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ABSTRACT. Let A be an appropriate planar domain and let f
be a piecewise smooth function on R?. We discuss the rate of
convergence of

Sxf(z) = v f(§) exp(2mi - x)d¢

in terms of the interaction between the geometry of A and the ge-
ometry of the singularities of f. The most subtle case is when z
belongs to the singular set of f and here Hilbert transform tech-
niques play an important role.

The pointwise convergence of one-dimensional Fourier series of piece-
wise smooth functions is one of the best known topics in analysis. In
higher dimensions the problem is harder and also of different nature.
This is basically due to the failure of the Riemann localization princi-
ple, since the convergence at a given point does not depend exclusively
on the regularity of the function in a neighborhood of the point. See
[15] and [14, VIL.4]. The purpose of this paper is to characterize the
convergence properties of two-dimensional Fourier integrals of piece-
wise smooth functions in terms of certain natural geometric features.
On this topic the classical reference is [1], but for more recent works
see (2], [3], [5], [6], [8],[9], [10], [11], [12].

Define the Fourier transform and the spherical sums of Fourier inte-
gral of integrable functions as

f(é) = . f(y) exp(—2mi€ - y)dy,
Suf(@) = / 7€) exp(2riz - €)de.
{l€]<A}

In analogy with the one dimensional case one expects that the spher-

ical sums of piecewise smooth functions converge everywhere to the
1
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function expanded, but indeed the situation is slightly more compli-
cated. The simplest example to illustrate this fact is the character-
istic function of the n-dimensional unit ball centered at the origin
B = B(0,1). Its Fourier transform can be expressed in terms of a
Bessel function, X z(&) = [£]7"/2 Jns2 (27 [€]), and it is possible to show
that the spherical sums Syxg(z) converge at every point z # 0 when
A — 4o00. This follows for example by an equiconvergence result
between Fourier-Bessel expansions and the classical one dimensional
trigonometric expansions. See [4]. On the other hand, the spherical
sums at the origin x = 0,

A
Sixs(0) = €l = 1} [ Juya (er) o702

converge for n = 2, oscillate for n = 3, and are unbounded for n > 3.
More precisely, in the planar case n = 2, one can prove that when
A — +00,

1+0 ()\71/2) when x = 0,

Sxxp(z) = 4 xp(x) +O (A")  when z #0and |z] # 1,

1/2+0 (A7) when |z|=1.

\

Observe that the worst rate of convergence A™*/? takes place at the
origin, while at all other points the rate is A™*. In [11] there is a
more sophisticated example: The spherical sums of the characteristic
function of an ellipse converge with speed A ', except that at points of
the evolute, an astroid. At the four vertexes of the astroid the speed of
convergence is A™>/4 and at the other points is \™>%. What is suggested
by these examples is that the rate of convergence of Sy f(z) may not
be optimal if the geometry of the disc used to define the summation
operators interacts badly with the geometry of the singularities of the
function expanded, and this leads one to ask whether the situation
can be ameliorated by replacing the disc with a suitable domain, or
if the same phenomena occur. In particular, in this paper we define
summation methods more general than spherical sums and we apply
these summation methods to piecewise smooth functions.
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Given a bounded planar domain A containing the origin, define the
two dimensional partial sums of Fourier integral of integrable functions
as

~

Sifa)= [ J(eexp(aia-€)de

Also define piecewise smooth functions as finite sums

@) =2 9i(@)xs (@),

where the g;(z)’s are smooth functions and the B;’s are bounded do-
mains with smooth boundaries. In what follows it will suffice to con-
sider each piece of these sums separately.

Our goal is to prove that under reasonable assumptions on A the par-
tial sums Sy f(x) converge to f(z) and also to estimate the speed of con-
vergence. The most studied case is of course the spherical summability,
that is when A is a disc, since in this case the kernel K(y) = X 4(—v)
associated to the operators S) is known explicitly. The case of a strictly
convex body is similar in principle, because there are rather precise as-
ymptotic estimates on K(y). On the contrary, our analysis does not
rely on explicit or asymptotic expressions of the kernel and we also
avoid the convexity assumption. We only require that the domain A
is bounded with smooth boundary and is strictly star-shaped with re-
spect to the origin. More precisely, if £(¢) is a smooth parametrization
of A, we assume that the two vectors £(t) and £(t) are always linearly
independent. This assumption is quite natural because and we shall
see that otherwise the convergence may fail.

The following are our main results.

