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Abstract. We consider planar curved strictly convex domains with
no or very weak smoothness assumptions and prove sharp bounds for
square-functions associated to the lattice point discrepancy.

1. Introduction

This paper is a sequel to [13] in which the authors proved bounds for
the mean square lattice point discrepancy for convex bodies with smooth
boundary in Rd. Here we reconsider the case d = 2 but admit now domains
with rough boundary.

Let Ω be a convex domain in R2 containing the origin in its interior. Let

NΩ(t) = card(tΩ ∩ Z2),

the number of integer lattice point inside the dilate tΩ. It is well known
that NΩ(t) is asymptotic to t2area(Ω) as t →∞ and we denote by

(1.1) EΩ(t) = NΩ(t)− t2area(Ω)

the error, or lattice rest. A trivial estimate for the lattice rest is EΩ(t) ≤ Ct
which holds for any convex set . For the case that the boundary is smooth
and has positive curvature everywhere this estimate has been significantly
improved. It is conjectured that in this case EΩ(t) = O(t1/2+ε) for any
ε > 0 but by the best result published at this time, due to Huxley [12], one
only knows that EΩ(t) = O(t46/73(log t)A) for suitable A (according to [21]
Huxley has improved the exponent 46/73 to 131/208).

On average however better estimates hold. We consider the mean-square
discrepancy of the lattice rest over the interval [R,R + h] where h ≤ R and
R is large; it is given by

(1.2) GΩ(R, h) =
(1

h

∫ R+h

R
|EΩ(t)|2dt

)1/2
.

Provided that the boundary is smooth (say C4) and the Gaussian cur-
vature never vanishes it has been shown by Nowak [20] that GΩ(R,R) =
O(R1/2); later Huxley [11] showed that GΩ(R, 1) = O(R1/2 log1/2 R). A
result which unifies both estimates is in the authors’ paper [13], namely
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GΩ(R, h) ≤ CR1/2 if log R ≤ h ≤ R. We note that Nowak [21] has inde-
pendently proved the same bound. Moreover he obtained asymptotics for
GΩ(R,H(R)) as R → ∞, provided that H(R)/ log R → ∞; see also earlier
asymptotics by Bleher [2] where essentially H(R) ≈ R.

The purpose of this paper is to prove versions of these estimates under
minimal (or no) smoothness assumptions on the boundary of the domain.
The main difficulty is that the oscillation of the Fourier transforms of den-
sities on the boundary cannot be used in a straightforward way as in [19],
[13], or [21], because of the lack of asymptotic expansions.

Our first result deals with domains for which the curvature is bounded
below with very weak regularity assumptions on the curvature. Here we
assume that Ω has C1 boundary, that the components of the tangent vec-
tors are absolutely continuous functions of the arclength parameter so that
the second derivatives of a regular parametrization are well defined as L1

functions on the boundary. The following theorem yields an analogue of
the above result with a slightly more restrictive assumption on these second
derivatives.

Theorem 1.1. Let Ω be a convex domain in R2 containing the origin in
its interior, and assume that Ω has C1 boundary and that the components
of the tangent vector are absolutely continuous functions. Suppose also that
curvature κ is bounded below, i.e. |κ(x)| ≥ a > 0 for almost every x ∈ ∂Ω
and that κ ∈ L log2+ε L(∂Ω), for some ε > 0. Then there is a constant CΩ

so that for all R ≥ 2

(1.3) GΩ(R, h) ≤ CΩR1/2 if log R ≤ h ≤ R.

Of course this result applies to all convex domains with C2 boundary and
nonvanishing curvature; but it also applies to rougher domains, the simplest
examples are {x : |x1|a1 + |x2|a2 ≤ 1} when 1 < a1, a2 ≤ 2. Moreover if D is
a convex domain with smooth finite type boundary, containing the origin,
then the polar set Ω = D∗ = {x : supξ∈D〈x, ξ〉 ≤ 1} satisfies the assumptions
of Theorem 1.1. For these examples the second derivatives belong to Lp(∂Ω)
for some p > 1 (cf. the calculations in the proof of Lemma 5.1 in [13]).

An immediate consequence of (1.3) is Huxley’s bound ([11]) who proved
that GΩ(R, 1) = O(

√
R log R) under the assumption that Ω has C4 boundary

and the curvature is bounded below. We shall see (cf. Theorem 1.3 below)
that it is possible to prove this estimate for convex domains in which even
the weak regularity assumption of Theorem 1.1 is removed. Moreover in
this case we shall prove (cf. Theorem 1.2 below) that the optimal bound
GΩ(R, h) = O(R1/2) holds in the more restricted range of h’s R1/2 ≤ h ≤ R.

In this rough case the assumption of the curvature bounded below has to
be reformulated (as now we are not actually assuming that the curvature is
a well defined function). Let ρ∗ be the Minkowski functional of the polar
set Ω∗, i.e.

(1.4) ρ∗(ξ) = sup{〈x, ξ〉 : x ∈ Ω}
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so that Ω∗ = {ξ : ρ∗(ξ) ≤ 1}. For θ ∈ S1 and δ > 0 consider the arc (or
“cap”)

(1.5) C(θ, δ) ≡ CΩ(θ, δ) = {x ∈ ∂Ω : 〈x, θ〉 = ρ∗(θ)− δ}.
Let

(1.6) µ(θ, δ) = diam(C(θ, δ)).
We note that if dσ is the arclength measure on ∂Ω then

∑
± µ(±θ, δ) controls

the size of the Fourier transform d̂σ(±θ/δ), see [5] and also [4]. If the
curvature is absolutely continuous and bounded below then it is easy to see
that µ(θ, δ) = O(

√
δ) uniformly in θ ∈ S1, and in the general case we shall

simply assume the validity of this inequality; see §10 for the equivalence with
other natural definitions of bounded below curvature for rough domains.

Theorem 1.2. Let Ω be a convex domain in R2 containing the origin in its
interior. Suppose that

(1.7) sup
θ∈S1

sup
δ>0

δ−1/2µ(θ, δ) < ∞.

Then for R ≥ 2,

(1.8) GΩ(R, h) ≤ CΩ,εR
1/2 if R1/2 ≤ h ≤ R.

If we admit an additional factor of
√

log R the range of h can be vastly
improved to obtain a version of Huxley’s theorem ([11]) for rough domains
with nonzero curvature (which is much more elementary than Theorem 1.2).

Theorem 1.3. Let Ω be as in Theorem 1.2 (satisfying (1.7)). Then for
R ≥ 2

(1.9) GΩ(R, h) ≤ CΩ(R log R)1/2 if 1 ≤ h ≤ R.

Remark. An examination of the proof of Theorem 1.3 shows that the con-
stants depend only on the bound in (1.7) and the radii of inscribed and
circumscribed circles centered at the origin. This uniform version of in-
equality (1.9) as well as the statement of Theorem 1.1 is close to sharp as
one can show that they fail for h ≤ (log R)−1. To see this one uses Jarńık’s
curve ([14]) to produce a sequence Rj → ∞ and domains Ωj , so that the
maximal inscribed and minimal circumscribed radii of Ωj are bounded above
and below, the curvature on the boundary is bounded above and below and
EΩ(Rj) ≥ R

2/3
j ([14], [16]). By Huxley’s mean-max inequality ([12], p. 136)(1

δ

∫ Rj+δ

Rj−δ
EΩj (s)

2ds
)1/2

≥ EΩj (Rj)/2

which holds under the assumptions that |EΩj (Rj)| ≥ 5(area(Ωj))δRj and

0 < δ ≤ Rj/2. We apply this for δ ≈ R
−1/3
j ≤ h to see that under the

assumption of GΩj (Rj , h) . (Rj log Rj)1/2 we have

R
2/3
j . EΩj (Rj) . R

1/6
j h1/2GΩj (Rj , h) . R

2/3
j (h log Rj)1/2.
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thus h & (log Rj)−1. Cf. also Plagne [23] for the construction of a single
strictly convex curve C and a sequence Rj so that RjC contains R

2/3
j w(Rj)

lattice points, with w(R) converging to zero at a slow rate.
It is certainly conceivable that the result of Theorem 1.2 may hold for

some h � R1/2. However this could not be established by simple extensions
of our method, see the discussion below and in §9.

Finally, if we consider arbitrary convex domains (dropping the curvature
assumptions on the boundary) then the estimate (1.9) may fail as does
the classical estimate EΩ(t) = O(t2/3) (cf. [25]). However for almost all
rotations A ∈ SO(2) it is still true that EAΩ(t) = O(t2/3 log1/2+ε t), see [3].
In fact for domains with smooth finite type boundary one has the better
estimate EAΩ(t) = O(t2/3−δ), for almost all rotations, for some δ > 0,
see Nowak’s article [20]. Likewise for such domains it is proved in [13]
that for almost all rotations A we have GAΩ(R, h) . R1/2 for all R ≥ 2,
log R ≤ h ≤ R. For arbitrary convex domains we can prove an analogous
result but lose an additional power of a logarithm.

Theorem 1.4. Let Ω be a convex domain in R2 containing the origin in its
interior. For ϑ ∈ [−π, π] denote by Aϑ the rotation by the angle ϑ and by
AϑΩ the rotated domain {Aϑx : x ∈ Ω}. Then for ε > 0, R ≥ 2,

(1.10) GAϑΩ(R, h) ≤ Cε,Ω(ϑ)R1/2(log R)1+ε if 1 ≤ h ≤ R

where Cε,Ω(ϑ) < ∞ for almost all ϑ ∈ [−π, π]; in fact the function Cε,Ω

belongs to the weak type space L2,∞.

Structure of the paper: The first part of the proofs is identical for Theo-
rems 1.1–1.4. One uses essentially a “T ∗T -argument” to reduce to a weighted
estimate for lattice points in thin annuli formed by dilations of the polar do-
main. This argument is straightforward in the smooth case ([13], [21]) but
there are considerable technical complications in the rough case. The rel-
evant estimates are given in §2. One is led to the estimation of quantities
such as

(1.11) K(R, h) =
∑

(k,`)∈Z2×Z2

|k|,|`|≤R

|ρ∗(k)−ρ∗(`)|≤h−1

|k|−2µ( k
|k| ,

1
|k|R) µ( `

|`| ,
1
|`|R)

when h � 1, and some variants with tails. §3 contains further discussion
of these quantities in the case of curvature bounded below and the main
technical propositions needed for the proofs of Theorems 1.1, 1.2, 1.3.

The estimation of (1.11) needed for Theorems 1.3 and 1.4 is rather straight-
forward. For Theorem 1.3 one uses the bound µ(θ, δ) = O(δ1/2) in conjunc-
tion with the trivial bound EΩ∗(t) = O(t). For Theorem 1.4 one argues
similarly but uses an averaged estimate for the size of caps for the rotated
domains. The proofs are contained in §3 and §4. The mild regularity as-
sumption in Theorem 1.1 can be used to improve on the trivial bound for
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E∗
Ω(t). This leads to boundedness of K(R, h) for h ≥ log R and then in this

range to the optimal bound (1.3); the argument is carried out in §5.
The main technical estimate needed for the proof of Theorem 1.2 is stated

as Proposition 3.3. Here we need to efficiently estimate a weighted version
of the lattice point discrepancy for Ω∗, and we shall use a more geometrical
approach for which we need the assumption h ≥ R1/2. The proof is carried
out in §6-§8.

We do not know whether in the generality of Theorem 1.2 the assumption
h ≥ R1/2 is really necessary. In §9 we construct some examples of sets with
rough boundary (and curvature bounded below) which show that at least for
the estimation of K(R, h) the condition h ≥ R1/2 is necessary (which only
shows the sharpness of the method). In §10 we shall discuss several notions
of “curvature bounded below” for rough convex domains in the plane.

Finally we shall discuss in an appendix §11 a connection between mean
discrepancy results and generalized distance sets for integer point lattices.
Here our previous results in [13] yield a new result in three and higher
dimensions.

Notation: Given two quantities A, B we write A . B if there is an
absolute positive constant, depending only on the specific domain Ω, so
that A ≤ CB. We write A ≈ B if A . B and B . A.

2. The first step

Our purpose here is to show an estimate involving the quantities µ(θ, δ),
which holds without any regularity or curvature assumptions on the bound-
ary of the convex domain.

However we shall first make the a priori

Assumption: The boundary of Ω is a C1 curve and the components of the
outer unit normal vectors are absolutely continous.

This means we assume that the curvature is integrable. Below we shall
remove this a priori assumption by a limiting argument.

