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ABSTRACT. In order to quantitatively illustrate the role of positivity in the Falconer distance

problem, we construct a family of sign indefinite compactly supported probability measures

in R?, such that the energy of dimension s > g is uniformly bounded. However, the Mattila

integral (associated with the Falconer distance problem) for these measures is unbounded in

theraned<s<L
g€ 5 2d—1°

INTRODUCTION

Let u be a compactly supported Borel measure in R?, d > 2. Suppose that pu is s
dimensional in the sense that its energy integral

(0.1) L) = [ [ o= s dn(w)duty) < .

The question that arises often in geometric measure theory and related areas is to deter-
mine the rate of decay of the spherical average

(0.2) Uu(t):/Sdl (tw) P dw, t > 1.

The quantity o,(t) plays the central role in restriction theory as well as the study of
distance sets. See, for example, [W03| and the references contained therein for background.
Let us point out one important geometric context where the quantity o, (t) arises.
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The celebrated Falconer distance conjecture ([Fal86]) says that if the Hausdorff dimension
of a compact set E in R? is greater than g, then the Lebesgue measure of the distance set
A(FE) is positive, with

(0.3) A(E) ={lz —y|:z,y € £},

where | - | is the standard Euclidean distance. Wolff ([W99]) in dimension d = 2 and Erdogan
([Erd05]) in all d > 2 proved that the Lebesgue measure of A(E) is indeed positive if the
Hausdorff dimension of F is greater than % + % The proofs invoke highly non-trivial har-
monic analysis, whereas a weaker exponent %l + % follows basically from the uncertainty
principle, as shown by Sjolin ([Sj93]). The original approach to the Falconer distance prob-
lem was founded by Mattila ([Mat87]), aiming to prove that there exists a positive Borel
measure y supported on E (with [ du > 0), such that

(0.4) M(p) = /100 oo ()t dt < cc.

Then the Lebesgue measure of A(FE) is positive. This is essentially the second moment
argument, which is based on the fact that if v is the (properly weighted) pull-forward of
the measure p X p under the distance map F X E — R, then the one-dimensional Fourier
transform

(0.5) D(t) ~t T ou(t).

(The notations =, as well as further < and 2 absorb constant multipliers — which may
depend on the dimension and the diameter of the support of u— in the usual way.) Hence,
if (0.4) is true, the measure v has an L? density, and its support cannot have zero Lebesgue
measure, by the Cauchy-Schwartz inequality.

In order to vindicate (0.4), all of the aforementioned references sought to establish the
estimate ai(t) <t B, for all t > 1 and some 3 < s, cf. (0.1). If this is the case, then from
(0.4) — using polar coordinates and Plancherel — one has

M) < / A Plel " g

(0.6) ~ [ [le =™ duta)duty) = Lot

the energy integral of u of order —(d — 3). This integral is bounded if d — /3 is smaller than
the Hausdorff dimension of E, or the quantity s.

In order to motivate the main result of this note we need a couple of pieces of notation.
First, for a not necessarily positive (Schwartz class) function f, define

(0.7) o (t) = /S Fltw)dw, > 1.



The spherical averages of Fourier transforms for general sign-indefinite measures have re-
cently been addressed in a number of papers, see e.g. [SS99], [SS03] and the references
contained therein.

Then define

0.8) FIL(f) = / FOI e de.

Observe that in the case when f defines a positive measure in R? | the quantities FI,(f)
and I(f) are the same up to a constant, see [W03] for the detailed proof.

The following construction-based theorem indicates that without the positivity assump-
tion, even though the “Fourier energy” integral F'I.(f) is bounded, the Mattila integral
M(f) may behave quite badly, namely it will diverge in a range of s > %l, satisfying the
Falconer conjecture. This emphasizes the role of positivity in the context of the latter con-
jecture, even though the Fourier transform of f in the construction exposed further turns
out to be positive, as it is essentially the case in the lattice-based examples (see e.g [Fal96],
[IR05]) which are characterized by similarity of both sides of the Fourier transform due to

the applicability of the Poisson summation formula .

Theorem 0.1. For any % < 5 < 26‘;—:, there ezists a one-parameter family F, of C*°
functions supported in the unit cube, such that for any f € Fy, [|fq(z)|dx =1, FIs(f,) =~ 1,
while M(fy) — 00 as ¢ — 0.

We note that the assumptions of Theorem 0.1 are meant to mimic the positive case.
More precisely, under the assumption that f is a positive Borel measure, the condition
[ |f(x)|dz ~ 1 says that f is, approximately, a probability measure. The condition that
FI,(f) ~ 1 says in the positive measure context that f is supported on a set of Hausdorff
dimension > s. In particular, if we start out with a positive probability Borel measure u
supported on a set of positive Hausdorff dimension, then many reasonable localizations of
1 on the Fourier transform side lead to functions satisfying the assumptions of Theorem
0.1. Our desire to understand the behavior of such functions in the context of the Falconer
distance problems led us to the mathematics behind Theorem 0.1.

