MATH 265H, FALL 2022, HOMEWORK \#10

ALEX IOSEVICH

1. Problems not from the book

Problem: Let p be an odd prime. Define $\chi(t)=e^{\frac{2 \pi i t}{p}}$, where $i=\sqrt{-1}$. Prove that for any a with $1 \leq a \leq p-1$,

$$
\left|\sum_{t=0}^{p-1} \chi\left(a t^{2}\right)\right|=\sqrt{p}
$$

Hint: Observe that

$$
\left|\sum_{t=0}^{p-1} \chi\left(a t^{2}\right)\right|^{2}=\sum_{t=0}^{p-1} \sum_{s=0}^{p-1} \chi\left(a\left(t^{2}-s^{2}\right)\right) .
$$

Make a change of variables $u=t-s, v=t+s$ and prove that the sum on the right hand side becomes

$$
\sum_{u=0}^{p-1} \sum_{v=0}^{p-1} \chi(a u v) .
$$

Now rewrite this sum as

$$
\sum_{k=0}^{p-1} \chi(a k) \sum_{\{(u, v): u v=k\}} 1,
$$

and try to find the final sequence of steps in this proof! This idea is originally due to Carl Friedrich Gauss.

2. Problems from the book

Chapter 5, problems 7,9,11,12,15,22

