MATH265H, FALL 2022, HOMEWORK \#5

ALEX IOSEVICH

1. Problems not in the book

Problem: Let A be an n by n matrix with the following properties:

- i) $A_{i j}$ is equal to 1 or 0 .
- ii) Suppose that $A_{i j} A_{i j^{\prime}}=1$ for some i, j, j^{\prime} with $j \neq j^{\prime}$. Then $A_{i^{\prime} j} A_{i^{\prime} j^{\prime}}=0$ for any $i^{\prime} \neq i$.

Prove that the number of 1 's in A does not exceed $10 n^{\frac{3}{2}}$.
Hint: You are trying to estimate $\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}$. Consider

$$
\sum_{i=1}^{n}\left(\sum_{j=1}^{n} A_{i j}\right) \cdot 1
$$

Let $a_{i}=\sum_{j=1}^{n} A_{i j}, b_{i}=1$, and apply the Cauchy-Schwartz inequality we proved in class, i.e

$$
\sum_{i=1}^{n} a_{i} b_{i} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{\frac{1}{2}}
$$

2. Problems from the book

Page 78 , problems 5, 6, 7, 9, 10, 11

