MATH 173, FALL2022, HOMEWORK \#3

ALEX IOSEVICH

1. Problems not in the book

Problem \#1: Prove that if $\left\{a_{j}\right\},\left\{b_{j}\right\}$ are sequences of real numbers (finite or infinite), $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\left|\sum_{j=1}^{\infty} a_{j} b_{j}\right| \leq\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{p}\right)^{\frac{1}{p}} \cdot\left(\sum_{j=1}^{\infty}\left|b_{j}\right|^{q}\right)^{\frac{1}{q}}
$$

by following the outlined given below.
Step 1: Prove that if $0<x<y$ and $0 \leq t \leq 1$, then

$$
e^{(1-t) x+t y} \leq(1-t) e^{x}+t e^{y}
$$

Hint: Let $F(t)=(1-t) e^{x}+t e^{y}-e^{(1-t) x+t y}$. Note that $F(0)=F(1)=0$ and $F^{\prime \prime}(t) \leq 0$. Now use the Mean Value Theorem and obtain the desired conclusion.

Step 2: Prove (by using Step 1) that if x, y are positive real numbers and p, q are as above, then

$$
x y \leq \frac{x^{p}}{p}+\frac{y^{q}}{q} .
$$

Step 3: Let $A=\left(\sum_{j=1}^{\infty}\left|a_{j}\right|^{p}\right)^{\frac{1}{p}}, B=\left(\sum_{j=1}^{\infty}\left|b_{j}\right|^{q}\right)^{\frac{1}{q}}$, and rewrite the inequality you are trying to prove in the form

$$
\left|\sum_{j=1}^{\infty} \frac{a_{j}}{A} \cdot \frac{b_{j}}{B}\right| \leq 1
$$

Hint: Prove this by applying Step 2 inside the summation on the left hand side.

2. Problems from the book

Section 2.1, problems 3, 4, 6
Section 2.2, problems 1, 2, 3, 5, 7, 8, 9