We now begin with a standard procedure using mollifiers to regularize
the characteristic function of Ω. Suppose that r1 < 1 < r2 and r1, r2 are the
radii of inscribed and circumscribed circles centered at the origin. Let ζ be
a smooth nonnegative radial cutoff function supported in the ball Br1/2(0)
so that

∫
ζ(x)dx = 1 and let ζε(x) = ε−2ζ(x/ε). Let

(2.1) Nε(t) =
∑
k∈Z2

χtΩ ∗ ζε(k)

and

Eε(t) =
∑
k∈Z2

χtΩ ∗ ζε(k)− t2area(Ω).(2.2)
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It suffices to estimate the modified square-function

(2.3) G(R, h) =
(1

h

∫ R+h

R
|E1/R(t)|2dt

)1/2

since there is the elementary estimate (with E ≡ EΩ)

(2.4)
(1

h

∫ R+h

R
|E(t)|2dt

)1/2
≤ G(R, h) + C(R/h)1/2,

valid for R−1 ≤ h ≤ R; see Lemma (2.2) of [13].

Basic decompositions. Fix a nonnegative η0 ∈ C∞(R) so that η0(t) = 1
for t ∈ [0, 1] and η0 is supported in (−1/2, 3/2) and let

(2.5) ηR,h(t) =
1√
h

η0(
t−R

h
).

Then

(2.6)
1
h

∫ R+h

R
|E1/R(t)|2dt .

∫
|E1/R(t)ηR,h(t)|2dt.

By the Poisson summation formula

E1/R(t) =
∑
k 6=0

(2πt)2χ̂Ω(2πtk)ζ̂(2πk/R)(2.7)

=
∑

0<|k|≤R2

(2πt)2χ̂Ω(2πtk)ζ̂(2πk/R) + O(R−10)

since always |χ̂Ω(2πtk)| . |tk|−1 and |ζ̂(2πk/R)| ≤ CN (1 + |k|/R)−N .
As in [9] and elsewhere we have by the divergence theorem χ̂Ω(ξ) =

−i
∑2

i=1(ξi/|ξ|2)n̂idσ(ξ) where n denotes the unit outer normal vector. We
may assume that the boundary of Ω is parametrized by α 7→ x(α) where
x′(α) is a unit vector and x(α) = x(α + L) if L is the length of ∂Ω.

Then n(α) = −x′⊥(α) where x⊥(α) = (x2(α),−x1(α)) and

(2.8) χ̂Ω(ξ) = −i

∫ L

0

〈ξ, x′⊥(α)〉
|ξ|2

e−i〈x(α),ξ〉dα.

Assuming that R/2 ≤ t ≤ 2R we shall now introduce a finer microlocal
decomposition of χ̂Ω(2πtk), depending on k and R and based on (2.8). This
is somewhat inspired by [5], [18] and in particular by [27] where a related
construction is used.

Suppose that β0 is an even function which is supported in (−3/4, 3/4)
and which is equal to one in [−1/2, 1/2]. Let β(s) = β0(s/2) − β0(s) and
let, for n ≥ 1, βn(s) = β(2−n(s)). Let
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Ψ(k, α) =
〈k, x′⊥(α)〉

|k|2
(
1− β0

(
2r−1

1 (〈 k
|k| , x(α)〉 − ρ∗( k

|k|))
)

− β0

(
2r−1

1 (〈−k
|k| , x(α)〉 − ρ∗(−k

|k| ))
))

and

Φ±
n (k, α) =

〈k, x′⊥(α)〉
|k|2

× βn

(
R(〈±k, x(α)〉 − ρ∗(±k)

)
β0

(
2r−1

1 (〈±k
|k| , x(α)〉 − ρ∗(±k

|k| ))
)
.

The cutoff function Φ+
n (k, ·) localizes to those points P on the boundary

for which the distance of P to the supporting line {x : 〈k, x〉 = ρ∗(k)} is small
and ≈ 2n(R|k|)−1 (or . (R|k|)−1 if n = 0). Also Φ−

n (k, ·) gives a localization
in terms of the distance to the supporting line {x : 〈−k, x〉 = ρ∗(−k)}. The
factors β0(2r−1

1 (〈±k
|k| , x(α)〉−ρ∗(±k

|k| ))) are included in this definition to make
sure that the supports of Φ+

n and Φ−
n are disjoint.

Note that

Ψ(k, α) +
∞∑

n=0

Φ+
n (k, α) +

∞∑
n=0

Φ−
n (k, α) =

〈k, x′⊥(α)〉
|k|2

and also that Φ±
n (k, α) = 0 if 2n ≥ |k|R.

Define (for fixed R and h)

I±n (k, t) = 2πt ηR,h(t)
∫

Φ±
n (k, α)e−2πi〈x(α),tk〉dα(2.9)

II(k, t) = 2πt ηR,h(t)
∫

Ψ(k, α)e−2πi〈x(α),tk〉dα(2.10)

and

I±n (t) =
∑

2n

R
<|k|≤R2

ζ̂(2πk/R)I±n (k, t)(2.11)

II(t) =
∑
k 6=0

ζ̂(2πk/R)II(k, t),(2.12)

and set

(2.13) G±
n (R, h) =

( ∫
|I±n (t)|2dt

)1/2
.

Using the decay of ζ̂ we see that

(2.14) G(R, h) ≤
∑
±

∞∑
n=1

G±
n (R, h) +

( ∫
|II(t)|2dt

)1/2
+ CR−10.
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Pointwise bounds via van der Corput’s lemma. We start with a
simple pointwise estimate for the pieces In

± and II which just relies on van
der Corput’s lemma for oscillatory integrals (see [28], p. 334). We set

(2.15) ωR(ξ) = (1 + |ξ|/R)−N

Lemma 2.1. For n ≥ 0 we have

I±n (t) ≤ C2−nR|ηR,h(t)|
∑

|k|>2n/R

ωR(k)|k|−1µ( k
|k| ,

2n

|k|R)

and
II(t) ≤ C|ηR,h(t)| log R.

Let

(2.16) Γ±n (R, h) := R
∑

|k|>2n/R

ωR(k)|k|−1µ( k
|k| ,

2n

|k|R).

Then

(2.17) G±
n (R, h) ≤ CΓ±n (R, h);

moreover

(2.18)
( ∫

|II(t)|2dt
)1/2

≤ C log R.

Proof. We write down the argument for I+
n as the estimate for I−n is anal-

ogous. The estimate for n = 0 is immediate if we observe that length of the
support of Φ+

0 (k, ·) is ≤ µ(k/|k|, (|k|R)−1).
Fix θ ∈ S1 and choose αθ so that 〈θ, x(αθ)〉 = ρ∗(θ) and thus also n(αθ) =

θ. We first observe that if 〈θ, x(α)〉 − ρ∗(θ) > δ then tan ]
(
n(α), n(αθ)

)
≥

δ/µ(θ, δ).
We use this with δ = 2n(|k|R)−1 to get a lower bound for the derivative

of the phase function in the support of Φ∗
n(k, ·). This implies that for t ∈

supp ηR,h

(2.19) |〈x′(α), tk〉| ≥ 2n
(
µ( k

|k| ,
2n

|k|R)
)−1 if α ∈ supp Φ∗

n(k, ·).

and this derivative is monotone in α. Moreover

‖Φ+
n (k, ·)‖∞ + ‖∂αΦ+

n (k, ·)‖1 . |k|−1;

here we use our a priori assumption on the integrability of the second deriva-
tives of γ.

Consequently, by van der Corput’s lemma, we obtain

|I+
n (k, t)| . t|ηR,h(t)|ωR(k)|k|−1|2−nµ( k

|k| ,
2n

|k|R)

which yields the asserted bound for I+
n (t).

Similarly, |∂α〈tk, x(α)〉| ≥ c|k|R if α ∈ supp Ψ(k, ·) and ‖Ψ(k, ·)‖∞ and
‖∂αΨ(k, ·)‖1 are O(|k|−1). Thus

|II(k, t)| . |ηR,h(t)||k|−2(1 + |k|/R)−NωR(k)
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and summing in k yields the asserted bound for II(t). The bounds for the
square functions are immediate from the pointwise estimates. �

Square function estimates. We shall need to improve on the pointwise
estimates for G±

n (R, h) in Lemma 2.1 which will only be useful for 2n ≥ R.
We apply Plancherel’s theorem with respect to the t-variable and obtain

G±
n (R, h)2 = 2π

∫
|Î±n (λ)|2dλ

= 2π
∑

2n

R
<|k|≤R2

∑
2n

R
<|`|≤R2

ζ̂(2πk/R)ζ̂(2π`/R)
∫

Î±n (k, λ)Î±n (`, λ)dλ

where

(2.20) Î±n (k, λ) = 2π

∫∫
t ηR,h(t)Φ±

n (k, α)e−it(λ+〈x(α),2πk〉)dαdt.

The crucial estimate is

Lemma 2.2. Suppose that k ∈ Z2 and |k| > 2n/R. Then the following
inequalities hold.

If 2n ≤ R/h then
(2.21)∣∣Î+

n (k, λ)
∣∣ . Rh1/2|k|−12−nµ( k

|k| ,
2n

|k|R)(1 + h|λ + ρ∗(2πk)|)−2N

∣∣Î−n (k, λ)
∣∣ . Rh1/2|k|−12−nµ(− k

|k| ,
2n

|k|R)(1 + h|λ− ρ∗(−2πk)|)−2N

and if 2n ≥ R/h, then
(2.22)∣∣Î+

n (k, λ)
∣∣ . Rh1/2|k|−12−nµ( k

|k| ,
2n

|k|R)(1 + R2−n|λ + ρ∗(2πk)|)−2N

∣∣Î−n (k, λ)
∣∣ . Rh1/2|k|−12−nµ(− k

|k| ,
2n

|k|R)(1 + R2−n|λ− ρ∗(−2πk)|)−2N

.

Proof. We prove the estimate for I+
n (k, λ); the estimate for I−n (k, λ) is

analogous.
We first consider the case n = 0. Interchange the order of integration

in (2.20) and perform 2N integrations by parts with respect to t. This,
together with the estimates Φ+

0 (k, α) = O(|k|−1), ηR,h(t) = O(h−1/2) yields

|Î+
n (k, λ)| . R|h|−1/2|k|−1

∫∫
t∈supp ηR,h

α∈supp Φ+
0 (k,·)

(1 + h|λ + 〈x(α), 2πk〉|)−2Ndtdα.

By definition we have |〈x(α), k〉−ρ∗(k)| . R−1 for α ∈ supp Φ+
0 (k, ·). Since

R ≥ h this implies

(2.23) (1 + h|λ + 〈x(α), 2πk〉|) ≈ (1 + h|λ + ρ∗(2πk)|).
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Also observe that the length of the support of ηR,h is O(h) and that the
length of the support of Φ+

0 (k, ·) is ≤ µ(k/|k|, (|k|R)−1). Thus

|Î+
0 (k, λ)| . R|h|−1/2|k|−1

∫∫
t∈supp ηR,h

α∈supp Φ+
0 (k,·)

(1 + h|λ + ρ∗(2πk)|)−2Ndtdα

. R|h|1/2|k|−1µ( k
|k| ,

1
|k|R)(1 + h|λ + ρ∗(2πk)|)−2N

which is the asserted estimate for n = 0.
We now suppose that n ≥ 1, and begin by performing an integration

by parts with respect to α in (2.20). Observe that 〈x′(α), k〉 6= 0 if α ∈
supp Φ+

n (k, ·). We obtain

I+
n (k, λ) = Fn,1(k, λ) + Fn,2(k, λ)

where

(2.24) Fn,1(k, λ) =

2π

∫∫
ηR,h(t)Φ+

n (k, α)
∂

∂α

( 1
i〈x′(α), 2πk〉

)
e−it(λ+〈x(α),2πk〉)dαdt,

and

(2.25) Fn,2(k, λ) = 2π

∫∫
ηR,h(t)

∂Φ+
n

∂α
(k, α)

e−it(λ+〈x(α),2πk〉)

i〈x′(α), 2πk〉
dαdt

As above we interchange the order of integration and integrate by parts
in t. This yields the estimate

|Fn,1(k, λ)| . R|h|−1/2|k|−1

×
∫∫

t∈supp ηR,h

α∈supp Φ+
n (k,·)

(1 + h|λ + 〈x(α), 2πk〉|)−2N
∣∣∣ ∂

∂α

( 1
i〈x′(α), 2πk〉

)∣∣∣dαdt.

If 2n ≤ R/h then (2.23) is still valid if α ∈ supp Φ+
n (k, ·). Moreover we claim

that

(2.26)
∫

supp Φ+
n (k,·)

∣∣∣ ∂

∂α

( 1
〈x′(α), 2πk〉

)∣∣∣dα . R2−nµ( k
|k| ,

2n

|k|R).

