Combinatorial methods or integer tiling

Itay Londner
Weizmann institute of science

joint with Izabella Laba (UBC)

Combinatorics Seminar - University of Rochester

September 2021
Tiling the integers: an introduction
Tiling the integers with a finite set

Let $A \subset \mathbb{Z}$ be a finite set. We say that A tiles \mathbb{Z} by translations if \mathbb{Z} can be covered by a union of disjoint translates of A. (There is an infinite set $T \subset \mathbb{Z}$ such that every $x \in \mathbb{Z}$ can be uniquely represented as $x = a + t$, with $a \in A$, $t \in T$.)
Let $A \subset \mathbb{Z}$ be a finite set. We say that A tiles \mathbb{Z} by translations if \mathbb{Z} can be covered by a union of disjoint translates of A. (There is an infinite set $T \subset \mathbb{Z}$ such that every $x \in \mathbb{Z}$ can be uniquely represented as $x = a + t$, with $a \in A$, $t \in T$.)

$A = \{0, 2\}$ and $A = \{0, 4, 8\}$ tile \mathbb{Z}; $A = \{0, 1, 3\}$ does not.

How to determine whether a given A tiles the integers?
Newman (1977): all tilings of \(\mathbb{Z} \) by a finite set \(A \) are periodic, with period \(M \).

Tijdeman (1993) + Coven-Meyerowitz (1998): if \(A \) tiles the integers, then it also tiles a finite cyclic group \(\mathbb{Z}_M \), where \(M \) has the same prime factors as \(|A| \).

This reduces the problem to the study of tilings of finite cyclic groups \(\mathbb{Z}_M = \{0, 1, \ldots, M - 1\} \), with addition mod \(M \).

Notation:

\[
A \oplus B = \mathbb{Z}_M.
\]
Further reductions

We measure distances between elements in \mathbb{Z}_M in terms of the GCD with M. In particular

$$\text{Div}(A) := \{(a - a', M) : a, a' \in A\}$$
Further reductions

We measure distances between elements in \mathbb{Z}_M in terms of the GCD with M. In particular

$$\text{Div}(A) := \{(a - a', M) : a, a' \in A\}$$

Sands (1979): let $A, B \subset \mathbb{Z}_M$. Then $A \oplus B = \mathbb{Z}_M$ if and only if $|A||B| = M$ and

$$\text{Div}(A) \cap \text{Div}(B) = \{M\}.$$
Suppose that $A \oplus B = \mathbb{Z}_M$, with $M = \prod_{i=1}^{K} p_i^{n_i}$, p_i distinct primes, $n_i \geq 1$. By the Chinese Remainder Theorem, we have

$$\mathbb{Z}_M = \mathbb{Z}_{p_1^{n_1}} \oplus \cdots \oplus \mathbb{Z}_{p_K^{n_K}},$$

which we can represent geometrically as a K-dimensional lattice. Then $A \oplus B$ can be interpreted as a (modular) tiling of that lattice.
\[\mathbb{Z}_M = \mathbb{Z}_{p_i^2} \oplus \mathbb{Z}_{p_j^2}, \quad M = p_i^2 p_j^2 \]
Geometric representation of sets

\[\mathbb{Z}_M = \mathbb{Z}_{p_i^2} \oplus \mathbb{Z}_{p_j^2}, \quad M = p_i^2 p_j^2 \]

\[\{ x \in \mathbb{Z}_M : p_i^2 \mid x - a \} = a + p_i^2 \mathbb{Z}_M \]
Geometric representation of sets

\[\mathbb{Z}_M = \mathbb{Z}_{p_i^2} \oplus \mathbb{Z}_{p_j^2}, M = p_i^2 p_j^2 \]

\[\{ x \in \mathbb{Z}_M : p_i \mid x - a \} = a + p_i \mathbb{Z}_M \]
Geometric representation of sets