THEOREM 1: Let A be a bounded planar domain with smooth
boundary and strictly star-shaped with respect to the origin. Also let
f(z) = g(x)xg(x), with g(x) smooth function and B bounded domains

with smooth boundary. Then for some constants ¢ = c(x, A, B, g) and
¢ ={(x, A, B) we have
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1S f(@)] < eV if v ¢ B,
1S f(z) — g(z)| < eA™/? if © € B,

1S3 f(z) —Lg(z)| <eX 'V ifzedB.

As we shall see the most subtle analysis occurs when z is on 0B,
since this leads us to consider singular integrals. When A is a disc, it
is well known that £(z, A, B) = 1/2. In the general case this constant
can be interpreted as the integral of the kernel K(y) = X 4(—vy) over a
suitable half-plane. Indeed as A\ — +o00 we obtain

Sxfz)= [ K(y)glz—A"y)xp(—A""y)dy

R2

— g(z) /H( » K (y)dy,

where H(z,B) = limy_, . A(z — B). Observe that the kernel K(y)
cannot be absolutely integrable since its Fourier transform is not con-
tinuous, hence the passage to the limit has be justified. Anyhow, when
A is symmetric with respect to the origin also K (y) is symmetric, and
since the integral over the whole plane of this kernel equals x4(0) = 1,
one expects that the integral over a half plane through the origin is
1/2.

The example of spherical sums of balls shows that the speed of con-
vergence A\~/2 can be attained also at points where the function is
smooth, and this suggests a lack of localization. However the phenom-
enon is in some sense exceptional, as the following result shows.

THEOREM 2: There exists a set E C R? of Hausdorff dimension
at most one, such that if x is not in E then

[Sxf(x) = flz)] < eA™

As we said, the spherical sums of the characteristic function of an
ellipse converge with speed A~ *, except that at points of the evolute.
Hence the optimal decay A ' may fail in a set of Hausdorff dimension
one. On the other hand the worst possible decay A2 in Theorem 1 is
due to a perfect focusing of singularities and then it is quite exceptional.
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In particular, for analytic curves the decay A2 of the spherical means

holds only if 0B is a circle and z is its center. See [6].
The proofs of Theorem 1 and Theorem 2 are based on the study of
certain oscillatory integrals. Since

S\f(a / / y) exp (2midE - (z — y)) dédy,

a double application of the divergence theorem reduces Sy f(z) — f(x)
essentially to an integral over the boundary,

I(\z) = /aA /aB (&, y) exp (2miX§ - (x — y)) dyd¢.

It is well known that the two integrals over 0A and 0B when taken
separately are governed by curvature. However, the actual properties
of the double integral are more subtle, do not depend only on 0A and
0B, but also on their interaction. Without any assumptions the above
integral does not necessarily vanish as A — +o00. In particular, if A
is not star-shaped and 0A contains a segment of the line {ta}, while
x — OB contains an orthogonal segment in {sb}, where ¢ and s run over
R and a and b are orthogonal vectors in R?, then the set of (£,y) on
0A x 0B where £ - (z — y) = 0 has positive measure and I(\, z) may
have no decay in A. On the other hand two non orthogonal segments
give the decay I(\,z) ~ A~ and, more generally, this optimal decay
takes place for most choices of 0A and 0B.

In suitable coordinates I(\, ) can be reduced to an oscillatory in-
tegral in R? and one can apply the classical principle of the stationary
phase, see [13, VIIL.2]: If ®(z) and ¥(z) are smooth functions on R", if
U(z) has compact support and if |0%/0z*®(z)| > € > 0 in the support
of ¥(z), then

‘/ 2) exp (2miAD(2)) dz| <A™V
Rn™

Moreover, if ®(z) has only non-degenerate critical points, that is the
Hessian [0%/022®(z)] is invertible at every point where the gradient
[0/0z;®(z)] vanishes, then
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‘ / U (2) exp (2miAB(2)) dz| < cA 2,
Rn

In order to apply these results we need to study the phase function
£-(z—y) on 0Ax 0B. In particular, if all critical points of the phase are
non-degenerate the decay is at least A™!. When there are degenerate
critical points the decay can be worse, however we shall see that at
degenerate critical points the curvatures of A and 0B do not vanish,
so that some second order derivatives of the phase are different from
zero and this gives at least the decay A™'/?. We shall also see that for
most points x the phase has only non degenerate critical points, hence
while the decay A~ ' is generic, lower orders of decay are in a sense
exceptional.