To see this we choose αk so that 〈x(αk), k〉 = ρ∗(k) (this choice may
not be unique). The support of Φ+

n (k, ·) consists of two connected intervals
(on R/LZ) and on each of these the function α → 〈x′(α), k〉 is monotone;
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moreover this function vanishes for α = αk. Thus

2n−1R−1 ≤
∣∣〈x(α), k〉 − ρ∗(k)

∣∣
=

∣∣∣(α− αk)
∫ 1

0
〈x′(αk + τ(α− αk)), k〉dτ

∣∣∣(2.27)

≤ |α− αk||〈x′(α), k〉|.

Note that |α − αk| . µ(k/|k|, 2n/(|k|R)) for α ∈ supp Φ+
n (k, ·). Since

∂α((〈x′(α), 2πk〉)−1) is single-signed on the two components of supp Φ+
n (k, ·)

we can apply the fundamental theorem of calculus on these intervals and we
see that the left hand side of (2.26) is bounded by 4 sup |〈x′(a), 2πk〉|−1)
where the supremum is taken over all α ∈ supp (Φ+

n (k, ·)). But by (2.27)
this bound is O(R2−nµ(k/|k|, 2n/(|k|R))).

Combining (2.23) and (2.26) we obtain for 2n ≤ R/h

(2.28) |Fn,1(k, λ)|

. |h|1/2|k|−1(1 + h|λ + ρ∗(2πk)|)−2N

∫
supp Φ+

n (k,·)

∣∣∣ ∂

∂α

( 1
〈x′(α), 2πk〉

)∣∣∣dα

. 2−nR|h|1/2|k|−1(1 + h|λ + ρ∗(2πk)|)−2Nµ( k
|k| ,

2n

|k|R)

which is the estimate we were aiming for. Next we consider the term
Fn,2(k, λ) and arguing as above we see that
(2.29)

|Fn,2(k, λ)| . h1/2(1 + h|λ + ρ∗(2πk)|)−2N

∫ ∣∣∣∂Φ+
n

∂α
(k, α)

∣∣∣∣∣∣ 1
〈x′(α), 2πk〉

∣∣∣dα

and ∫ ∣∣∣∂Φ+
n

∂α
(k, α)

∣∣∣∣∣∣ 1
〈x′(α), 2πk〉

∣∣∣dα

.
∫

supp Φ+
n (k,·)

|〈k, x′′⊥(α)〉|
|k|2

∣∣∣ 1
〈x′(α), 2πk〉

∣∣∣dα

+
1
|k|

∫
supp Φ+

n (k,·)

∣∣∂α

(
β(R2−n(〈x′(α), k〉 − ρ∗(2πk)))

)∣∣dα

+
1
|k|

∫
supp Φ+

n (k,·)

∣∣∂α

(
β0(2r−1

1 (〈 k
|k| , x(α)〉 − ρ∗( k

|k|)))
)∣∣dα

:= A1(k) + A2(k) + A3(k).

We now use that by (2.26)

|〈x′(a), 2πk〉|−1 . R2−nµ(k/|k|, 2n/(|k|R))

on the support of Φ+
n (k, ·). Since 〈k, x′′⊥(α)〉 is single-signed on the compo-

nents we see that
A1(k) . R2−n|k|−1µ( k

|k| ,
2n

|k|R).
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Next

A2(k) . |k|−1R2−nmeas(supp Φ+
n (k, ·)) . |k|−1R2−nµ( k

|k| ,
2n

|k|R).

Finally, on the support of the derivative of the term β0(. . . ) we have the
better bound |〈x′(α), k〉|−1 = O((|k|)−1) so that

A3(k) . |k|−2meas(supp Φ+
n (k, ·)) . |k|−2µ( k

|k| ,
2n

|k|R) . |k|−1R2−nµ( k
|k| ,

2n

|k|R)

in view of our restriction k ≥ 2n/R. If we use these estimates in (2.29) then
we obtain the desired estimate for Fn,2(k, λ), at least for the case 2n ≤ R/h.

The estimates for Fn,1(k, λ) and Fn,2(k, λ) in the case 2n > R/h are
derived analogously. The only difference is that (2.23) does not hold in all
of the support of Φ±

n (k, ·). However we still have |ρ∗(2πk)− 〈x′(α), 2πk〉| .
2n/R in this set so that (2.23) is now replaced by

(2.30) (1 + h|λ + 〈x(α), 2πk〉|)
. (1 + R2−n|λ + 〈x(α), 2πk〉|) ≈ (1 + R2−n|λ + ρ∗(2πk)|)

and the remainder of the above arguments applies without change to yield
the inequalities in (2.14) �

Lemma 2.3. Let

(2.31) Bn
±(R, h) := 2−nR×( ∑

k∈Z2

2n
R

<|k|≤R2

∑
`∈Z2

2n
R

<|`|≤R2

ωR(k)ωR(`)
|k||`|

µ( k
|k| ,

2n

|k|R) µ( `
|`| ,

2n

|`|R)

(1 + h|ρ∗(±k)− ρ∗(±`)|)N

)1/2
,

and

(2.32) B̃n
±(R, h) := 2−nR×( ∑

k∈Z2

2n
R

<|k|≤R2

∑
`∈Z2

2n
R

<|`|≤R2

ωR(k)ωR(`)
|k||`|

µ( k
|k| ,

2n

|k|R) µ( `
|`| ,

2n

|`|R)

(1 + R2−n|ρ∗(±k)− ρ∗(±`)|)N

)1/2
.

Then for 1 ≤ h ≤ R, R ≥ 2 we have the estimates

G±
n (R, h) ≤ CB±

n (R, h) if 2n ≤ R/h(2.33)

G±
n (R, h) ≤ CB̃±

n (R, h) if 2n > R/h(2.34)

Proof. We observe that |ζ(k/R)| ≤ ωR(k) and use the elementary convolu-
tion inequality

(2.35)
∫

(1 + a|A + λ)|)−2N (1 + a|B + λ)|)−2Ndλ . a−1(1 + a|A−B|)−N
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We use (2.35) for A = ρ∗(±2πk), B = ρ∗(±2π`) and a = h if 2n ≤ R/h and
a = R2−n if 2n > R/h. The estimates (2.33), (2.34) are now straightforward
from (2.21), (2.22) and (2.35). �

We shall now combine the previous lemmata to state the definitive result
of this section; here we abandon the a priori assumption that the outer unit
normals are absolutely continous functions.

Proposition 2.4. Let Ω be a convex domain containing the origin in its
interior, and suppose that r1 < 1 < r2 where r1, r2 are the radii of inscribed
and circumscribed circles centered at the origin. Let B±

n , B̃±
n and Γ±n be as

in (2.31), (2.32) and (2.16).
There exists a constant C, depending only on r1, r2 and N , so that for

1 ≤ h ≤ R, R ≥ 2 we have the estimate

(2.36) GΩ(R, h) ≤ C
∑
±

[ ∑
2n≤R/h

B±
n (R, h) +

∑
R/h<2n≤R

B̃±
n (R, h)

+
∑

2n>R

Γ±n (R, h)
]

+ C[log R + (R/h)1/2].

Proof. Under our previous a priori assumption on the boundary of Ω this
statement follows by simply putting together the estimates (2.4), (2.14),
(2.17), (2.18), (2.33), and (2.34). We note that all bounds just depend on
r1 ≤ 1 ≤ r2 and N , and that the L1 bound for the second derivatives does
not enter in the result.

In the general case we note that there is a sequence of convex domains Ωj

which contain the origin, such that Ωj ⊂ Ωj+1 ⊂ Ω and ∪jΩj = Ω and Ωj

has smooth boundary. Moreover, let µj(θ, δ) for fixed θ ∈ S1 and δ > 0 be
the quantity (1.6) but associated to the domain Ωj . Then µj(θ, δ) converges
to the corresponding quantity associated to Ω, µ(θ, δ). Moreover the square
functions defined by the smoothed errors E1/R associated to Ωj converge
to the corresponding expression associated to Ω and the same statement
applies to the expressions B±

n (R, h), B̃n
±
(R, h), Γ±n (R, h). For one explicit

construction of the approximation see the proof of Lemma 2.2 in [27]. The
constant C in the statement of Lemmata 2.1 and 2.3 can be chosen uniformly
in j and the assertion follows. �

3. Estimates for the case of nonzero curvature

In this section we estimate the quantities B±
n etc. in the case of nonva-

nishing curvature and rough boundary; that is, we assume inequality (1.7).
Proposition 2.4 reduces matters to estimates for lattice points in thin annuli

(3.1) A±(r, h) := {ξ ∈ R2 : |ρ∗(±ξ)− r| ≤ h−1};
here r ≥ 2 and h ≥ 1. Let

(3.2) S±(r, h) := card(A± ∩ Z2),
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the number of lattice points in the annulus A±(r, h).
We also need to consider for δ ≤ r−1 the weighted sum

(3.3) S±(r, δ, h) = δ−1/2
∑
`∈Z2:

|ρ∗(±`)−r|≤h−1

µ( `
|`| , δ).

Notice that assuming (1.7) we have

(3.4) S±(r, δ, h) . card(S±(r, h));

however S(r, δ, h) could be much smaller than card(S(r, h)). Indeed consider
the case that S(r, h) contains a long line segment; then the boundary Ω∗

becomes nearly flat and by duality the curvature of Ω at the corresponding
points gets large causing µ( `

|`|) to be smaller than δ1/2 for many ` on the
line segment. This phenomenon will be exploited in the proof of Theorem
1.2.

Proposition 3.1. Suppose that 1.7 is satisfied and that R ≥ 2 and 1 ≤ h ≤
R/ log2 R. Then

(3.5) GΩ(R, h) ≤ CR1/2

+ CR1/2
∑

0≤2n≤log R

2−n/2
( ∑

1≤l≤log R

2−l sup
2l−1≤r≤2l

S
(
r, 2n

rR , h
))1/2

.

Proof. The proof relies on rather straightforward calculations which use
µ( k

|k| ,
2n

|k|R) = O(2n/2(R|k|)−1/2 (by assumption 1.7) the definition of S,
(2.14) and bounds for G±

n (R, h) established in Lemma 2.1 and Lemma 2.3.
First, for the case 2n ≥ R we use (2.16)

Γ±n (R, h) . 2−n/2R1/2
∑
|k|>0

|k|−3/2ωR(k) . R2−n

and thus by (2.17) we can bound∑
2n≥R

G±
n (R, h) .

∑
2n≥R

Γ±n (R, h) . R1/2.

To bound
∑

2n<R G±
n (R, h) we use (2.33), (2.34) depending on whether 2n ≤

R/h or 2n > R/h. It turns out that the trivial bound (3.4) will suffice in the
range 2n ≥ log R, and in the complementary range we shall seek an estimate
involving the terms S explicitly.

Now assume that R/h ≤ 2n ≤ R (and in view of our assumption h ≤
R(log R)−2 this certainly implies 2n ≥ log R). In this case we compute and
the assumption R2−n ≥ 1 from (2.32)

B̃±
n (R, h) . 2−n/2R1/2

( ∑
k∈Z2

2n
R

<|k|≤R2

∑
`∈Z2

2n
R

<|`|≤R2

ωR(k)ωR(`)(|k||`|)−3/2

(1 + |ρ∗(±k)− ρ∗(±`)|)N

)1/2

. h1/2 log1/2 R, R/h ≤ 2n ≤ R
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and therefore ∑
R/h≤2n≤R

B̃±
n (R, h) . (h log(2 + h−1) log R)1/2 . R1/2

since we assume h ≤ R/ log2 R.
Next we assume that 2n ≤ R/h and we bound B±

n (R, h).
The argument above for B̃±

n (R, h) also applies to B±
n (R, h) which is

O(2−n/2R1/2(log R)1/2) when R/h ≤ 2n ≤ R. Thus∑
log R≤2n≤R/h

B±
n (R, h) . R1/2;

note that if we summed instead over 1 ≤ 2n ≤ R/h we would only get the
weaker bound O(R1/2(log R)1/2).

Finally we have to bound
∑

2n≤log R B±
n (R, h). To this end we observe

that the sum of the contributions of the terms in (2.31) which involve either
|k| ≥ R or |`| ≥ R or |ρ ∗ (±k)− ρ∗(±`)| ≥

√
ρ∗(±k)

Now let E±(k, n) denote the set of all ` ∈ Z2 which also satisfy 0 < |`| ≤
R and |ρ ∗ (±k) − ρ∗(±`)| <

√
ρ∗(±k). We use the bound µ( k

|k| ,
2n

|k|R) .