\[\mathbb{Z}_M = \mathbb{Z}_{p_i^{n_i}} \oplus \mathbb{Z}_{p_j^{n_j}} \oplus \mathbb{Z}_{p_k^{n_k}}, M = p_i^{n_i} p_j^{n_j} p_k^{n_k} \]

\[\{x \in \mathbb{Z}_M : p_j^{n_j} p_k^{n_k} |x - a\} = a + M/p_i^{n_i} \mathbb{Z}_M \]

\[\{x \in \mathbb{Z}_M : p_i^{n_i} p_k^{n_k} |x - a\} = a + M/p_j^{n_j} \mathbb{Z}_M \]

\[\{x \in \mathbb{Z}_M : p_k^{n_k} |x - a\} = a + M/p_i^{n_i} p_j^{n_j} \mathbb{Z}_M \]
Geometric representation of sets

\[\{0, M/p_i, 2M/p_i, \ldots, (p_i - 1)M/p_i\} \]

\[\{x \in \mathbb{Z}_M : M/p_ip_j|x\} \]
Examples of tilings
Examples of tilings
The Coven-Meyerowitz tiling conditions
By translational invariance, we may assume that $A, B \subset \{0, 1, \ldots \}$ and that $0 \in A \cap B$. The characteristic polynomials (aka mask polynomials) of A and B are

$$A(X) = \sum_{a \in A} X^a, \quad B(X) = \sum_{b \in B} X^b.$$

Then $A \oplus B = \mathbb{Z}_M$ is equivalent to

$$A(X)B(X) = 1 + X + \cdots + X^{M-1} \mod (X^M - 1).$$
Recall the s-th cyclotomic polynomial is the unique monic, irreducible polynomial $\Phi_s(X)$ whose roots are the primitive s-th roots of unity.

Then the tiling condition $A(X)B(X) = 1 + X + \cdots + X^{M-1} \mod (X^M - 1)$ is equivalent to

$$|A||B| = M \text{ and } \Phi_s(X) \mid A(X)B(X) \text{ for all } s \mid M, \ s \neq 1.$$

Since Φ_s are irreducible, each $\Phi_s(X)$ with $s \mid M, \ s \neq 1$, must divide at least one of $A(X)$ and $B(X)$.

Cyclotomic polynomials
Let \(S_A = \{ p^\alpha : \Phi_{p^\alpha}(X)|A(X) \} \). Consider the following conditions.

\((T1)\) \(A(1) = \prod_{s \in S_A} \Phi_s(1) \),

\((T2)\) if \(s_1, \ldots, s_k \in S_A \) are powers of different primes, then \(\Phi_{s_1 \ldots s_k}(X) \) divides \(A(X) \).

Then:

- if \(A \) satisfies \((T1)\), \((T2)\), then \(A \) tiles \(\mathbb{Z} \);
- if \(A \) tiles \(\mathbb{Z} \) then \((T1)\) holds;
- if \(A \) tiles \(\mathbb{Z} \) and \(|A| \) has at most two prime factors, then \((T2)\) holds.
Cyclotomic polynomials and distribution

Divisibility by prime power cyclotomic polynomials $\Phi_{p_i^\alpha}$ can be interpreted in terms of distribution of the elements of A:

- $\Phi_{p_i} | A \iff A$ is equidistributed mod p_i,
- $\Phi_{p_i^{n_i}} | A \iff A$ is equidistributed mod $p_i^{n_i}$ within residue classes mod $p_i^{n_i-1}$.