If we are willing to relax the conditions in Theorem 0.1 a simpler construction ([T05])

~

d—s
can be used to yield a similar conclusion. Let f(§) = || 2 ¢(§ —Twyp), where ¢ is a smooth
cut-off function supported in the unit ball, ¢ is a large positive real parameter, and wy is a
fixed vector of modulus 1. Then

PN 2 _ s
(0.9) RGN T
and
~ 2
(0.10) /Sd1 |ftw)| dw ~ T - T~ p g pi)(8) = T X1 r ) (2)
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This leads immediately to the lower bound

T+1
(0.11) M(f) > / T=25%2 pd=lgp o 25T g
T—-1

if s < %, a stronger conclusion than the one offered by Theorem 0.1. However, in this
case

d—s

(0.12) 17O = 16] T 66 — Twy) > T

on the support of f, so J1f(x)|de — o0 as T — oo.
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SECTION 1: LOWER BOUND FOR o¢(t)

Let ¢ > 1 and a function f; be defined by the relation

(1.1) fa©) = 0(a756) > ¢lag - €),

acA

where ¢ is a smooth radial cut-off function supported in the unit ball such that ¢ > 0 and A
is a Delone set in the sense that elements of A are c-separated, and any cube of side length
C in R? contains some element of A, for some 0 < ¢ < C. The function fq depends on the
specific Delone set A (to be described) and the large parameter ¢, which may be omitted in
some notations. We shall need the following estimates.

Lemma 1.1. For every Delone set A, and all ¢ > 1, the function f, is supported in the
ball of radius 2 and

(1.2) /|fq(x)|dac ~ 1,

with constants independent of q.

Lemma 1.2. For every Delone set A,
(1.3) FI(f,) ~1,

with constants independent of q.



Let’s take Lemma 1.1 and 1.2 for granted for the moment and obtain a lower bound for
of(t). We have

(14) FAOF ~ 18201 3 x, (0 (€/a),

acA

where X, (») denotes the characteristic function of the ball of radius r centered at x.
Since ¢ is radial, let ¢ be the function of one variable such that ¢(§) = ¢o(|¢]). It follows
that

~ 2 _d 2
/ | fo(tw)| dw = |do(q™ = t)] § / XB; (a)(tw/q)dw
st acA §d-1 5

(15) ~looa Y

t t g1
§§|a‘§5+§

At this point, in order to get the desired family F,, we consider a special Delone set
A with specific properties we need. On each sphere of integer radius m we place ~ m?~!
1-separated points of A. It follows that

(1.6) Yoooiw (é>d_1,

t t 1
gSlal<g+g

for a sequence of ts going to infinity, when we have

~ d 1
(1.7 [ Rt 2 et o

Observe that choosing ¢ &~ t, as we may, we obtain
o~ 2 s
(1.8) | ) oz oot
Sd—l
for a sequence of ts going to infinity (and a sequence of members of the family F).
SECTION 2: PROOF OF LEMMA 1.1 AND LEMMA 1.2

To prove that f; in Lemma 1.1 is compactly supported, we write

folw) =) / ¥ G(q™ €)plag — €)dE
acA
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=2 / / AT E (g ) dgeP T b (y)dy

acA
(2.1) —q* > /emqa%(qf(af —9))o(y)dy,
acA

from which it is apparent that f vanishes identically outside the ball of radius 2. The validity
of (1.2), i.e. that |f,;(£)| < 1 is obvious by definition of f,.

To prove Lemma 1.2, observe that

(22 FAOF ~ 10691 3 vy (/)

acA

It follows that

FIL(fy) = / GRS / 9021 X, (€ IE[ e

acA

- / 3020 X5, 0.0y (6] ) €] de

(2.3) - / 3200 Xy o (@) €~ de = T+ I1.
) q

a#(0,...,0

Clearly, I ~ 1. On the other hand,

—d+s —d+s _4d -N
I Cng ™™ 30 o™ [ a ) (€0
a#(0,...,0) !

and the proof of Lemma 1.2 is complete.



SECTION 3: PROOF OF THEOREM (0.1: THE CONCLUSION

We must estimate

(3.1) /100 (/S_ \ﬁ(tw)|2dw)2td—1dt.

;From (1.8) and (1.9) we know that

~ 2 1
3.2 tw)| dw 2 ———,
(32 | B a2
whenever é is an integer, and the estimate persists as t varies from mgq to mq+ 1. It follows
that
a_q
g (m+1)q /\ 2 2
Mz X [ ([ el e
m=1 v "M4q Sd—1
4_;
q S
1 d—1 L2 5 2 94
(33) Z qg(d_l) (mq) Z qd_l q s = q 8 .
m=1

The power of g on the right hand side of (3.3) is positive unless

(3.4) s >

as claimed. This completes the proof of Theorem 0.1 (the support in the ball of radius two
claimed by Lemma 1.1 can be transformed into the unit cube as stated in the Theorem by
straight-forward scaling).
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