2n/2|k|−1/2R−1/2 and estimate

B±
n (R, h) ≤ C1R

1/2 + C22−n3/4R3/4×( ∑
k∈Z2

0<|k|≤R

|k|−5/2
∑

`∈E±(k,n)

µ( `
|`| ,

2n

|`|R)

(1 + h|ρ∗(±k)− ρ∗(±`)|)N

)1/2
.

By the property µ(θ, Aδ) ≤ CAµ(θ, δ) we obtain

∑
`∈E±(k,n)

µ( `
|`| ,

2n

|`|R)

(1 + h|ρ∗(±k)− ρ∗(±`)|)N

.
∑

|m|≤C|k|1/2

(1 + |m|)−N2n/2(R|k|)−1/2S
(
ρ∗(±k) + m, 2n

|k|R , h
)

and thus

2−n3/4R3/4
( ∑

k∈Z2

0<|k|≤R

|k|−5/2
∑

`∈E±(k,n)

µ( `
|`| ,

2n

|`|R)

(1 + h|ρ∗(±k)− ρ∗(±`)|)N

)1/2

. 2−n/2R1/2
( ∑

k∈Z2

0<|k|≤R

|k|−3 sup
ρ∗(±k)

2
≤r≤2ρ∗(±k)

S(r, 2n+1

rR , h)
)1/2

. 2−n/2R1/2
( ∑

1≤l≤2+log R

2−l sup
2l−1≤r≤2l

S(r, 2n

rR , h)
)1/2

. �
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We now state the crucial propositions needed in the proof of Theorems 1.1
and 1.2. The mild regularity assumption in Theorem 1.1 gives us a favorable
estimate for the cardinality of S±(r, h) which will be proved in §5.

Proposition 3.2. Let Ω be as in the statement of Theorem 1.1, i.e. with
κ ∈ L log2+ε L and κ bounded below. Assume that 2 ≤ r and 1 ≤ h. Then

(3.6) card(S±(r, h)) . r
[
h−1 + log−1−ε/2(2 + r)

]
.

If we only make the assumption that the curvature is bounded below (in
the sense of (1.7)) then there is no nontrivial pointwise bound for card(S±(r, h)),
but we still have a favorable bound for the weighted sums S(r, (Rr)−1, h)
provided that h & R1/2. This estimate is more difficult than Proposition 3.2
and will be proved in §6-8.

Proposition 3.3. Let Ω be as in the statement of Theorem 1.2, i.e. with κ
bounded below. Assume that R ≥ 10, 10 ≤ r ≤ R and R1/2 ≤ h ≤ R.

Then if 1 ≤ h ≤ R the estimate

(3.7)
√

Rr S(r, 1
Rr , h) . r17/18

holds.

We finish this section by showing the implication of the above propositions
to the results stated in the introduction.

Proof of Theorem 1.3. For this result we just use the trivial estimate
card(S±(r, h)) = O(r) if r ≥ 1, |h| ≥ 1. Then the bound GΩ(R, h) =
O((R log R)1/2) follows easily from a combination of Proposition 3.1 and
(3.4). �

Proposition 3.2 implies Theorem 1.1. Now we still use (3.4) and ob-
serve that by Proposition 3.2∑

1≤l≤log R

2−l sup
2l−1≤r≤2l

S
(
r, 2n

rR , h
)

.
∑

1≤l≤log R

(h−1 + (1 + l)−1−ε/2) . (1 + h−1 log R)

and thus we obtain the bound GΩ(R, h) = O(R1/2) from Proposition 3.1 if
h ≥ log R. �

Proposition 3.3 implies Theorem 1.2. We argue similarly but now
use the inequality (3.7) in the application of Proposition 3.1. Here (3.7) is
applied with R replaced by R2−n, and since 2n ≤ log R this application is
certainly valid for R1/2 ≤ h ≤ R/(log R)2. We obtain

(3.8)
∑

1≤l≤log(R2−n)

2−l sup
2l−1≤r≤2l

S
(
r, 2n

rR , h
)

.
∑

1≤l≤log(R2−n)

(
2−l/18 + (log(R2−n))−1

)
≤ C;
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moreover for the terms with log(R2−n) < l ≤ log R we simply use the trivial
bound S

(
r, 2n

rR , h
)

= O(r) and get

(3.9)
∑

log(R2−n)<l≤log R

2−l sup
2l−1≤r≤2l

S
(
r, 2n

rR , h
)

. n + 1.

We use (3.8) and (3.9) in the application of Proposition 3.1, and in view
of the exponential decay in n in (3.5) we obtain the bound GΩ(R, h) =
O(R1/2). �

4. Proof of Theorem 1.4

We follow the same setup as in the proof of Theorem 1.3 and use a crucial
fact from [3] according to which the maximal function defined by

µ∗(θ) = sup{δ−1/2µ(θ, δ) : δ > 0}

belongs to L2,∞(S1); i.e.

meas({θ ∈ S1 : µ∗(θ)2 > s}) ≤ C2/s

uniformly in s.
We now consider the sets AϑΩ and denote the quantities in (2.13) asso-

ciated to AϑΩ by G±
n (R, h, ϑ) etc. By averaging it suffices to assume h = 1.

We estimate G+
n (R, 1, ϑ).

From Lemma 2.3 we obtain for 2n ≤ R

G+
n (R, 1, ϑ) . 2−n/2R1/2

×
( ∑

0<|k|≤R2

0<|`|≤R2

µ∗(Aϑ
k
|k|)µ

∗(Aϑ
`
|`|)

|k|−3/2|`|−3/2

(1 + |ρ∗(Aϑk)− ρ∗(Aϑ`)|)N

)1/2
.

By symmetry we may restrict the summation to those pairs (k, `) for which
µ∗( k

|k|) ≤ µ∗( `
|`|) and we thus have the estimate

G+
n (R, 1, ϑ) . 2−n/2R1/2

×
( ∑

0<|k|≤R2

0<|`|≤R2

µ∗(Aϑ
k
|k|)

2 |k|−3/2|`|−3/2

(1 + |ρ∗(Aϑk)− ρ∗(Aϑ`)|)N

)1/2
.

Now as above it is easy to see that for fixed k∑
` 6=0

|`|−3/2(1 + |ρ∗(Aϑk)− ρ∗(Aϑ`)|)−N ≤ C|k|−1/2

where C is independent from ϑ. Thus

(4.1) G+
n (R, 1, ϑ) . 2−n/2R1/2

∑
0<|k|≤R2

µ∗(Aϑ
k
|k|)

2|k|−2(1 + |k|
R )−N ;
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moreover

sup
j≥n

2−jj−(2+ε) sup
2j≤R≤2j+1

G+
n (R, 1, ϑ)2

≤
∞∑

j=n

2−jj−(2+ε) sup
2j≤R≤2j+1

G+
n (R, 1, ϑ)2

. 2−n
∞∑

j=n

j−(2+ε)
∑

0<|k|≤22j

µ∗(Aϑ
k
|k|)

2|k|−2(1 + 2−j |k|)−N .(4.2)

In order to complete the proof we have to show that the expression (4.2)
defines a function in L1,∞([−π, π]). To do this we apply a well known lemma
by Stein and N. Weiss [29] on adding functions in L1,∞ and the quasi-norm
is bounded by a constant times the square-root of

2−n
∞∑

j=n

j−(2+ε)
∑

0<k≤22j

|k|−2(log(1 + |k|+ j))

. 2−n
∞∑

j=n

j−(1+ε) ≤ Cε2−n.

Thus the function

(4.3) ϑ 7→ sup
R≥2n

R−1/2(log(2 + R))−1−εG+
I,n(R, 1, ϑ)

belongs to L2,∞ with norm O(2−n/2).
For R < 2n ≤ R3 we argue as in the proof of Theorem 1.2 and see that

the estimate (4.1) is replaced by

G+
n (R, 1, ϑ) .

∑
0<|k|≤R2

µ∗(Aϑ
k
|k|)

2|k|−2

and thus

sup
j<n

2−jε sup
2j≤R≤2j+1

G+
n (R, 1, ϑ)2

.
∑

n/3<j≤n

2−jε
∑

2n−j<|k|≤22j

µ∗(Aϑ
k
|k|)

2|k|−2

and again this expression as a function of ϑ belongs to L1,∞ with quasi-norm
2−εn/3. Thus the function

ϑ 7→ sup
R<2n

R−ε/2G+
n (R, 1, ϑ)

belongs to L2,∞ with norm O(2−εn/3) (which is a better result than for the
function (4.3), as expected). We may sum in n and get the required asser-
tion for ϑ 7→

∑∞
n=0 G+

n (R, 1, ϑ) and the corresponding assertion involving
G−

n (R, 1, ϑ) follows in the same way. �
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5. Bounds for the lattice rest associated to the polar set –
the proof of Proposition 3.2

We improve the the trivial estimate EΩ∗(t) = O(t) under the given mild
regularity assumption on ∂Ω. Since

S(r, h) . rh−1 + sup
t≤r+h−1

EΩ∗(t)

the Proposition 3.2 immediately follows from the following result.

Proposition 5.1. Let Ω be a convex domain with C1 boundary in R2 con-
taining the origin in its interior, ands assume that the components of the
tangent vector are absolutely continuous. Suppose also that curvature κ is
uniformly bounded below, i.e. |κ(x)| ≥ a > 0 for almost every x ∈ ∂Ω and
that κ ∈ L logγL(∂Ω), for some γ > 0. Let EΩ∗(t) = NΩ∗(t) − tdarea(Ω∗).
Then for t ≥ 2

(5.1) |EΩ∗(t)| ≤ Ct(log t)−γ/2

We need the following variant of van der Corput’s Lemma.

Lemma 5.2. Let f be a C1 function on the interval [a, b] and assume that
f ′ is absolutely continuous and monotone. Let γ > 0 and suppose that the
function t 7→ (log(2+ 1

|f ′′(t)|))
γ belongs to L1,∞, with operator (quasi-) norm

bounded by A. Then∣∣∣ ∫ b

a
eiλf(t)χ(t)dt

∣∣∣ ≤ C(γ, A)
(
‖χ‖∞ + ‖χ′‖1

)
(log(2 + λ))−γ .

Proof. We may assume that λ ≥ 10. In view of the monotonicity of f ′

the set I = {t ∈ [a, b] : |f ′(t)| ≤ λ−1(log λ)γ} is an interval, I = [c, d]. The
set [a, b] \ I is a union of at most two intervals and on each of these we
have |λf ′(t)| ≥ (log λ)γ . By the standard van der Corput Lemma with first
derivatives ([29]) it follows that

(5.2)
∣∣∣ ∫

[a,b]\I
eiλf(t)χ(t)dt

∣∣∣ ≤ C
(
‖χ‖∞ + ‖χ′‖1

)
(log λ)−γ .

To complete the proof we have to show that

(5.3) |I| . (log λ)−γ .

Let E1 = {t ∈ I : |f ′′(t)| ≤ (log λ)2γλ−1} and E2 = I \ E1. On E1 we have

logγ(2 + 1
|f ′′(t)|) ≥ logγ(2 + λ

log2γ λ
) ≥ c logγ(2 + λ);

here c depends only on A and γ. Thus by our L1,∞ assumption |E1| .
(log(2 + λ))−γ . By definition of I we also have

2
(log λ)γ

λ
≥ |f ′(d)− f ′(c)| =

∣∣∣ ∫
I
f ′′(s)ds

∣∣∣ ≥ ∣∣∣ ∫
E2

f ′′(s)ds
∣∣∣ ≥ |E2|

(log λ)2γ

λ

thus |E2| ≤ 1
2(log(2 + λ))−γ . Thus we have shown (5.3) and the proof is

complete. �
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As a consequence we obtain

Lemma 5.3. Let Ω be as in Proposition 5.1. Then

(5.4)
∣∣χ̂Ω∗(ξ)

∣∣ ≤ C(1 + |ξ|)−1 log(2 + |ξ|)−γ

Proof. Let α 7→ x(α) be a parameterization of ∂Ω with |x′(α)| = 1. A
parametrization of ∂Ω∗ is then given by α 7→ x̃(α) = 〈x(α), n(α)〉−1n(α) but
this parametrization is not sufficiently regular. We compute

(5.5) x̃′ =
n′1n2 − n1n

′
2

〈x, n〉2
(x2,−x1)

and we observe that n′1n2 − n1n
′
2 = κ. Moreover, if r1 < r2 are the radii of

inscribed and circumscribed circles centered at the origin then for x ∈ ∂Ω

(5.6) 〈x, n〉 ≥ r1

2r2
|x| > r2

1

r2
.