$M/p_i \\{ a_0 \in A \}$

$M/p_i \\{ a_1, a_2, \ldots, a_{p_i-1} \in A \}$

$p_i^{n_i-1} \parallel a_\nu - a_{\nu'}$
Assume $M = \prod_i p_i^{n_i}$ and let $M_i = M/p_i^{n_i}$. Given $1 \leq \alpha \leq n_i$, we define

$$F_{i,\alpha} = \{0, M_ip_i^{\alpha-1}, 2M_ip_i^{\alpha-1}, \ldots, (p_i - 1)M_ip_i^{\alpha-1}\}$$
Assume $M = \prod_i p_i^{n_i}$ and let $M_i = M/p_i^{n_i}$. Given $1 \leq \alpha \leq n_i$, we define

$$F_{i,\alpha} = \{0, M_ip_i^{\alpha-1}, 2M_ip_i^{\alpha-1}, \ldots, (p_i - 1)M_ip_i^{\alpha-1}\}$$

$$F_{i,\alpha}(X) = \prod_{d|M_i} \Phi_{dp_i^\alpha}(X)$$
Reformulation of T2

Assume $A \oplus B = \mathbb{Z}_M$ and define

$$B^b(X) := \prod_i \prod_{\alpha : p_i^\alpha \in S_B} F_{i,\alpha}(X)$$
Reformulation of T2

Assume $A \oplus B = \mathbb{Z}_M$ and define
\[B^b(X) := \prod_i \prod_{\alpha : p_i^\alpha \in S_B} F_{i,\alpha}(X) \]

Note that
- for $m \mid M \Phi_m \nmid B^b$ if and only if
 \[m = \prod_{i \in I \subseteq \{1, \ldots, K\}} p_i^{\beta_i} \text{ and } \Phi_{p_i^{\beta_i}} \mid A \text{ for all } i (p_i^{\beta_i} \in S_A) \]
- since $S_A \cup S_B = \{ p^\alpha : p^\alpha \mid M \}$ and disjoint, B^b is uniquely determined by A.
Reformulation of T2

Assume $A \oplus B = \mathbb{Z}_M$ and define

$$B^b(X) := \prod_i \prod_{\alpha: p_i^\alpha \in S_B} F_{i,\alpha}(X)$$

Note that

- for $m | M$ $\Phi_m \nmid B^b$ if and only if
 $$m = \prod_{i \in I \subseteq \{1, \ldots, K\}} p_i^{\beta_i}$$
 and $\Phi_{p_i^{\{i}}} | A$ for all i ($p_i^{\beta_i} \in S_A$)

- since $S_A \cup S_B = \{p^\alpha : p^\alpha | M\}$ and disjoint, B^b is uniquely determined by A.

Then

A satisfies T2 if and only if A is a maximal set satisfying

$$\#(A' \cap B^b) = 1$$

for all A'-translation of A.
Reformulation of T2

Example:

Suppose that $M = p_i^2 p_j^2 p_k^2$ and $A \subset \mathbb{Z}_M, |A| = p_i p_j p_k$ is uniformly distributed modulo p_i, p_j and p_k. Then

The following are equivalent

- A satisfies T2
- any translation of A intersects $p_i p_j p_k \mathbb{Z}_M$ at exactly one point
- A is uniformly distributed modulo $p_i p_j p_k$.
Standard T2 sets

\[A = A^b, \ B = B^b \]
Main result
Theorem. Suppose that $A \oplus B = \mathbb{Z}_M$, with $M = p_i^2 p_j^2 p_k^2$. Then A and B satisfy T2.
Theorem. Suppose that $A \oplus B = \mathbb{Z}_M$, with $M = p_i^2p_j^2p_k^2$. Then A and B satisfy T2.

Additionally:

- The proof essentially provides a classification of all tilings of period $M = p_i^2p_j^2p_k^2$. (It does not get much more complicated than Szabó-type examples.)
- Methods and some intermediate results extend to more general M.
Cuboids and cyclotomic divisibility

Particular case: Let $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$. An M-cuboid is a weighed set with the mask polynomial

$$\Delta(X) = X^a \prod_i (1 - X^{d_i M/p_i}) \mod (X^M - 1)$$

where $a \in \mathbb{Z}_M$ and $(d_i, p_i) = 1$.

$$M/p_i \{ \bullet \ -1 \text{ weighted} \ \bullet \ +1 \text{ weighted} \}$$
Cuboids and cyclotomic divisibility

Particular case: Let $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$. An M-cuboid is a weighed set with the mask polynomial

$$\Delta(X) = X^a \prod_i (1 - X^{d_i M/p_i}) \mod (X^M - 1)$$

where $a \in \mathbb{Z}_M$ and $(d_i, p_i) = 1$.

