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Introduction

Question. When can a prime number be written as a sum of two
positive squared integers?

We begin with some numerical observations:
v 2=12412

X 3=12+2, but 2 is not a perfect square (/2 is irrational!)
v 5=12422

X7=1"4+6=2"+3

X11=12+10=2247=32+2

v 13=2243?

vV 17=12 442
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Let's assume that g is an odd prime, so g =1 (mod 2).

What about modulo 47

An odd number is congruent to 1 or 3 modulo 4, so g =1+ 4N or
q=23+4N.

From our list, only odd primes congruent to 1 modulo 4 are a sum
of squares. Coincidence?
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Let's look at squares modulo 4:

02=0 (mod 4)
12=1 (mod 4)

2=0 (mod 4)
32=1 (mod 4)

So any sum of two squares, m? + n?, is

02+0%2 (mod 4) 0 (mod 4)
m*+n*={02+1% (mod4) =41 (mod4)
124+ 12 (mod 4) 2 (mod 4)
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M If g=m?+ n? then ¢ =0,1,2 (mod 4).

B Since g is prime, it is not divisible by 4.

B If g =2 (mod 4), then g is divisible by 2 (since then
p =2+ 4k). Hence g = 2.

Conclusion? Either g =12+ 12, or g =1 (mod 4).
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So any odd prime which is a sum of two squares must be congruent
to 1 (mod 4).

Is the converse true? If g is an odd prime which is congruent to 1
(mod 4), must it be a sum of two squares?

The quick answer is: YES!

An odd prime number is a sum of two squared integers if and only
if it is congruent to 1 (mod 4).

But first we need a middle step to help bridge the gap.

! Attributed to Girard* (1625), Fermat* (1640), and Euler ( 1750)
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https://en.wikipedia.org/wiki/Fermat%27s_theorem_on_sums_of_two_squares#Proofs_of_Fermat's_theorem_on_sums_of_two_squares

Observation. If g = m? + n?, then g does not divide n.
B Why not? Otherwise g divides m?> = g — n?.
B Since g is prime and divides m?> = m - m, it actually divides m.
B This means that g2 divides m? + n?> = g, which is impossible!
So n#0 (mod q).

In particular, it has a multiplicative inverse?, n*, modulo g:

n-n*=1 (mod q).

2Infinity of Primes I, slide 6
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https://web.math.rochester.edu/people/faculty/iosevich/May21UR.pdf

Since g = m? + n?, we have

m? + n?
m2
m2 . (n*)2

0

-1

(mod q)

(mod q)

(mod q)

(m- n*)2 =-1 (mod q),

and so —1 is a square modulo gq.

What we know so far:

g=m?+ n?
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Regarding that dashed arrow on the previous slide:

B If —1 is a square modulo g, then there is an integer j with
j2=-1 (mod q).

B Squaring both sides, we get j* =1 (mod q).

B Alex’s rolling pin argument® can be used here to show that 4
divides g — 1.

B But this is the same as saying g =1 (mod 4)

3Infinity of Primes Il, Slide 11. Note that 4 is the size of {1,},,?,j*}
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https://web.math.rochester.edu/people/faculty/iosevich/May21UR.pdf

An aside: infinitely many

Fun fact: using what we know from the previous slide, we can show
that there are infinitely many primes* congruent to 1 (mod 4).

B Suppose Q is the largest prime congruent to 1 (mod 4).

M If g is a prime dividing (2-3-5---Q)? + 1, then

(2-3-5---Q)?>= —1(mod q).

B This means that g = 1 (mod 4).

B But g must also be larger than @, since g #2,3,5,..., Q.
Contradiction!

“*Compare this proof to Infinity of Primes I, Slide 14 (Euclid).
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https://web.math.rochester.edu/people/faculty/iosevich/May7UR.pdf

Here's how we'll finish proving the Theorem:

q=m?+ n? P (mod q)
iStep 1
g=1 (mod 4)

From now on, let G = {1,2,...,q — 1}.
So for any a € G, there is an a* € G with

a-a*=1 (mod q).
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Proof of Step 1

If g is a prime number congruent to 1 (mod 4), then —1 is a
square modulo g.

Proof. We collect the elements of G into subsets of the form
E,:={a, a",qg—a,qg—a"}.

This set has size 4, unless some of the elements are repeated.

Take a = 1 for example, which is its own multiplicative inverse.

Then £y = {1,q9 — 1}.

Since g # 2, we see that Ej has size 2, not 4.
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Proof of Step 1

Let's count the size of E, = {a,a*,q — a,q — a*} for a # 1.

First check if a = a*.
B If 2= a*, then 22 = 1 (mod q).

B Substract 1 from both sides, so (a—1)(a+ 1) =0 (mod q).
B Since a # 1, a— 1 has a multiplicative inverse modulo g.
B Multiply both sides by (a — 1)* to get a4+ 1 = 0 (mod q).

B Therefore a= —1(mod g), and so a=q — 1.
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Proof of Step 1

So E; = Eq—1 has size 2, and this covers the case where a* = a.

Another possibility is a = g — a, which means that g = 2a.
X But g is odd, so this can't happen.

The next case® is when a = g — a*

B Rearranging terms, this also means that a* = g — a.
B Since a# 1,9 — 1, we see that a # a*. And so
E,={a,a",g—a,qg—a"} ={a,a"}
has size 2.

B Most importantly, we also have 2> = —1 (mod q).

5Note: in this case, a cannot be 1 or g — 1.
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Proof of Step 1

To summarize:
® E =E; 1 ={1,q9— 1} has size 2.
@ If 3> = —1(mod q), then E; = {a,a*} has size 2.
© For all other a, each element is distinct; so E, has size 4.