We introduce a new parameter τ = τ(α) =
∫ α
α0

κ(β)
〈x(β),n(β)〉2 dβ; then τ is

invertible with inverse τ 7→ α(τ), τ ∈ I. We work with the parametrization

τ 7→ x∗(τ) = x̃(α(τ))

and then
x′∗(τ) = (x2(α(τ))),−x1(α(τ)).

In view of an analogue of (2.8) it suffices to show that

(5.7)
∣∣∣ ∫

I
e−i〈x∗(τ),ξ〉χ(τ)dτ

∣∣∣ . (log(2 + |ξ|))−γ

Let c0 = r1/2r2 and g(τ, ξ) = 〈 ξ
|ξ| ,

x′∗
|x′∗|
〉. Fix |ξ| ≥ 2. We split our interval I

into no more than 16 subintervals, where on each interval J either |g(τ, ξ)| ≥
c0/4 for all τ ∈ J or |g(τ, ξ)| ≤ c0/4 for all τ ∈ J ; and τ 7→ g(τ, ξ) is
monotonic on J .

Suppose for all τ ∈ J we have |g(τ, ξ)| ≥ c0/4. Then |〈x′∗(τ), ξ〉| ≥ c1|ξ|
in J and by van der Corput’s Lemma we get

(5.8)
∫

J
e−i〈x∗(τ),ξ〉χ(τ)dτ . |ξ|−1

which of course is much better then the desired estimate.
Now fix J ′ with the property that |g(τ, ξ)| ≤ c0/4 for all α ∈ J ′. Now

x(α(τ)) and x′∗(α(τ)) are orthogonal and thus |〈 x
|x| ,

ξ
|ξ|〉| ≥ (1− c2

0/16)1/2 ≥
1− c0/4; moreover∣∣∣〈n,

ξ

|ξ|
〉
∣∣∣ ≥

∣∣∣〈 x

|x|
, n〉〈 x

|x|
,

ξ

|ξ|
〉
∣∣∣− ∣∣∣〈 x′∗

|x′∗|
,

ξ

|ξ|
〉
∣∣∣

≥ c0(1− c0/4)− c0/4 ≥ c0/4.

Now for α ∈ J ′ we have n(α) = (x′2(α),−x′1(α)) and thus

|〈x′′∗(τ), ξ〉| = |〈n(α(τ)), ξ〉α(τ)| ≥ c0

4
|α′(τ)|.
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Therefore∫
J ′

logγ(2 +
1

|〈x′′∗(τ), ξ/|ξ|〉|
)γdτ ≥ c1

∫
J ′

logγ(2 +
1

|α′(τ)|
)dτ

= c1

∫
α(J ′)

logγ(2 + |τ ′(α)|)|τ ′(α)|dαdτ

where c1 is chosen independently of ξ. The latter expression is finite since
|τ ′(α)| ≈ |κ(α)| which is assumed to be in L logγL. Thus we may apply
Lemma 5.2 with λ = |ξ| and obtain

(5.9)
∣∣∣ ∫

J ′
e−i〈x∗(τ),ξ〉χ(τ)dτ

∣∣∣ . (log(2 + |ξ|))−γ

and the assertion follows from combining the estimates (5.8) and (5.9) on
the various subintervals. �

Proof of Proposition 5.1. Given Lemma 5.3 this is just an application of
the standard argument. Let N∗

ε (t), E∗
ε (t) be defined as in (2.1) and (2.2),

but for the set Ω∗ in place of Ω. Then by Lemma 5.3 for t ≥ 2

|E∗
ε (t)| ≤ (2πt2)

∑
k 6=0

|χ̂Ω∗(2πtk)||ζ̂(2πεk)|

. t2
∑
k 6=0

(t|k|)−1 log(2 + |t|k|)γ(1 + ε|k|)−N . t(log t)−γε−1.

Also N∗
ε (t−Cε) ≤ N∗(t) ≤ N∗

ε (t + Cε) and applying the previous estimate
with t± Cε in place of t we obtain that

|EΩ∗(t)| .
[
t(log t)−γε−1 + tε

]
.

Thus for the choice ε = (log t)−γ/2 we obtain the asserted estimate. �

6. A weighted estimate for lattice points
on lines in thin annuli

The purpose of this section is to prove a bound for sums
∑

` µ( `
|`| ,

1
R|`|)

where the sum runs over the lattice points contained on a given line segment
in the ρ∗-annulus

(6.1) A (r, h) =
{
x ∈ R2 : r ≤ ρ∗ (x) ≤ r + h−1

}
.

It turns out that if h & R1/2 and the line segment is sufficiently long
then the trivial bound µ( `

|`| ,
1

R|`|) . (Rr)−1/2 may be substantially improved
for most of the lattice points on the line segment; i.e. the fact that the
thin ρ∗ annulus contains long line segments reflects a rather fast turning
of the normals for the original domain which may only happen if ∂Ω lacks
smoothness.

Throughout this and the next two chapters we shall adopt the following
notations. Given certain subsets A, B, G, I, J etc. we shall use blackboard
bold fonts to denote by A, B, G, I, J the intersections of these sets with
the integer lattice Z2 (the standard notation for the plane R2 remains an
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exception to this convention). We shall adopt the convention that a line
segment I =

−−→
PQ is a nontrivial segment whose endpoints P,Q lie in the

lattice Z2. The corresponding collection I = I ∩Z2 of lattice points in I will
be called a lattice line segment.

If n is an odd natural number and I is a line segment, we let nI denote
the line segment concentric with and parallel to I but with n times the
length. The distance between consecutive lattice points on the line segment
I is constant. Let d ≡ d(I) denote this distance; then d−1 = (card I− 1)/|I|
is the density of lattice points on I.

The following result is the key for the proof of Proposition 3.3. We are
seeking to improve the bound from (1.7) (with δ = (R|`|)−1)

(6.2)
√

Rr
∑
`∈I

µ( `
|`| ,

1
R|`|) . card(I),

if card(I) is sufficiently large.

Lemma 6.1. Let Ω be an open convex bounded set in the plane R2, with
positive curvature, and containing the origin. Let 10 ≤ r ≤ R < ∞, and let
h ≥ R1/2. Let J be a closed line segment whose endpoints are contained in
Z2 and let J = J ∩ Z2. Assume that the ninefold dilate 9J is contained in
A(r, h) and that card(J) ≥ 10.

Let

(6.3) T ≡ T (R, d, h, r) := R3/4d1/2h−1/2r−1/4.

Then

(6.4)
√

Rr
∑
`∈J

µ( `
|`| ,

1
R|`|) .


(

Rr
h2d2

)1/4
if card(J) ≤ T ,(

rcard(J)
hd2

)1/3
if card(J) ≥ T .

Proof.
We begin by introducing some additional notation. For P ∈ R2, let n∗P

denote the unit outward normal to Ω∗ at the point P
ρ∗(P ) ∈ ∂Ω∗. Note that

this unit normal is uniquely determined since it is parallel to the uniquely
determined position vector

−−−→
OPP joining the origin O to the point PP ∈ ∂Ω

having P as one of its outward normal vectors.
We set I = 3J and let P , Q be the endpoints of I. Our first observa-

tion is that the angle Ψ = ](n∗P , n∗Q) between the vectors n∗P and n∗Q (the
nonnegative angle less than π) satisfies

(6.5) Ψ = ]
(
n∗P , n∗Q

)
≤ C1 arctan

(h−1

|I|

)
,

where |I| = |QP | is the length of the segment I and C1 is a constant de-
pending only on Ω. To see this one notes that there is a rectangle of width
ch−1 which contains the line segment 3I and which is contained in the
annulusA(r, h). If we had tan]

(
n∗P , n∗Q

)
≥ C̃h−1|I|−1 for large C̃ then it is
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easy to see that the triangle OPQ would contain points in the complement
of {ρ∗ ≤ r + h}. Thus we have (6.5).

For x ∈ Im, define the collection Γ(x) of subsegments J =
−−→
UV of I by

Γ(x) =
{
J =

−−→
UV ⊂ I : x ∈ J, |J | ≥ d

}
,

and the corresponding uncentered maximal function M on I by

M (x) = sup
J=

−−→
UV ∈Γ(x)

1
|J |

]
(
n∗U , n∗V

)
.

Then M is in weak L1 on I by F. Riesz’s lemma ([26], ch. 1); it satisfies
the inequality

(6.6) |{x ∈ I : M(x) > λ}| ≤ 2
λ

Ψ.

We shall now consider a decomposition of the set I depending on a pa-
rameter q; we shall see that the choice

(6.7) q =


(

Rrd2

h2

)1/4
if card(J) ≤ T(

rd card(J)
h

)1/3
if card(J) ≥ T

will be (essentially) optimal.
Let B ⊂ I := I ∩ Z2 denote the set

B =
{
` ∈ I : M(`) > q−1Ψ

}
to which, following the terminology in Calderón-Zygmund theory, we re-
fer as the set of bad lattice points. Let G = I \ B be the set of good
lattice points. Denote by u a unit vector parallel to I. Then the seg-
ments

−−−−−−−−−−−−−−−→
(`− du/2)(` + du/2) are pairwise disjoint and for each ` ∈ B, either

−−−−−−−−→
(`− du/2)` or

−−−−−−−−→
`(` + du/2) is contained in{

x ∈ I : M(x) > Ψ/q
}
.

Thus by (6.6) we have

card(B) = d−1
∣∣∣ ⋃

`∈B

−−−−−−−−−−−−−−−→
(`− du/2)(` + du/2)

∣∣∣
≤ 2d−1

∣∣{x ∈ I : M(x) > Ψ/q
}∣∣ . q/d.

By (1.7) we obtain

(6.8)
∑
`∈B

√
Rrµ( `

|`| ,
1

R|`|) . q/d

We will obtain now obtain an estimate for the sum over ` ∈ G∩ J (rather
than over all of G). Note that if ` ∈ G ∩ J, then

]
(
n∗`−αdu, n∗`+αdu

)
≤ 2αdΨ/q,(6.9)

] (`− αdu, `) , ] (`, ` + αdu) ≥ cαd/r(6.10)
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for 1/2 ≤ α ≤ |J |/d upon using |`| ≈ r.
Passing to the dual set Ω∗∗ = Ω with defining Minkowski functional ρ,

we have that for α ≥ 0, the points A±
`,α =

n∗`±αdu

ρ(n∗`±αdu) in ∂Ω have unit normals

ν±α = `±αdu
|`±αdu| , and that

(6.11)

∣∣](
ν±α , `

|`|
)∣∣ ≥ cαd/r

|]
(
A−

α ,A+
α

)
| ≤ 2αdΨ/q

for 1/2 ≤ α ≤ |J |/d.
Using this estimate we derive a bound on the diameter of the cap CΩ( `

|`| ,
1

R|`|).
Let

D = 2C1d(h|I|q)−1,

where C1 is as in (6.5).
Suppose that ∂Ω is parametrized in a neighborhood of n∗`

ρ(n∗`)
by t 7→ γ(t),

|t| ≤ c′, with
〈γ(t)−A`,0,

`
|`|〉 = ϕ`(t);

here A` ≡ A±
`,0 = n∗`

ρ(n∗`)
, and ϕ`(t) is convex and nonnegative with ϕ`(0) = 0,

ϕ′`(0) = 0.
Now by (6.5) we have D ≥ 2dΨ/q, and so (6.11) shows that

|ϕ′`(αD)| ≥ |ϕ′`(α2dΨ/q)| ≥ cαd/r, 1/2 ≤ α ≤ |J |/d,

and it follows that for D/2 ≤ |t| ≤ |J |d−1D,

(6.12) ϕ` (t) ≥
∫ t

D/2

cd

Dr
s ds =

1
2

cd

Dr

[
t2 − (D/2)2

]
.

Now assume |J |/d ≥ 1 and observe that then for t = D|J |/d, the upper
bound for |t|, we have by (6.12) and the definition of D

ϕ`

( |J |
d D

)
≥ c

2
dD

r

[
(|J |/d)2 − 1/4

]
≥ 3c|J |2D

8dr
=

3c|J |2

8h|I|q
=≥ c|J |

8qhr
.

