MATH 265H, FALL 2022, HOMEWORK \#4

ALEX IOSEVICH

1. Problems not from the book

Problem \#1: Let f be a continuously differentiable function on $[a, b], a<b$. Suppose that $f^{\prime}(x) \geq 1$ for all $x \in[a, b]$ and assume that f^{\prime} an increasing function on $[a, b]$. Let $R>10^{6}$. Prove that

$$
\left|\int_{a}^{b} e^{i R f(x)} d x\right| \leq \frac{C}{R}
$$

for some constant C independent of R.
Hint: Observe that

$$
\int_{a}^{b} e^{i R f(x)} d x=\int_{a}^{b} \frac{1}{i R f^{\prime}(x)}\left(e^{i R f(x)}\right)^{\prime} d x
$$

and integrate by parts. At some point you will need to use the fact that f^{\prime} is an increasing function.

Problem \#2: Let f be a twice continuously differentiable function on $[a, b]$, $a<b$. Suppose that $f^{\prime \prime}(x) \geq 1$ for all $x \in[a, b]$. Let $R>10^{6}$. Prove that

$$
\left|\int_{a}^{b} e^{i R f(x)} d x\right| \leq \frac{C}{\sqrt{R}}
$$

for some constant C independent of R.
Hint: Note that f^{\prime} is increasing since $f^{\prime \prime}(x) \geq 1$. Find a point c where $f^{\prime}(c)=0$. Prove that there is at most one such point. If there is no such point, you are already done by Problem \#1, but you need to think that through carefully. Write

$$
\int_{a}^{b} e^{i R f(x)} d x=\int_{a}^{c-\delta} e^{i R f(x)} d x+\int_{c-\delta}^{c+\delta} e^{i R f(x)} d x+\int_{c+\delta}^{b} e^{i R f(x)} d x=I+I I+I I I,
$$

where δ is very small and will be specified later.

Show that $I I \leq 2 \delta$ using the triangle inequality. Estimate I and $I I I$ using Problem \#1 and Mean Value Theorem.

Historical Note: Both Problem \#1 and Problem \#2 appear as homework exercises in Edmund Landau's Calculus book used at the University of Gottingen in the 1920s.

2. Problems from the book

Pages 44-46: problems 19, 20, 22, 29, 30
Page 78: problems 1, 2, 3.

