# MATH 265H, FALL 2022, HOMEWORK \#7 

## ALEX IOSEVICH

## 1. Problems not from the book

Problem \#1: Let $k=\left(k_{1}, k_{2}\right) \in \mathbb{N} \times \mathbb{N}$. Let $n$ be a positive integer. Find the values of $p$ for which the sequence

$$
\sum_{1 \leq\|k\| \leq n} \frac{1}{\|k\|^{p}}
$$

converges as $n \rightarrow \infty$. Here $\|k\|=\sqrt{k_{1}^{2}+k_{2}^{2}}$. Prove all your assertions.
Hint: The book proves this in the one-dimensional case. The point of this problem is to understand what the one-dimensional proof really says.

Problem \#2: Let $f(n)$ be a function such that for every $k, k=0,1,2, \ldots$, exactly 9 of the values of $f$ at $10 k, 10 k+1, \ldots, 10(k+1)-1$ are equal to 1 and the remaining value is equal to -1 . Is it true that for any such function $f$,

$$
\sum_{n=1}^{\infty} \frac{f(n)}{n}
$$

converges? Prove all your assertions.
Hint: You may want to revisit the proof that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges and think about what it really says.

## 2. Problems from the book

Page 78, problems 14, 17, 18, 25