Since h ≤ R and in view of h ≥ R1/2, 1 ≤ r ≤ R we see that the choice of q
in (6.7) certainly implies

ϕ`(
|J |
d D) ≥ c′(Rr)−1 ≥ c′′(R|`|)−1

This estimate and (6.12) imply that

µ( `
|`| ,

1
R|`|) ≤ C(c′′)µ( `

|`| ,
1

c′′R|`|) . ϕ−1
` ( 1

c′′R|`|)

. ϕ−1
` ( 1

R|`|) ≤ D + 2

√
2Dr

cd

1
R |`|

. (D + (D/dR)1/2),
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and since D = 2C1d(h|I|q)−1 we then have

√
Rrµ( `

|`| ,
1

R|`|) .
R1/2

h

dr1/2

|I|q
+

( r

h|I|q

)1/2
,

for ` ∈ G ∩ J. Since |I| ≈ d card(I) ≈ d card(J) we obtain

(6.13)
∑

`∈G∩J

√
Rrµ( `

|`| ,
1

R|`|) .
(Rr)1/2

hq
+

(rcard(J)
hdq

)1/2
.

Altogether (6.13) and (6.8) yield

(6.14)
∑
`∈J

√
Rrµ( `

|`| ,
1

R|`|) .
q

d
+

(Rr)1/2

hq
+

(rcard(J)
hdq

)1/2
.

We essentially choose q to minimize this expression. Its square is compa-
rable to d−2F (q) where

(6.15) F (q) = q2 + b1q
−2 + b2q

−1,

where the positive coefficients are given by

b1 = Rrd2h−2, b2 = rcard(J)dh−1.

In what follows we shall need the relation

b
4/3
2 /b1 =

(
card(J)/T

)4/3

where T is as in (6.3). To analyze (6.15) it is natural to distinguish two
cases, where in the first case the second term b1q

−2 dominates the third
term b2q

−1 and in the second case we have the opposite inequality.
In the first case, q ≤ b1/b2, we have that F (q) ≈ q2 + b1q

−2 and the latter
expression has a local minimum where q = b

1/4
1 . This value b

1/4
1 belongs to

the currently relevant interval (0, b1/b2] when b2 ≤ b
3/4
1 which is equivalent

to card(J) ≤ T . In this case we thus make the choice q = b
1/4
1 (which is

the value (Rrh−2d−2)1/4 in (6.7)). Then the right hand side of (6.14) is
bounded by a constant times

(6.16) d−1

√
F (b1/4

1 ) . d−1b
1/4
1 = (Rrd−2h−2)1/4.

In the second case, q ≥ b1/b2 we have F (q) ≈ q2 + 2b2q
−1 and the latter

expression has a local minimum at b
1/3
2 which lies in the interval [b1/b2,∞)

when b
4/3
2 ≥ b1; this condition is equivalent with card(J) ≥ T . Thus we now

make the choice q = b
1/3
2 = (rcard(J)dh−1)1/3. Now the right hand side of

(6.14) is bounded by a constant times

(6.17) d−1

√
F (b1/3

2 ) . d−1b
1/3
2 = (rcard(J)h−1d−2)1/3

and the estimate (6.4) is established. �
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7. Two elementary lemmata

We prove two elementary lemmata from plane geometry.

Lemma 7.1. Let S be any set of N noncollinear lattice points in the plane
and let H be the convex hull of S. Then

(7.1) N ≤ 2 + 2area (H) .

In particular, N ≤ 6 area (H).

Proof. We necessarily have N ≥ 3 and the second conclusion follows from
(7.1) since every lattice triangle has area at least 1/2 thus area(H) ≥ 1/2.

To see (7.1) we argue by induction and the estimate is obviously true
for N = 3. We now proceed by induction. Let N ≥ 4 and assume that
the estimate (7.1) holds for any collection of noncollinear lattice points with
cardinality < N . Let T be a set of N noncollinear lattice points in the
plane and let H be the convex hull of T. There exists a pair of lattice
points ` and m in T such that the line L joining ` and m has points of
T lying to each side of it. Let P1 and P2 be the two closed half-planes
determined by L. Set Si = T∩Pi for i = 1, 2. Then each collection Si is
noncollinear. Let Ni = card(Si). Since the two points ` and m lie in both
S1 and S2, we have N1 + N2 ≥ N + 2. Let Hi be the convex hull of Si so
that H1 ∪ H2 ⊂ H and H1 ∩ H2 is contained in a line. By the induction
assumption on both S1 and S2 we have Ni ≤ 2 + 2 area(Hi), i = 1, 2, and
thus N ≤ N1 + N2 − 2 ≤ 2 + 2areaH. �

Our next lemma is a standard result on lattice points on convex polygons.

Lemma 7.2. Suppose we are given integer points F1, . . . , FJ in Z2, which
are vertices of a convex polygonal curve; i.e. the interiors of the line seg-
ments FiFi+1 are mutually disjoint and if

−−−−→
FiFi+1 = Lj(cos βi, sinβi), i =

1, . . . , J − 1, then we have Lj > 0 and βj+1 > βj. Suppose also that
βJ−1 − β1 ≤ 2π, and set L =

∑J−1
i=1 . Then

J ≤ 2 + (βJ−1 − β1)1/3L2/3.

Proof. Let ∆(A,B, C) denote the triangle with vertices A,B, C. Then we
use again that the areaof ∆(A,B, C) is at least 1/2 if A,B, C are noncollinear
lattice points. Thus

J − 2 ≤
J−2∑
j=1

(
2 area(∆(Fj , Fj+1, Fj+2))

)1/3

=
J−2∑
j=1

(
|
−−−−→
FjFj+1| |

−−−−−−→
Fj+1Fj+2| | sin(βj+1 − βj)|

)1/3
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and thus by Hölder’s inequality

J − 2 ≤
( J−2∑

j=1

|
−−−−→
FjFj+1|

)1/3( J−2∑
j=1

|
−−−−−−→
Fj+1Fj+2|

)1/3( J−2∑
j=1

| sin(βi+1 − βi)|
)1/3

≤ L2/3(βJ−1 − β1)1/3. �

In particular if P is a convex polygon of length L whose vertices are
integer lattice points then the number of vertices of P is O(L2/3). This is a
special case of Andrews’ result [1].

8. Proof of Proposition 3.3

In what follows we fix r, R, h with 10 ≤ r ≤ R, R1/2 ≤ h ≤ R. Let

Ω∗
± =

{
x ∈ R2 : ρ∗(x) < r ± h−1

}
and A = Ω∗

+ \ Ω∗
−. Denote by A = A ∩ Z2 the set of lattice points in the

annulus A. Let H be the convex hull of A and let E = {Ej}J
j=1 be the

extreme points of H arranged in counterclockwise order around the origin.
First observe that from Lemma 7.2 we have J = card(E) . r2/3.

Recall our convention from the previous section that a line segment is
a nontrivial segment I whose endpoints lie in the lattice Z2. Our second
observation is that every lattice point in A \E belongs to some line segment
I that contains an extreme point from E and lies entirely within the annulus
A. More precisely, let ` ∈ A and suppose that for some 1 ≤ j ≤ J , ` belongs
to the closed triangular sector Sj = ∆ (Ej , Ej+1, 0) with vertices Ej , Ej+1

and the origin. Then the convex set Ω∗
− cannot intersect both of the line

segments
−−→
Ej` and

−−−→
Ej+1`, and hence at least one of them must lie in A.

Thus for 1 ≤ j ≤ J , Aj = A∩Sj is contained in the union Ij of all maximal
line segments I contained in A ∩ Sj having one endpoint that is either Ej

or Ej+1. We further distinguish the segments I in Ij by letting
{

I−j,n

}N−
j

n=1
be an enumeration of the line segments in Ij having Ej as an endpoint,
and arranged clockwise about Ej as n increases from 1 to N−

j . Similarly,{
I+
j,n

}N+
j

n=1
is an enumeration of the line segments in Ij having Ej+1 as an

endpoint, and arranged counterclockwise about Ej+1 as n increases from 1
to N+

j . Note that I+

j,N+
j

= I−
j,N−

j

=
−−−−−→
EjEj+1 is the line segment joining the

consecutive extreme points Ej and Ej+1.
The next lemma implies that the total number of line segments in

I := ∪J
j=1Ij

still does not exceed Cr
2
3 if we assume r ≤ R and h ≥ R1/2. For this we

define Lj = |
−−−−−→
EjEj+1| to be the length of the segment

−−−−−→
EjEj+1, and Θj to
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be the (positive) change of angle for the normal direction to ∂Ω∗ across the
sector Sj . Specifically

Lemma 8.1. For each 1 ≤ j ≤ J , we have

N−
j + N+

j ≤ C
(
1 + area(A ∩ Sj) + L

2/3
j Θ1/3

j

)
.

Proof. We will establish the indicated estimate for N+
j , the case for N−

j

being similar. Fix j and let the segment I+
j,n have endpoints Ej+1 and Fn

so that I+
j,n =

−−−−−→
Ej+1Fn. Consider the collection of segments {

−−−−−→
FnFn+1}

N+
j −1

n=1

and set

Tj =
{
n : 1 ≤ n < N+

j and
−−−−−→
FnFn+1 ⊆ A ∩ Sj

}
,

Pj =
{
n : 1 ≤ n < N+

j and
−−−−−→
FnFn+1 * A ∩ Sj

}
.

We first note that the triangles ∆(Ej+1, Fn, Fn+1) are pairwise disjoint
and contained in A ∩ Sj for n ∈ T, and from Lemma 7.1 applied to each
triangle we get

(8.1) card(Tj) ≤ 6
∑
n∈Tj

area
(
∆(Ej+1, Fn, Fn+1)

)
≤ 6 area(A ∩ Sj).

Now the integers in Pj can be written as a union of maximal chains Ci of
consecutive integers as follows:

Pj = ∪Mj

i=1Ci, Ci = {n}bi
n=ai

,

where ai ≤ bi and bi +2 ≤ ai+1. Note that the number of chains Mj satisfies

Mj ≤ 1 + card(Tj) ≤ 1 + 6 area (A ∩ Sj) .

For each n ∈ Pj we may write
−−−−−→
FnFn+1 = ρn(cos αn, sin αn) where ρn > 0

and αn > αm if m > n. In particular the lines associated to a fixed chain
form a convex polygon.

; here we use that the convex set Ω∗
− intersects the line segments

−−−−−→
FnFn+1

and
−−−−−→
FmFm+1.

To see this, note that the convex set Ω∗
− intersects both of the line seg-

ments FnFn+1 and FmFm+1, and that the intersection with FmFm+1 occurs
to the clockwise side of the intersection with FnFn+1 (we adopt an obvious
convention regarding the use of the phrase ”to the clockwise side of”). Thus
the angle αm of FmFm+1 is less than the angle αn of FnFn+1. Moreover the
sectors generated by {O,Fn, Fn+1} and {O,Fm, Fm+1} have disjoint interior
so that ∑

n∈Pj

∣∣−−−−−→FnFn+1

∣∣ . Lj .

Now consider a chain Ci = {n}bi
n=ai

of length bi − ai + 1 ≥ 3 and the
associated set of lattice points {Fn}bi

n=ai
.
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By Lemma 7.2, we have

bi − ai + 1 ≤ 2 +
( bi−1∑

n=ai

∣∣∣−−−−−→FnFn+1

∣∣∣ ) 2
3 ( bi−1∑

n=ai

αn+1 − αn

) 1
3

for all chains of length bi− ai + 1 ≥ 3, and also trivially for chains of length
1 or 2 as well. Summing in i from 1 to Mj we thus obtain

card(Pj) =
Mj∑
i=1

(bi − ai + 1)

≤ 2Mj +
Mj∑
i=1

{( bi−1∑
n=ai

|
−−−−−→
FnFn+1|

) 2
3
( bi−1∑

n=ai

αn+1 − αn

) 1
3

}
and thus by Hölder’s inequality

card(Pj) ≤ 2Mj +
( Mj∑

i=1

bi−1∑
n=ai

∣∣−−−−−→FnFn+1

∣∣) 2
3
( Mj∑

i=1

bi−1∑
n=ai

αn+1 − αn

) 1
3

≤ C
(
Mj + L

2/3
j Θ1/3

j

)
≤ C ′(1 + area(A ∩ Sj) + L

2/3
j Θ1/3

j

)
.