- For $A \subset \mathbb{Z}_M$ we have
 $$\Phi_M|A \iff \text{for every } \Delta, A|\Delta \text{ sums up to } 0$$
Let $M = \prod_i p_i^{n_i}$. An M-fiber in the p_i direction is a set

$$\{a, a + M/p_i, a + 2M/p_i, \ldots, a + (p_i - 1)M/p_i\} \subset \mathbb{Z}_M.$$

- A set $A \subset \mathbb{Z}_M$ is M fibered in the p_i direction if it is a union of disjoint M fibers in that direction.
Application: structure on grids

The cyclotomic Φ_M determines the structures of sets on $\Lambda(x, D(M))$ grids, where $D(M) = M/\prod_i p_i$ and

$$\Lambda(x, D(M)) := \{y \in \mathbb{Z}_M : D(M)|x - y\}.$$
Application: structure on grids

The cyclotomic Φ_M determines the structures of sets on $\Lambda(x, D(M))$ grids, where $D(M) = M/\prod_i p_i$ and

$$\Lambda(x, D(M)) := \{y \in \mathbb{Z}_M : D(M)|x - y\}.$$

We prove the following basic structure lemma:
Let $A \subset \mathbb{Z}_M$, $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$
Application: structure on grids

The cyclotomic Φ_M determines the structures of sets on $\Lambda(x, D(M))$ grids, where $D(M) = M/\prod p_i$ and

$$\Lambda(x, D(M)) := \{ y \in \mathbb{Z}_M : D(M)|x - y \}.$$

We prove the following basic structure lemma:

Let $A \subset \mathbb{Z}_M$, $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$

Lemma

If $\Phi_M|A$ and $M/p_i \notin \text{Div}(A)$ for some $p_i \neq 2$. Then on every fixed grid $\Lambda(x, D(M))$, the set A is M fibered either in the p_j or the p_k direction.
Application: structure on grids

The cyclotomic Φ_M determines the structures of sets on $\Lambda(x, D(M))$ grids, where $D(M) = M/\prod_i p_i$ and

$$\Lambda(x, D(M)) := \{y \in \mathbb{Z}_M : D(M)|x - y\}.$$

We prove the following basic structure lemma:
Let $A \subset \mathbb{Z}_M$, $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$

Lemma

If $\Phi_M|A$ and $M/p_i \notin \text{Div}(A)$ for some $p_i \neq 2$. Then on every fixed grid $\Lambda(x, D(M))$, the set A is M fibered either in the p_j or the p_k direction.

- Note that this lemma does not require the tiling assumption.
- The lemma is not true when $p_i = 2$.
Application: structure on grids

Proof: Fix $a \in A$. We prove first that a has to belong to an M fiber in either the p_j or the p_k directions.
Proof: Fix $a \in A$. We prove first that a has to belong to an M fiber in either the p_j or the p_k directions.
Suppose this is not true and find $x_j, x_k \in \mathbb{Z}_M \setminus A$ with
\[(a - x_\nu, M) = M/p_\nu \text{ for } \nu = j, k.\]
Proof: Fix $a \in A$. We prove first that a has to belong to an M fiber in either the p_j or the p_k directions. Suppose this is not true and find $x_j, x_k \in \mathbb{Z}_M \setminus A$ with
\[(a - x_\nu, M) = M/p_\nu \text{ for } \nu = j, k.\]
Also, since $p_i \neq 2$ and M/p_i is not a difference in A, we may find $x_i, x'_i \in \mathbb{Z}_M \setminus A$ with
\[(a - x_i, M) = (a - x'_i, M) = (x_i - x'_i, M) = M/p_i.\]
Application: structure on grids
Application: structure on grids
Application: structure on grids
Application: structure on grids

\[M/p_i \]

\[M/p_j \]

\[M/p_k \]