Finally, it is possible to give a geometric description of the set of
points at which the convergence of S,f(z) is slow. Let &£(t) be a
parametrization of A with £(¢) and £(t) linearly independent. The
polar curve 0A* is the curve z(t) defined by the system of linear equa-
tions

Observe that, being £(¢) and &(t) linearly independent, the system
has exactly one smooth solution. Also observe that when A is strictly
convex, this polar curve 0A* is the boundary of the polar set A* =
{z: VE€A, z-£E<1}.

The decay of |S)f(x) — f(z)| is determined by the nature of critical
points of the phase function £(¢) - (y(s) — =) and our last result relates
this decay to the interaction between z, 0B, and 0A*.

THEOREM 3: Let A be a smooth star-shaped domain contain-
ing the origin and let £(t) and z(t) be parametrizations of 0A and
0A*. Finally let y(s) be a parametrization of the boundary of a smooth
domain OB. Then the following hold:

a) The phase ®(t,s,x) = &(t) - (y(s) — ) has a critical point at (t, s)
when 0B — x is tangent to a dilate of 0A*,
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pz(t) =y(s) — ,
2(t) = vy(s).

b) At this critical point the determinant of the Hessian matriz van-
ishes if and only if the two curves OB and x + pdA* have the same
curvature,

ii(s) = ut (2(8) - 2(8) P E() — Tt (2(0) - 2(0) " () - £() £(2).

It turns out that the exact order of decay of |S, f(x) — f(z)|is related
to the order of contact between x + u0A* and 0B. When A is the disc
{|¢] < 1}, then 9A* = OA and the condition that z + udA* and OB
have order of contact higher than two defines the evolute of B. We
thus recover the classical results on spherical means.

Let us now present the proof of our results.

Proofs of Theorems 1 and 2: Let m(£) be a smooth radial func-
tion, with support in a small disc B(0,2¢) and equal to 1 in B(0,¢).
Decompose Sy f(z) into

-~

Sf@) = [ mOOF© explemia-€)de

~

[ ()~ mx1e) Fle) expleia - )¢

= M, f(z) + R\ f(z).

The operators M), are smoothed analogues of the S, and it is easy
to show that they have the required summability properties.

LEMMA 1: Let m(§) be a smooth radial function with compact
support and with m(0) = 1, and define

~

Mf@) = [ m R explemia - €)de

Let also f(x) = g(z)xg(z) be piecewise smooth. Then if x ¢ OB,
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| Myf(z) = f(z)] < X2,

and if x is in 0B,

Msf(0) = o) <

Proof: Let

M) = [ i) explemiy- e

This kernel is radial, rapidly decreasing, with integral one. Writing
ly| M(y) = H (|ly|) and integrating in polar coordinates one obtains

[ mOOF© explemia - €)dt - f(a)

= [ My (flz—A""y) - f(z)) da

= +OO H(t) / (f(z — X""to) — f(z)) dodt.
{lol=1}

0

Since at every point x not in 0B,

< e %2,

‘/{021} (f (@ = A""to) = f(x)) do

we have

—+00
dt < c\? / t2 |H(t)| dt.
0

/:w |H(t)| ‘/{le} (f(z — \"Yo) — f(z)) do

When z is in 0B the proof is the same. It is enough to observe that
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‘/ g(z — X'to)xg(z — A 'to)do — mg(x)| < A7t
{lol=1}

Actually if m(£) = 1 in a neighborhood of £ = 0 and if z is not in
0B, a much better estimate than A 2 hold, but this rough estimate is
more than enough in what follow.

[ |

We now consider Ry f(z). Since

/R2 (xa(A716) = m(A72E)) F(€) exp(2miz - €)dE

P / ) / (1= m(6)) o) exp (2miAg - (« = ) dyd,

we need to study an integral of the type

X’ /A /B F(&,y) exp (2miX¢ - (z — y)) dydg,

where F'(£,y) is a smooth function with F(£,y) = 0 if || < e. Using
the divergence theorem one can replace this integral over A x B with
one over 0A x 0B. Since

div, (exp(2miXE - (z — y))F (&, v)€)
= exp(2miA - (z — y))E -V, F (€, y)

—2mi\ [€]° F (€, y) exp(2miXE - (z — y)),

the divergence theorem in the y-variable gives
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2 ) . p—
[ [ e esming: (o - u)dude
A
== [ [ e ViR enmidg - (o )iy

i\ . '
+53/A/MJH £-n(y)F(&y) exp(2midé - (z — y))dydé,

where n(y) is the unit normal to 0B at the point y. By our as-
sumptions F(£,y) = 0 when |¢| < ¢, so that |£]72€ - V,F(£,y) is
smooth and the integral with this term over A x B is of the same
type as the one we started, with a better power of A in front. It is
therefore enough to study the second integral over A x 0B. Write
i2m) €2 E - n(y)F(€,y) = G(&,y). By the divergence theorem in
the &-variable,

A/;/MG@me@m&vw—wmwg
B % / A / 7=yl @ =) VGG y) exp(2mir - (o —y))dydg

*or / o4 / =yl (@ =) n(O)G(Ey) exp(2mixe - (v — y))dyde.