The Lemma follows by combining the inequalities for the cardinalities of Tj

and Pj . �

We now proceed with the proof of Proposition 3.3. First, by Lemma 8.1
we can estimate the cardinality of I by

card(I) ≤
J∑

j=1

card(Ij) .
J∑

j=1

{1 + area(A ∩ Sj) + L
2
3
j Θ

1
3
j }(8.2)

.
(
J + area(A) +

( J∑
j=1

Lj

) 2
3
( J∑

j=1

Θj

) 1
3

)
(8.3)

. (r
2
3 + r/h) . r2/3(8.4)

since h ≥ R1/2 ≥ r1/2.
Now consider the lattice line segments I±j,n = I±j,n ∩ Z2 consisting of the

lattice points in I±j,n, and let Aj be the collection of lattice points which lie
in A ∩ Sj . We then have that for 1 ≤ j ≤ J ,

(8.5) Aj = A∩Sj =
( N+

j⋃
n=1

I+j,n
)
∪

( N−
j⋃

n=1

I−j,n
)

where
∑J

j=1(N
+
j + N−

j ) . r2/3.
We now wish to apply Lemma 6.1, to the intervals in I; however the

assumption that the ninefold dilates are still contained in the annulus A may
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not be satisfied. Therefore for every I ∈ I we decompose I in subintervals

I = ı+(I) ∪ ı−(I) ∪
N(I)⋃

m=−N(I)

ım(I)

where 9ım(I) ⊂ I. Moreover if ım(I) := ım(I)∩Z2, and ı±(I) := ı±(I)∩Z2,
and then card(ım(I)) . 2−|m|card(I), card(ı±(I)) = O(1) and N(I) ≤ C +
log2(card(I)).

We first have the trivial inequality

(8.6)
∑
I∈I

∑
±

∑
`∈ı±(I)

√
Rrµ( `

|`| ,
1

R|`|) . card(I) . r2/3.

Now let L denote the set of all lattice line segments {ım(I) : |m| ≤
N(I), I ∈ I}. We split L into three subfamilies (here T is as defined in
(6.3)).

(i) L1 consists of all J ∈ L which satisfy card(J) ≤ T

(ii) L2 consists of all J ∈ L of the form ım(I) for suitable m, I, where
card(J) > T and card(I) ≤ r1/3.

(iii) L3 consists of all J ∈ L of the form ım(I) for suitable m, I, where
card(J) > T and card(I) > r1/3.

Notice that for all I we have N(I) . log r so that card(L) . r2/3 log r.
Thus from part (i) of Lemma 6.1 we get

(8.7)
∑
J∈L1

√
Rr

∑
`∈J

µ( `
|`| ,

1
R|`|) . r2/3 log r(Rrh−2)1/4 . r11/12 log r

since h2 ≥ R ≥ r.
Next we consider the lattice line segments in L2 and use the second part

of Lemma 6.1. We obtain

∑
J∈L2

√
Rr

∑
`∈J

µ( `
|`| ,

1
R|`|)

.
∑
I∈I:

card(I)≤r1/3

∑
m:

ım(I)∈L2

(rh−1 card(ım(I))1/3

.
∑
I∈I:

card(I)≤r1/3

(
rh−1 card(I)

)1/3

. r1/3+1/9card(I)h−1/3 . r17/18(8.8)

since card(I) . r2/3 and h ≥ R1/2 ≥ r1/2.
Finally for the lattice line segments in L3 we use again the second part of

Lemma 6.1 but estimate differently
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∑
J∈L3

√
Rr

∑
`∈J

µ( `
|`| ,

1
R|`|)

.
∑
I∈I:

card(I)>r1/3

(
rh−1 card(I)

)1/3

.
∑
I∈I

(r/h)1/3 card(I)
r2/9

. r1/3−2/9h−1/3card(A) . r17/18(8.9)

since h ≥ r1/2 and card(A) . r.
We combine estimates (8.6), (8.7), (8.8), and (8.9) and deduce the asserted

bound. �

9. Discussion of sharpness

In this section we shall discuss the sharpness of Proposition 3.3 which
implies the estimate

(9.1) K(R, h) . R−1, h ≥ R1/2

for the quantity defined in (1.11). We show that the condition h ≥ R1/2 is
needed in (9.1).

More specifically we show that there are positive constants c and C such
that for every ε > 0 and R > C, there exists an open convex bounded
set Ω with curvature bounded uniformly below (in the sense of any of
the equivalent definitions in the subsequent section) such that with h =
h(R) = R1/2 (log R)−ε and suitable C0 the quantity K(R, h) is at least
cεR−1 log log R.

In what follows we let r be a large integer so that

r . (log R)ε/3.

We will construct an open convex bounded set Ω, with curvature & 1/2
everywhere so that

(9.2) (R|(m,n)|)1/2µ( (m,n)
|(m,n)| ,

1
R|(m,n)|) = 1

for all (m,n) ∈ Z2 with 0 < |n| ≤ m ≤ r, and also so that

(9.3) |ρ∗ ((m,n1))− ρ∗ ((m,n2))| ≤ 2R−1/2(log R)ε

for 0 ≤ |n1| , |n2| ≤ m ≤ r. With this achieved, we restrict k and ` in
the sum on the left side of (1.11) to lie in the triangle of lattice points
Tr = {(m,n) : 0 ≤ |n| ≤ m ≤ r}. Writing k = (m,n1) and ` = (m,n2), we
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obtain that with h(R) = C−1
0 R

1
2 (log R)−ε,∑

k,`∈Z2:|k|≤R,|`|≤R,

|ρ∗(`)−ρ∗(k)|≤h(R)−1

|k|−2µ
(

k
|k| ,

1
R|k|

)
µ
(

`
|`| ,

1
R|`|

)
≥ R−1

∑
k,`∈Tr :

|ρ∗(`)−ρ∗(k)|≤h(R)−1

|k|−3 ≥ R−1
∑

(m,n)∈Tr

m−2

≥ cR−1 log r = cR−1 ε

3
log log R,

the desired conclusion.
Now we give the details of the construction. Given ε > 0, r ∈ N large

and h > 1, denote by Rm,n the ray from the origin (0, 0) through the point
(m,n), and by K the circle of radius hr2 centered at

(
1− hr2, 0

)
, so that K

passes through the point (1, 0). We order the set of rays {Rm,n : |n| ≤ m ≤
r, m > 0} by increasing slope (so that the positive slopes form the Farey
sequence of order r), and denote the resulting ordered sequence of rays by
{Lj}J

j=−J . Let Pj be the intersection of Lj and K.
We now define a preliminary domain D0 with partially polygonal bound-

ary, then smooth out the corners to get a domain D with bounded curvature,
and we shall then take Ω = D∗ so that Ω∗ = D∗∗ = D. The boundary of the
set D0 is the polygon in the sector S = {(x, y) : 0 ≤ |y| ≤ x} whose edges
are the segments

−−−−→
PjPj+1, −J ≤ j < J , and we let the boundary of D0 be a

smooth curve of bounded curvature in the closure of the complement of S.
We note that with Pj = (xj , yj), we have

(9.4) 1− 1
2hr2

≤ xj ≤ 1

by a straightforward application of Pythagoras’ theorem and the fact that
|Pj − (1, 0)| ≤ 1.

It follows that for this convex set D0, the defining functional ρ∗0 satisfies
(9.3) if h ≥ R1/2(log R)−ε. Indeed, if Rm,nσ = Ljσ for σ = 1, 2, then
(m,nσ) = m

xjσ
(xjσ , yjσ) and so by (9.4), we have

|ρ∗ ((m,n1))− ρ∗ ((m,n2))| =
∣∣∣ m

xj1

− m

xj2

∣∣∣ =
m|xj1 − xj2 |

xj1xj2

≤ 2m(hr2)−1 < 2(hr)−1.

We now smooth out the corners to define the domain D0. We modify ∂D0

in a small neighbourhood of each Pj by inscribing a circle of radius 1 to be
tangent to each edge incident with Pj , so that in this neighbourhood, ∂D is
an arc Γ∗j of a circle of radius 1, where the arc Γ∗j is centered about the ray
Lj and has diameter Mj , where

(9.5) c(hr3)−1 ≤Mj≤ C(hr2)−1,
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depending on where in the Farey sequence the slope of Lj occurs. This
modification is possible for h ≥ C0, where C0 is a sufficiently large constant,
since then by the second inequality in (9.5),

Mj� r−2 ≤
∣∣−−−−→PjPj+1

∣∣.
It is easy to see that inequality (9.3) persists for this modification.

Now define Ω = D∗ and let ρ be the Minkowski functional of Ω. Let
n∗(m,n) be the unit normal at the boundary point of D which lies on the
ray determined by (m,n). If Rm,n = Lj then the dual arc Γj of ∂Ω is

centered at
n∗
(m,n)

ρ
“
n∗
(m,n)

” , has curvature 1 and diameter Mj . Note that the

point n∗(m,n)/ρ(n∗(m,n)) in ∂Ω has Pj/|Pj | as unit normal. Thus by the

first inequality in (9.5), the cap C(Pj/|Pj |, δ) has diameter ≈ δ
1
2 for all

0 < δ ≤ c((hr3)−2 ≤ c′ M2
j , and so

(R|(m,n)|)1/2diam
(
C( Pm,n

|Pm,n| ,
1

R|(m,n)|)
)
≥ c

if (R|(m,n)|)−1 ≤ c(hr3)−2, and in particular if R ≥ Ch2r6. Thus if log R ≥
Cr

3
ε and R

1
2 (log R)−ε ≤ h ≤ R

1
2 r−3, we have both (9.2) and (9.3). �

10. On the notion of curvature bounded below for rough
convex domains in the plane

Let Ω be an open bounded convex set in the plane R2. In the case ∂Ω
is C2, the classical curvature of ∂Ω is well-defined at every boundary point
P ∈ ∂Ω. If however Ω is an arbitrary bounded convex set, then ∂Ω may
be only Lipschitz continuous, and the classical definition of curvature is
no longer available. In this paper we needed to define the notion that a
strictly convex set has curvature bounded below by a positive constant, and
took for convenience the inequality (1.7) as a definition. Here we will con-
sider three natural related definitions of this concept and demonstrate their
equivalence, as well as their equivalence with the classical definition when
∂Ω is C2. It turns out to be more convenient to work with the reciprocal of
curvature, namely the radius of curvature, and we define instead the notion
that a strictly convex set has radius of curvature bounded above by a positive
constant.

Note that if Ω is bounded and strictly convex, then for every unit normal
vector n, there is a unique point P = P (n) ∈ ∂Ω such that n is an outer
normal to ∂Ω at P . Given the unit vector n and δ > 0, we define the solid
boundary cap C(n, δ) associated to n

(10.1) CΩ (n, δ) = {x ∈ Ω : 0 < 〈P − x, n〉 < δ} .

It is easy to see that for any convex domain there is a constant c = cΩ > 0
so that

(10.2) c area(CΩ) ≤ δ−1diam(CΩ(n, δ)) ≤ c−1area(CΩ);
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here CΩ(n, δ) is the boundary cap as defined in (1.5). Given an interior
point P0 of Ω the constant c in (10.2) depends just on the ratio of radii of
an inscribed and a circumscribed circle both centered at P0.

Next, given three noncollinear points P,Q,R in the plane, denote by
R (P,Q,R) the radius of curvature of the unique circle through P , Q and
R, namely

(10.3) R (P,Q,R) =
1
2

|R− P |
sin (]PQR)

=
|P −Q| |Q−R| |R− P |

4area (4PQR)
.

Definition 10.1. Let Ω be a bounded open strictly convex set in the plane
R2.

(1) We say that ∂Ω has radius of curvature bounded above by C1 in the
disk sense if for every point P ∈ ∂Ω and supporting L through P ,
there is an open disk D of radius C1 such that

(10.4) P ∈ ∂D, L is tangent to ∂D and Ω ⊂ D.

(2) We say that ∂Ω has radius of curvature bounded above by C2 in the
cap sense if

(10.5) area
(
CΩ(n, δ)

)
≤

√
C2δ

3/2

for all unit vectors n and δ > 0.
(3) We say that ∂Ω has radius of curvature bounded above by C3 in the

three-point sense if

(10.6) R (P,Q,R) ≤ C3

for every triple of distinct points P,Q,R in ∂Ω.

We remark that in view of (10.2) statement (2) in the definition is equiv-
alent with the condition in (1.7) which we used earlier in the paper.

Lemma 10.2. Let Ω be a bounded open strictly convex set in the plane R2.
Then statements (1), (2), (3) of Definition 10.1 are equivalent; moreover
for the infima of the constants in (10.4), (10.5) and (10.6) we have

inf C2 ≤ 4 inf C1, inf C3 ≤ 8 inf C2, inf C1 ≤ inf C3.

Proof. (1 ⇒ 2): Suppose that ∂Ω has radius of curvature bounded above by
C1 in the disk sense, and fix n ∈ T and δ > 0. Let P be the unique point in
∂Ω with n as an outer normal, let L be a line through P perpendicular
to n, and let D be the open disk of radius C1 satisfying (10.4). Then
CΩ (n, δ) ⊂ CD (n, δ), and since a cap of width β in the unit disk has area
not more than 2β

3
2 , we have the estimate

area
(
CΩ (n, δ)

)
≤ area

(
CD (n, δ)

)
= C2

1area
(
CC−1

1 D(n, C−1
1 δ)

)
≤ C2

12
(
C−1

1 δ
) 3

2 =
√

4C1δ
3
2 .