Of course, G doesn’t always have elements of the second type. For
example:

v If g =101, then (10)2 = —1 (mod q).

X If g =17, then a> = 1,2,4 (mod q).
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Proof of Step 1

This splits up G into subsets of size 2 and 4:

B If —1 is not a square modulo g, then there is precisely one
subset of size 2: {1,q — 1}.

B There are two subsets of size 2 otherwise.
B Everything else is containing in a subset of size 4.

Let ¢ count the number of such subsets of size 2, so c; = 1 or 2.

Let ¢4 be the number of distinct subsets E, of size 4.
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Proof of Step 1

Then we have
200 +4c, =q— 1.

Reducing modulo 4, we get

g =14 2c (mod 4).

From this, we see that

o 1 if g =3(mod 4),
72 if g=1(mod 4).

This proves Step 1, since g =1 (mod 4) implies there are two
subsets of size 2. O
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Proof of Step 2

If —1 is a square modulo g, then g is a sum of two squared integers. \

Proof. Let j € G be such that j2 = —1 (mod q).

B Consider a — jb for integers a, b with 0 < a,b < /4.

B Key point: there are > ,/q choices for each of a and b
(because we include 0).

B So there are more than (,/q)? = q pairs (a, b).
Let's look at a — jb (mod q).
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Proof of Step 2

There are g possible values for a — jb (mod q).

Pigeonhole principle: If you sort > g items® into g bins’, one of
the bins must contain (at least) two items.

B So there are two different pairs (a, b) and (&', b’) with

a—jb=a — jb' (mod q).
B Rearranging, we get

a—a =j(b—b)(mod q).
M Setx=a—adandy=b-", so

x = jy (mod gq).

52— jb
7its value modulo g
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Proof of Step 2

Squaring both sides, we get

2= j2y? (mod q)

—y? (mod q).

X

So q divides x> + y2. Almost therel
M Since 0 < a,d' < ,/q, we have |x| =]a—2d'| < \/q
B So x? < g, and the same is true for y?.
B Then x% + y? < 2q and is divisible by g.
B Hence x> +y2=0orgq.
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Proof of Step 2

If x>+ y?2 =0, then x=0and y = 0.
B But then a=4a and b= V.

B We used the pigeonhole principle to find distinct pairs (a, b)
and (&', b'), so this can't happen.

And we're done, because the only possibility left is that
X24y2=gq.

Combining Steps 1 and 2 proves the rest of the Theorem.
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Constructive proof of Step 1

Since g is prime, we have (g — 1)! = —1 (mod q).

Proof. Recall that 1 and g — 1 are the only elements of G which
are their own inverse.

Write the remaining 2Q := q — 3 elements as a1, a7, . . ., aQ, ag-
Then

(g—1)'=(g—1) Hakak
Q
E(—].)Hl (mod q).
k=1

Thisis = —1 (mod q), so we're done. O

8Part of Wilson's Theorem
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https://en.wikipedia.org/wiki/Wilson%27s_theorem#Proofs

Constructive proof of Step 1

Now note that

(q—1)!:1...<q;1>.(q;1>...(q_1)
1

But qT_l is even. So, after applying the Lemma, we see that

2 [(5)] e
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A ‘one-line’ proof

Let N denote the positive integers. Consider the set

S={(xy,2) eN*:x* + 4yz = q}.

For example, if g = 14 4N, then (1,1, N) € S.
B Defineamap f:S — Sby f(x,y,z) = (x,z,y).
B Since x? 4 4yz = x? 4 4zy, this map is well-defined®.

B If we apply f twice, then we get back our original input:

f(f(x,y,2)) = (x, ¥, 2).

Such a function is called an involution.

®That is, if (x,y,2) € S, then f(x,y,z) € S
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A ‘one-line’ proof

Remark. A fixed point of f is any point for which
f(x,y,z) =(x,y,2).

But this means that y = z, and so x? + 4y? = q.
That is, g = x% + (2y)2, which is exactly what we want!

So it suffices to show that f has at least one fixed point.

26 /30



A ‘one-line’ proof

To do this, we define another involution1?:

(x+2z,z,y —x—2z) ifx<y-—z
g(xy,z) =9 @2y —xy,x—y+z) ify—z<x<2y,
(x =2y, x—y+2zy) if x>2y.

Let's find its fixed points, i.e. where g(x,y,z) = (x,y, z)
B If x<y—z then

X+ 2z = X,

zZ=Y,
y—x—z=2z.

X The only possibility is x = y = z = 0, but this doesn't satisfy
x<y—2z

X Similarly for x > 2y.

10Exercise. Check this!
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A ‘one-line’ proof

If y — z < x < 2y, then

2y — x = X,
Y=y,
X—y+z=2z

Sox=y,and x,y,z > 0.
B Thus (x,x,z) € S is a fixed point of g.
B But (x,x,z) € S satisfies

q = x> +4xz = x(x + 4z).

B Since g is prime, x = 1 and hence z = N.
B So g has a single fixed point (1,1, N) when g =1+ 4N.
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A ‘one-line’ proof

We're practically done!

B Since g has exactly one fixed point, S must have an odd
number of elements.

B Why? Pair each element (x, y,z) € S with its buddy
g(X7 y? Z)

B The only element that can't be paired is (1,1, N).

B #S = 2( number of pairs) + 1, so #S is odd.
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A ‘one-line’ proof

Fact. An involution, f, on a set of odd size must have a fixed
point.

B Why? The same reasoning as on the previous slide.
B We pair up each (x, y, z) with f(x,y, z)
So f has a fixed point, as desired. [ |

This proof is due to Don Zagier (1990), building upon work of
Roger Heath-Brown (1984).
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