Introducing a sort of polar coordinates on A one can see the second
integral over A x OB as superpositions of integrals over 0A x 0B. It
then suffice to consider the last integral over 0A x dB. Observe that if
z is not in B, |z —y| ™ (z — y) is non-singular and the integral over
0B is well defined. On the contrary, if = is in OB the integral has to be
defined in the principal value sense. To summarize, we have reduced
our partial sums operators to an oscillatory integral over 0A x 0B with
phase £ - (z — y). In order to go on, we need to study in some details
the singularities of this phase.

LEMMA 2: Assume A star-shaped, 0A and 0B smooth. Let £(t)
and y(s) be parametrization by arc-length of 0A and 0B, and define
O(t,s,2) = £(t) - (y(s) —x). This phase function (t,s) — ®(t,s,x)
has the following properties:
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a) For a given s there are at most two t at which the phase has a
critical point.

b) For every z there exists € > 0 such that the phase has only non-
degenerate critical points with |y (s) — x| < €.

¢) The phase (t,s) — ®(t,s,x) has a degenerate critical point at
(t,s) only if OA has non-vanishing curvature at & (t) and OB has non-
vanishing curvature at y (s).

d) The set of points x in R? for which the phase has degenerate
critical points 1s union of at most countably many images of smooth
maps from R to R2. In particular this set has Hausdorff dimension at
most one.

Proof: The point (¢, s) is a critical point of the phase & (t)-(y (s) — z)
if the gradient vanish and it is a degenerate critical point if also the
Hessian determinant is zero,

Since A is star-shaped and y(s) # 0, in (%) the first equation &(%) -
y(s) = 0 for every s has exactly two solutions ¢. This proves (a).

In (b) we may assume that z € 0B and x = y(0), otherwise |y (s) — z| >
¢ and there is nothing to prove. When s = 0 the system (*) reduces
to £(t) - (0) = 0 and £(¢) - §(0) = 0, but this contradicts the fact that
£(t) and £(t) are linearly independent. Hence s = 0 is not a solution
and, since the set of solutions is compact, the system has no solutions
with |y(s) — z| < € if € is sufficiently small. This proves (b).

If £(t) or §j(s) is zero, the first and third equations in () become
£(t) - 9(s) = 0 and £(t) - y(s) = 0. But again this contradicts the fact
that £(t) and ¢ (t) are linearly independent, hence at degenerate critical
points the curvatures of 9A and 0B do not vanish. This proves (c).

It remains to estimate the dimension of the set of degenerate critical
points. Since £(t) - §(s) = 0 imply that £(¢) - §(s) # 0, in (%) the first
equation &(t) - y(s) = 0 defines two smooth curves ¢ = t(s). Let the
matrix M (s) and vector V (s) be defined by
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Then we can write the second and the third equation in (x) as M (s)-
z =V (s). Let U; (a;,b;) be the set of s where the determinant of M (s)
is different from zero. If a; < s < b; the matrix M (s) is invertible and
r=M"1(s) - V(s).

In order to complete the proof of the lemma, it suffices to show
that at points (¢, s, ) solutions of (x) the determinant of M(s) is non
zero. First observe that £(¢(s)) - ii(s) # 0 and £(t(s)) - (y(s) — ) #
0, otherwise the third equation in becomes &(s) - (t) = 0 and this
contradicts £(t) - §(s) = 0. Also, £(t(s)) and £(#(s)) are non-zero and
orthogonal. Hence the matrix M(s) is non singular.

|

The meaning of the following lemma is that one can isolate the crit-
ical points of the phase function.

LEMMA 3: There exists a smooth and finite partition of unity of
0A x 0B,

> P+ Qilts) =1,

with the following properties:

a) |4(s)| > € > 0 in the each of the supports of {P;(t,s)}.

b) In each of the supports of {Q;(t,s)} there is at most one critical
point of the phase ®(t,s,x), and this critical point is non-degenerate.