(2 ⇒ 3): Suppose now that ∂Ω has radius of curvature bounded above by
C2 in the cap sense, and let P,Q,R be a triple of distinct points in ∂Ω with
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largest side PR. Consider the portion ∂Ω′ of ∂Ω lying on the same side of
the segment PR as the point Q, and let Q′ ∈ ∂Ω′ maximize the distance

δ = dist
(
Q′, PR

)
from Q′ to PR. Then with n equal to the unit vector perpendicular to PR
in the direction toward Q′, we have from (10.1) that

1
2
δ
∣∣PR

∣∣ = area
(
4PQ′R

)
≤ area

(
CΩ(n, δ)

)
≤

√
C2δ

3
2 .

Thus ∣∣PQ′
∣∣ ∣∣sin (

]Q′PR
)∣∣ = dist

(
Q′, PR

)
= δ ≥ 1

4C2

∣∣PR
∣∣2 ,

and so by (10.3), we obtain

R
(
P,Q′, R

)
=

1
2

∣∣PR
∣∣

sin (]PQ′R)
≤ 2C2

∣∣PQ′
∣∣∣∣PR
∣∣ .

In the case when Q = Q′, we then obtain

R (P,Q,R) ≤ 2C2

since PR is the largest side of4 (P,Q,R). Thus we have proved in this para-
graph that R (P,Q,R) ≤ 2C2 whenever PR is the largest side of 4 (P,Q,R)
and Q has maximal distance on its side from the line through P and R.

Now let {P,Q,R} be an arbitrary triple of points in ∂Ω with
∣∣PR

∣∣ ≥∣∣QR
∣∣ ≥ ∣∣PQ

∣∣. Let L be the line through Q and R, and let S ∈ ∂Ω lie on
the side of L opposite P maximize the distance from S to L. There are now
two cases to consider:

∣∣QS
∣∣ ≤ ∣∣SR

∣∣ and
∣∣QS

∣∣ >
∣∣SR

∣∣. In the first case,∣∣QS
∣∣ ≤ ∣∣SR

∣∣ implies sin (]SRQ) ≤ sin (]SQR), and since we also have
sin (]SQR) ≤ sin (]PQR), we conclude that

sin (]QSR) = sin (]SRQ + ]SQR) ≤ 2 sin (]SQR) ≤ 2 sin (]PQR) .

Since also
∣∣QR

∣∣ ≥ 1
2

∣∣PR
∣∣, it then follows from the previous paragraph that

R (P,Q,R) =

∣∣PR
∣∣

2 sin (]PQR)
≤

2
∣∣QR

∣∣
sin (]QSR)

= 4R (Q,S, R) ≤ 8C2.

In the second case, we have
∣∣QS

∣∣ ≥ 1
2

∣∣QR
∣∣ ≥ 1

4

∣∣PR
∣∣. Let M be the line

through Q and S, and let T ∈ ∂Ω lie on the side of M opposite R maximize
the distance from T to M . Since T is closer to the line L than S, it follows
that we have the key property

sin (]QTS) ≤ sin (]PQR) .

From these inequalities we obtain

R (P,Q,R) =

∣∣PR
∣∣

2 sin (]PQR)
≤

4
∣∣QS

∣∣
2 sin (]QTS)

= 4R (Q,T, S) ≤ 8C2.

(3 ⇒ 1): Now we suppose that ∂Ω has radius of curvature bounded
above by C3 in the three-point sense, and fix P ∈ ∂Ω and a supporting line
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L at P . Consider the family of closed disks
{
Dr

}
r>0

where Dr is the open
disk of radius r tangent to L at P and lying on the same side of L as Ω.
Let Dr0 be the smallest such closed disk containing Ω, which exists since
the intersection of any subfamily of

{
Dr

}
r>0

is either {P} or a member
of

{
Dr

}
r>0

. If ∂Dr0 ∩ ∂Ω contains at least three points, say P,Q,R, then
r0 = R (P,Q,R) ≤ C3 and so (10.4) holds with D = Dr0 and C1 = r0 ≤ C3

as required. The remaining cases where ∂Dr0 ∩ ∂Ω contains exactly two
points, or just the single point P , will now be handled separately.

In the case ∂Dr0 ∩ ∂Ω = {P,R}, consider the portion ∂Ω′ of ∂Ω lying in
the smaller of the two components of Dr0 \M where M is the line through
P and R (if PR is a diameter of Dr0 , we can use either of the equally sized
components of Dr0\M). Let Q ∈ ∂Ω′ maximize the distance δ = dist (Q,M)
from Q to the line M . Then again we have r0 ≤ R (P,Q,R) ≤ C3 as
required.

Finally we consider the case ∂Dr0 ∩ ∂Ω = {P}. Let η = 1
10diam (Ω). The

compact sets ∂Dr0 \
{
x ∈ R2 : |x− P | < η

}
and Ω are disjoint, and so we

can find ε̇ > 0 arbitrarily small such that both # (∂Dr0−ε ∩ ∂Ω) > 1 and

∂Dr0−ε ∩ ∂Ω ⊂
{
x ∈ R2 : |x− P | < η

}
.

If ∂Dr0−ε ∩ ∂Ω contains at least three points, say P,Q,R, then

r0 − ε = R (P,Q,R) ≤ C3.

If ∂Dr0−ε ∩ ∂Ω = {P,R}, consider the component ∂Ω′ of ∂Ω \ {P,R} lying
in the ball

{
x ∈ R2 : |x− P | < η

}
. Then we have that ∂Ω′ ⊂ Dr0 \Dr0−ε.

We claim that a calculation using this, (10.3) and the fact that P and R lie
on ∂Dr0−ε, yields

lim
Q→P

R (P,Q,R) = lim
Q→P

|P −Q| |Q−R| |R− P |
area (4PQR)

= r0 − ε,

where the limit is taken as Q tends to P along ∂Ω′, or more generally
along any path tangent to ∂Dr0−ε at P . To simplify the calculation we let
r = r0 − ε and take P to be the origin, L to be the x− axis, ∂Dr to be the
circle x2 + (y − r)2 = r2, R = (u, v) ∈ ∂Dr and Q = (x, y). Then by (10.3),

R (P,Q,R) =
|P −Q| |Q−R| |R− P |

4area (4PQR)

=
1
2

√
x2 + y2

|xv − yu|

√
(x− u)2 + (y − v)2

√
u2 + v2,

which tends to 1
2

u2+v2

|v| = r as (x, y) approaches the origin along any path
where

∣∣ y
x

∣∣ → 0. Thus we have

r0 − ε = lim
Q→P

R (P,Q,R) ≤ C3
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in this case as well. Since ε > 0 can be made arbitrarily small, we have
r0 ≤ C3. Altogether then we see that (10.4) holds with D = Dr0 and
C1 = r0 ≤ C3, and this completes the proof of the lemma. �

Remark. If ∂Ω is C2, then the curvature κ (Q) of ∂Ω at the point Q ∈ ∂Ω
satisfies

1
κ (Q)

= lim
P,R→Q

R (P,Q,R) ,

where the limit is taken as distinct points P and R tend to Q along ∂Ω.
This shows that the curvature of a C2, bounded and strictly convex set Ω
is bounded below by c > 0 if and only if the radius of curvature is bounded
above by c−1 in the three-point sense.

11. Appendix on generalized distances for lattice points in
dimensions d ≥ 3

Let ρ be the norm associated to a convex symmetric domain containing
the origin, with smooth boundary and with the property that the Gaussian
curvature of the boundary vanishes nowhere. Here we are interested in lower
bounds for the distance sets

∆K(E) = {ρ (x− y) :x, y ∈ E},

where E will be taken as E(R) = {k ∈ Zd, |k| ≤ R}.
This can be considered as an instance of a problem by Erdős [7] who

conjectured for K being the unit ball for the Euclidean metric that for any
finite set E ⊂ Rd (d ≥ 2) one should have the estimate

(11.1) card(∆K(E)) ≥ Cε(card(E))
2
d
−ε;

this conjecture makes also sense for the more general metrics as described
above and suggests the lower bound card(∆K(E(R))) & R2−ε in our special
case, for all metrics as described above. The general conjecture is open in
every dimension d ≥ 2. For some of the best currently known partial results
and a description of the relevant combinatorial techniques we refer to the
survey [22] and other articles in the same volume.

For the case of the Euclidean metric (i.e. K = {|x| ≤ 1}) the lower
bound R2−ε for ∆K(E(R)) is well known and follows from properties of the
number r(n) of representations of an integer n as a sum of two squares (see
Theorems 338 and 339 in [8]). For more general metrics we shall deduce the
lower bound for card(∆K(E(R))) from mean discrepancy results in [13] (see
also the previous work by W. Müller [17]). Unfortunately, in two dimen-
sions these results do not seem to yield anything nontrivial for the distance
problem.

Since the distance set ∆K(E(R)) contains the image of E(R) under ρ it
is sufficient to prove the lower bound card(ρ(E(R))) ≥ CεR

2−ε, ε > 0. We
have the following more precise estimate.
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Proposition 11.1. Let d ≥ 3 and let Ω be an open convex bounded set in Rd

containing the origin in its interior. Suppose that the boundary ∂Ω is C∞,
with nonvanishing Gaussian curvature. Let ρ be the Minkowski-functional
associated to Ω, let

ER = {k ∈ Zd : R/2 ≤ |k| ≤ R}

and let ρ(ER) = {ρ(a) : a ∈ ER}. Then there exists a constant C0 so that
for all R ≥ C0 we have

card(ρ(ER)) ≥

{
R2 if d ≥ 4
R2/ log R if d = 3.

Proof. Let α ≥ 0. We define for a finite set A the quantity

mρ,α(A) = max{card(F ) : F ⊂ ρ(A), |s− t| > α} for all s, t ∈ F}.

In particular note that mρ,0(A) = ρ(A); in fact in view of the finiteness of
A we have ρ(A) = mρ,ε0(A) for some ε0 = ε0(A) > 0. Moreover we let for
ε ≤ 1, R ≥ 1

S(ε, r;A) = card{k ∈ A; |ρ(k)− r| ≤ ε};

σ(A, ε) =
∑
k∈A

S(2ε, ρ(k);A).

We first observe that for any finite set A (later A = ER), and ε > 0

(11.2) card(A) ≤
√

mρ,ε(A)
√

3σ(A, ε).

Indeed if F is a subset of ρ(A) for which the maximum in the definition of
mρ,ε is attained then the Cauchy-Schwarz inequality gives

card(A) ≤
(
cardF

)1/2
( ∑

t∈F

(
S(ε, t;A)

)2
)1/2

.

Now for fixed k there are at most three intervals of the form [s − ε, s + ε],
s ∈ F to which ρ(k) can belong. Thus the right hand side of the last equation
is dominated by mρ,ε(A)1/2(3

∑
k∈A S(2ε, ρ(k);A))1/2 which yields (11.2).

By estimates from [13] (namely the argument on p. 218/219 and the
statement of Lemma 2.1 of that paper) we get for ε ≤ R−1(

R−d
∑

k∈ER

S(2ε, ρ(k))2
)1/2

≤
( ∑

k∈E
S(2/R, ρ(k))2

)1/2

≤ C1

(
R−1

∫ 4R

R/4
|E(t)|2dt

)1/2
+ C2R

d−2

where here of course E(t) = card(tΩ ∩ Zd) − tdvol(Ω). The results on the
mean square discrepancy in [13] imply that the first term is O(Rd−2) if d ≥ 4
and O(R log R) if d = 3.



MEAN LATTICE POINT DISCREPANCY BOUNDS 39

Now σ(ER, ε) ≤ CRd(R−d
∑

k∈ER
S(2ε, ρ(k))2)1/2 and thus

σ(ER, ε) ≤ C

{
R2d−2 if d ≥ 4
R4 log R if d = 3

.

Since card(ER) ≈ Rd we may use (11.2) to obtain for all ε ∈ (0, 1/R) the
lower bound mρ,ε(A) & R2 if d ≥ 4 and mρ,ε(A) & R2/ log R if d = 3 and
this implies the asserted lower bounds for the cardinality of ρ(ER). �

Remark: For the Euclidean ball K = B3 in three dimensions one can use
the mean discrepancy result by Jarńık [15] to improve (in this very special
case) the lower bound R2/ log R in Proposition 11.1 to R2/

√
log R.
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