

α
1+2α log N.

We can therefore prove the theorem assuming N to be a square, say
N = r2, r ∈ N and

P = AN =
{(

a +
p

r
,
q

r

)}
p,q∈Z2

∩ U.
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Now observe that, writing w = (a, 0) and applying Theorem 11, we
have

∫

T2

∫

SO(2)

|D(P , θ, t)| dt dσ

=

∫

SO(2)

∫

T2

∣∣card (Ar2 ∩ (σ(B) + t))− r2 |B|
∣∣ dt dσ

=

∫

SO(2)

∫

T2

∣∣card (Ar2 ∩ (σ(B) + t + w))− r2 |B|
∣∣ dt dσ

=

∫

SO(2)

∫

T2

∣∣∣∣card

({(p

r
,
q

r

)}r−1

p,q=0
∩ (σ(B) + u)

)
− r2 |B|

∣∣∣∣ du dσ

=

∫

SO(2)

∫

T2

∣∣card
(
Z2 ∩ (rσ(B) + ru)

)− r2 |B|
∣∣ du dσ

=

∫

SO(2)

∫

T2

∣∣card
(
Z2 ∩ (rσ(B) + u)

)− r2 |B|
∣∣ du dσ

. r2α/(1+2α) log r

=
1

2
Nα/(1+2α) log N.

where we have used the fact that for a function f ∈ L1 (T2) and for
any integer k 6= 0 ∫

T2

f(ku)du =

∫

T2

f(u)du

¥

The above argument extends to several variables after replacing the
sum of four squares with Hilbert’s theorem (Waring’s problem).
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coni 5, 24044 Dalmine (BG), Italy

E-mail address: brandolini@unibg.it

Department of Mathematics, University of Missouri, Columbia, MO,
U.S.A.

E-mail address: iosevich@math.missouri.edu
URL: http://www.math.missouri.edu/~iosevich/

Dipartimento di Matematica e Applicazioni, Università di Milano-
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