Proof: Denote by C the set of degenerate critical points of the phase
function. This set is compact and the continuous function |jj(s)| does

not vanish on it, hence it takes a positive minimum, [j(s)| > 2¢ > 0
on C. Let
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{(t,5) = li(s)l > e} =U; {(t,8) : a; <5 <j}.

i From this covering of C' we can extract a finite covering, which we
denote with the same notation. Then we can construct smooth func-
tions P;(t, s), with supports in {(¢, s) : a; < s < b;} and with P;(,s) =
1 if (¢, s) is also in a small neighborhood of C. Since non-degenerate
critical points are isolated, there are only finitely many non-degenerate
critical points outside (J; {(Z,s) : P;(t,s) =1} and we can complete

the.partition of unity by defining Zj Q,(t,s)=1- Zj P;(t, s).

We need to estimate the integral

I\ zx)= /aA /aB |z — y|72 (x —y) - n(&)G(&,y) exp(2miA - (z — y))dydé.

We first consider the non singular case x ¢ 0B. Using the previous
lemma we can decompose I(\,z) into a sum of integrals of type

+oo “+oo
/ / U(t, s) exp(—2miAD(t, s, z))dsdt,

where W¥(t,s) is smooth with compact support. If in this support
the phase ®(¢,s,z) has at most a non-degenerate critical point, then
the two-dimensional method of stationary phase gives the estimate
A~!. The other possibility is that |§j(s)| > ¢ > 0 and in this case

2
%@(t, s, )| + ‘%(I)(t, s,x)‘ > 6 > 0, because £(t) # 0 and g(s) is

orthogonal to §(s). The one-dimensional method of stationary phase
applied to the s-integral then gives the estimate AY2. Observe that,
by Lemma 2, for most = the phase ®(t, s, z) has only non-degenerate
points and this imply that while the estimate A™" is the norm, the es-
timate A™"/? is the exception. In particular we have proved Theorem
2.

It remains to consider the case x € 0B and in this case the integral
I()\, z) is singular. With a smooth partition of unity we can cut away
the part of OB far from x, since in this part the integral is non singu-
lar and it can be estimated as before. Therefore we can assume that
G(,y) =0if |y — x| > ¢ and, by Lemma 2, we can also assume that
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in the support of G(&,y) the phase has at most one non-degenerate
critical point. To summarize, by a change of variables we are reduced
to studying an integral of the type

+o00 +o0 i}
/ / (t,5) exp(—2miA®(t, s, x))dsdt,
rood o S

where WU(t,s) is smooth with compact support, and in this support
either the phase ®(¢, s, z) has no critical points, or it has only a non-
degenerate critical point at (0, 0).
Suppose first that ®(¢, s, z) has no critical point at (0,0) and ®(¢,0,z) =
0 0
0. Since a@(t,ﬂ,x) = 0, we have 8—<I>(t,0,x) # 0 and the change of
s

variables u = ®(t, s, x) yields for a suitable smooth O(u, s, ),

too p+00 (4
/ / (s’ %) exp(—2miAD(t, s, x))dsdt

+o0 +oo
= / / Ofu.s,2) exp(—2midu)dsdu
oot —oo s

_ / o ( / 7 Oy, 5,2) — O(u, =5, x)ds> exp(—2midu)du.

— 00 0 S

A repeated integration by parts in the u-variables then shows that
the integral is dominated by A™* for every k.

Now suppose that ®(t, s, ) has a critical point at (0, 0) and ®(¢,0,z) =
0. We may write ®(¢,s,z) = sQ(t,s,2) and the change of variables
u = Q(t, s, x) yields for a suitable smooth ©(u, s, x),

S

+00 +o0
= / / Ofu.s,z) exp(—2milsu)dsdt.

S

too  rtoo
/ / (t:5) exp(—2miA®(t, s, x))dsdt

Let ¢(s) be a smooth function with compact support and with ¢(s) =
1 when ©(u, s,z) # 0. Then we can write
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+oo +oo
/ / Ou,s,z) exp(2midus)dsdu

S

—+o00 —+o0
= / O(u,0,x) @ exp(2midus)dsdu

—+o00 +00 —
" / / G(u; S, x) - G(u’ 0, 33) (‘p(s) exp(Qwi/\us)deU.

