MATH265H, FALL2022, HOMEWORK \#6

ALEX IOSEVICH

1. Problems not from the book

Problem \#1: Let S be a finite subset of \mathbb{R}^{3} of size N. Let $x=\left(x_{1}, x_{2}, x_{3}\right)$, and define

$$
\pi_{1}(x)=\left(x_{2}, x_{3}\right), \pi_{2}(x)=\left(x_{1}, x_{3}\right), \pi_{3}(x)=\left(x_{1}, x_{2}\right)
$$

Prove that

$$
N^{2} \leq \# \pi_{1}(S) \cdot \# \pi_{2}(S) \cdot \# \pi_{3}(S),
$$

where $\# \pi_{j}(S)$ denotes the number of elements in

$$
\pi_{j}(S)=\left\{\pi_{j}(x): x \in S\right\}
$$

Hint: Prove that

$$
\chi_{S}(x) \leq \chi_{\pi_{1}(S)}\left(x_{2}, x_{3}\right) \cdot \chi_{\pi_{2}(S)}\left(x_{1}, x_{3}\right) \cdot \chi_{\pi_{3}(S)}\left(x_{1}, x_{2}\right)
$$

where given a set $A, \chi_{A}(x)=1$ if $x \in A$ and 0 otherwise. After establishing this inequality (don't work too hard...), apply Cauchy-Schwarz in the right way to complete the proof.

2. Problems from the book

Page 78, problems 13, 16, 19, 20, 21, 22