\(x_k \)

\(x_i \)

\(x_j \)

\(x'_i \)

\(a \)
Application: structure on grids
We, therefore, conclude that every element in $A \cap \Lambda(a, D(M))$ is contained in an M fiber in either the p_j or p_k direction. If the choice of direction is uniform across all elements of $A \cap \Lambda(a, D(M))$ - we’re done. Otherwise
We, therefore, conclude that every element in $A \cap \Lambda(a, D(M))$ is contained in an M fiber in either the p_j or p_k direction. If the choice of direction is uniform across all elements of $A \cap \Lambda(a, D(M))$ - we’re done. Otherwise
Let $M = \prod_i p_i^{n_i}$ and define the slab

$$A_{p_i} = \{a \in A : 0 \leq a \mod p_i^{n_i} \leq p_i^{n_i-1} - 1\}$$
Let $M = \prod_i p_i^{n_i}$ and define the slab
\[A_{p_i} = \{ a \in A : 0 \leq a \mod p_i^{n_i} \leq p_i^{n_i-1} - 1 \} \]
Theorem (Łaba-L, 2021)

Let \(A \oplus B = \mathbb{Z}_M \), and \(\Phi_{p_i^{n_i}}|A \). The following are equivalent:

(i) For any translate of \(A' \) of \(A \) we have \(A'_p \oplus B = \mathbb{Z}_{M/p_i} \).

(ii) For every \(p_i^{n_i}|m|M \) we have

\[
m \in \text{Div}(A) \Rightarrow m/p_i \notin \text{Div}(B).
\]

Remarks:

• The case \(M = p_2^{2}p_3^{2}p_2^{2} \).

• Open problem: prove the conclusion of the theorem hold for arbitrary \(M \).

If true then tiling would imply T2, by induction.
Theorem (Łaba-L, 2021)

Let $A \oplus B = \mathbb{Z}_M$, and $\Phi p_i^n | A$. The following are equivalent:

(i) For any translate of A' of A we have $A'_p \oplus B = \mathbb{Z}_{M/p_i}$.

(ii) For every $p_i^n | m | M$ we have $m \in \text{Div}(A) \Rightarrow m/p_i \notin \text{Div}(B)$.

Remarks:

• The case $M = p_i^2 p_j^2 p_k^2$
Theorem (Łaba-L, 2021)

Let $A \oplus B = \mathbb{Z}_M$, and $\Phi_{p_i^n}|A$. The following are equivalent:

(i) For any translate of A' of A we have $A'_{p_i} \oplus B = \mathbb{Z}_{M/p_i}$.

(ii) For every $p_i^n|m|M$ we have

$$m \in \text{Div}(A) \Rightarrow m/p_i \notin \text{Div}(B).$$

Remarks:

- The case $M = p_i^2p_j^2p_k^2$
- Open problem: prove the conclusion of the theorem hold for arbitrary M.
 If true then tiling would imply T2, by induction.
Slab reduction - application

Suppose that every element of A belongs to an M-fiber in the p_i direction, i.e.

$$a + M/p_i, \ldots, a + (p_i - 1)M/p_i \in A$$

for all $a \in A$.

We claim that A satisfies the conditions of the slab reduction.
Suppose that every element of A belongs to an M-fiber in the p_i
direction, i.e.

$$a + M/p_i, \ldots, a + (p_i - 1)M/p_i \in A \text{ for all } a \in A.$$

We claim that A satisfies the conditions of the slab reduction.

- $(1 + X^{M/p_i} + \ldots + X^{(p_i - 1)M/p_i})|A$, in particular $\Phi_{p_i^{n_i}}|A$.