O(u, s,z) — O(u, 0, x)

Since ©(s) is smooth and the phase us is non-

s
degenerate, the second integral is dominated by A *. Finally, for the

first integral we have

/ - ( / N M exp<2mAus)ds) O(u, 0, z)du

-0 — o0

_ / +°° (im+ 0 (1 + AJu) ™)) O, 0,)du

—00

+oo
= iw/ O(u, 0, z)du+ O (A7F).
The proof of Theorem 1 and Theorem 2 is then complete.
[ |

Proof of Theorem 3: We collect some properties of the polar
curve. First observe that even if A has arc-length parametrization
&(t), the parametrization z(t) of 9A* is not necessarily regular, in par-
ticular 2(t) = 0 when £(¢t) = 0. Even if dA is nice, dA* may present
singularities, nevertheless we want to prove that at points of interest
for our problem these singularities do not occur.

LEMMA 4: Assume A star-shaped and let £(t) be parametrization
by arc-length of OA. Define the polar curve 0A* by

£)-2(0) = 1,
Et) - =(1) = 0.
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Then the following properties hold:

a) £(t) - 2(¢) = 0. .

b) £(t) - 2(t) = &(t) - £(¢) = —&(¢) - 2(1).
c))Zf()#O then z(t) # 0 and Z(t) # 0.

t reqular points Z(t) # 0 the curvature of the curve z(t) is

(2(t) - (1)) () — (2(t) - 2(6) 7 (2(t) - £(1)) 2(2)-

Proof: Differentiating £(t) - 2(¢) = 1 and using £(t) - 2(t) = 0 we
obtain (a). Differentiating £(t) - z(t) = 0 and (a) we obtain (b).
Assume that (¢ ) # 0. Since £(t) and £(t) are orthogonal and £(t) -

z(t) = 0, we have £(t) - z(t) # 0. Hence (c) follows from (b).
Finally, differentiating twice the vector z(t) with respect to the arc-

length / |2(t)| dt we obtain (d).
|

The critical points of the phase £(t) - (y(s) — ) are the solutions of
the system

Comparing &(t)-z(t) = 0 with £(¢)- (y(s) —z) = 0 we deduce that at a
critical point y(s) — z is proportional to z(t). Comparing &(¢) - 2(t) = 0
with £(t) - y(s) = 0 we deduce that Z(¢) is proportional to ¢(s), and
since |§(s)| = 1 the constant of proportionality is v = =+ |2(¢)|. This
proves first part of the theorem.

Letting v = —p~" (2(t) - 2(t)) ™" (2(t) - 2(t)), we can write the curva-
ture of x + pz(t) as p='v=22(t) + v2(¢). If in the Hessian determinant
of £(t) - (y(t) — x) we replace y(s) with 2+ pz(t) and y(t) with v12(s),
using the lemma we obtain
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Now observe that since £(t) - z(t) = 0, we have £(t) - z(t) # 0. Since
at a critical point £(t) - y(s) = 0, &£(t) is parallel to §j(s). Since g(s)
is parallel to Z(t), also §j(s) is parallel to p~'v=2%(t) + vz(t). Hence
the Hessian determinant is zero if an only if the curvatures of the two
curves y(s) and z + pz(t) are equal, §(s) = u v 22(t) + v2(¢).

|

We conclude with some remarks.

REMARK 1: In our theorems we assumed 0B smooth, but sim-
ilar results should hold when 0B is only piecewise smooth. We also
assumed A star-shaped, however in the proofs the sets A and B — x
enter symmetrically, hence it is possible to move the hypotheses from
one set to the other.

REMARK 2: The proof of Theorem 1 in the case x € 0B is
essentially a result on the boundedness of the Hilbert transform along
a dilated of 0B. We point out that there is no contradiction between
our result and the counterexample in [7, p. 742], where a suitable
Hilbert transform is shown to be unbounded.

REMARK 3: It is natural to conjecture that Theorem 2 has an n-
dimensional extension. Indeed, as in the proof of Theorem 1, a double
application of the divergence theorem gives
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Sxf(x) — f(z)

w3 [ [ P esnrine (o - y)ayie

wxt [ [ Gy experig - (o - y)dyde
0A 0B

The point (§,y,z) varies in 0A x 9B x R*. If for a given = the
phase (¢,y) — £ - (y — x) has only non degenerate critical points, then
the 2n — 2-dimensional oscillatory integral over 0A x 0B gives a decay
A" 1 and |Syf(z) — f(z)] < eA™'. Now observe that the manifold
0Ax 0B xR" has dimension 3n—2 and the phase (§,y) — 2miA¢-(x—y)
as degenerate critical points if 2n — 1 equations are satisfied. This
suggests that the set of x with degenerate phase has at most dimension
n — 1.
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