Suppose that every element of A belongs to an M-fiber in the p_i direction, i.e.

$$a + M/p_i, \ldots, a + (p_i - 1)M/p_i \in A$$

for all $a \in A$.

We claim that A satisfies the conditions of the slab reduction.

- $(1 + X^{M/p_i} + \ldots + X^{(p_i-1)M/p_i})|A$, in particular $\Phi_{p_i^{n_i}}|A$.
- A satisfies the condition: for every $p_i^{n_i}|m|M$

$$m \in Div(A) \iff m/p_i \in Div(A).$$
Slab reduction - application

\[(a - a'', M) = m/p_i\]

\[(a - a', M) = m, p_i^{n_i}|m\]
Let \(A \oplus B = \mathbb{Z}_M \) with \(M = p_i^{n_i} p_j^{n_j} p_k^{n_k} \).

Lemma

Assume that \(\Phi_M \) divides both \(A \) and \(B \). Then either \(A \) or \(B \) has to be \(M \)-fibered in some direction. Moreover, if \(n_i = n_j = n_k = 2 \) then \(A \) and \(B \) satisfy T2.
Let $A \oplus B = \mathbb{Z}_M$ with $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$.

Lemma

Assume that Φ_M divides both A and B. Then either A or B has to be M-fibered in some direction. Moreover, if $n_i = n_j = n_k = 2$ then A and B satisfy T2.

Proof.

- By PH principle, WLOG, $M/p_i, M/p_j \notin Div(A)$, and $\max\{p_i, p_j\} > 2$
Let $A \oplus B = \mathbb{Z}_M$ with $M = p_i^{n_i} p_j^{n_j} p_k^{n_k}$.

Lemma
Assume that Φ_M divides both A and B. Then either A or B has to be M-fibered in some direction. Moreover, if $n_i = n_j = n_k = 2$ then A and B satisfy T2.

Proof.

- By PH principle, WLOG, $M/p_i, M/p_j \notin \text{Div}(A)$, and $\max\{p_i, p_j\} > 2$
- Since $\Phi_M|A$, by structure lemma A must be M fibered in the p_k direction
Let $M = (p_ip_jp_k)^2$, $|A| = |B| = p_ip_jp_k$.

\[
\begin{array}{c}
\Phi_M|A \\
\Phi_M|B \\
\Phi_M \not| B
\end{array}
\]
Let $M = (p_ip_jp_k)^2$, $|A| = |B| = p_ip_jp_k$.

Structure of proof

$\Phi_M|A$

$\Phi_M|B$

$\Phi_M \not| B$

A, B satisfy T2
Let $M = (p_ip_jp_k)^2$, $|A| = |B| = p_ip_jp_k$.

A, B satisfy T2

A is fibered on every $M/p_ip_jp_k$-grid possibly in different directions

Split $A = \cup_i A(i)$ and go down one scale
Let $M = (p_ip_jp_k)^2$, $|A| = |B| = p_ip_jp_k$.

A, B satisfy $T2$

A is fibered on every $M/p_ip_jp_k$-grid possibly in different directions

There exists an $M/p_ip_jp_k$-grid Λ and $A \cap \Lambda$ has one of 4 possible structures

Split $A = \bigcup_i A(i)$ and go down one scale
Structure of proof

“Corner”

“Full Plane”

“Almost Corner”
Let $M = (p_ip_jp_k)^2$, $|A| = |B| = p_ip_jp_k$.

Structure of proof

- $\Phi_M|A$
- $\Phi_M|B$
- $\Phi_M \parallel B$

A, B satisfy T2

- A is fibered on every $M/p_ip_jp_k$-grid
 - possibly in different directions
 - Split $A = \cup_i A(i)$
 - and go down one scale
- There exists an $M/p_ip_jp_k$-grid Λ
 - and $A \cap \Lambda$ has one of 4 possible structures
 - Solve each of the structures
Thank you!